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ABSTRACT

Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL
agent learns to optimize a task using pair-wise preference-based feedback over
trajectories, rather than explicit reward signals. While PbRL has demonstrated
practical success in fine-tuning language models, existing theoretical work focuses
on regret minimization and fails to capture most of the practical frameworks. In
this study, we fill in such a gap between theoretical PbRL and practical algorithms
by proposing a theoretical reward-agnostic PbRL framework where exploratory
trajectories that enable accurate learning of hidden reward functions are acquired
before collecting any human feedback. Theoretical analysis demonstrates that
our algorithm requires less human feedback for learning the optimal policy under
preference-based models with linear parameterization and unknown transitions,
compared to the existing theoretical literature. Specifically, our framework can
incorporate linear and low-rank MDPs with efficient sample complexity. Addition-
ally, we investigate reward-agnostic RL with action-based comparison feedback
and introduce an efficient querying algorithm tailored to this scenario.

1 INTRODUCTION

Reinforcement learning algorithms train agents to optimize rewards of interests. However, setting
an appropriate numerical reward can be challenging in practical applications (e.g., design a reward
function for a robot arm to learn to play table tennis), and optimizing hand-crafted reward functions
can lead to undesirable behavior when the reward function does not align with human intention. To
overcome this challenge, there has been a recent surge of interest in Preference-based Reinforcement
Learning (PbRL) with human feedback. In PbRL, the agent does not receive a numerical reward
signal, but rather receives feedback from a human expert in the form of preferences, indicating which
state-action trajectory is preferred in a given pair of trajectories. PbRL has gained considerable
attention in various domains, including NLP (Ziegler et al., 2019; Stiennon et al., 2020; Wu et al.,
2021; Nakano et al., 2021; Ouyang et al., 2022; Glaese et al., 2022; Ramamurthy et al., 2022; Liu
et al., 2023), robot learning (Christiano et al., 2017; Brown et al., 2019; Shin et al., 2023), and
recommender systems (Xue et al., 2022).

Despite the promising applications of PbRL in various areas, there are only a few provably efficient
algorithms (also known as PAC RL) for this purpose (Pacchiano et al., 2021; Chen et al., 2022b).
These algorithms focus on regret minimization and iterate through the following processes: collecting
new trajectories from the environment, obtaining human feedback on the trajectories, and learning
hidden reward functions as well as the dynamic model from the human feedback. However, this
approach can be slow and expensive in practice as it requires humans in every iteration of dynamic
model selection process, which is not as easy as it may sound. For example, interactive decision-
making algorithms that put human in the loop of model learning process such as DAgger (Ross
et al., 2011) can become impractical when applied to some real-world robotics applications, as has
been observed in prior works (Ross et al., 2013; Laskey et al., 2016). In contrast, in practical PbRL
∗This work was done at Cornell University.
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applications like InstructGPT (Ouyang et al., 2022) and PEBBLE (Lee et al., 2021), the majority of
preference data are collected by crowdsourcing prompts from the entire world and the supervised or
heuristic policies, therefore most of the human labeling process does not depend on the training steps
afterward. Another line of work (Zhu et al., 2023) focuses on purely offline RL algorithms to learn a
near-optimal policy from offline trajectories with good coverage (e.g., offline data that covers some
high-quality policies’ traces). Nevertheless, it is unclear how to obtain such high-quality offline data
a priori (Chen and Jiang, 2019).

To fill in such a gap between theoretical work and practical applications in PbRL, we propose a new
theoretical method that lies in between purely online and purely offline methods for PbRL, resembling
the framework of InstructGPT and PEBBLE. Our algorithm first collects state-action trajectories
from the environment without human feedback. In this step, we design a novel sampling procedure to
acquire exploratory trajectories that facilitate the subsequent learning of reward functions which is
fully reward-agnostic. In the second step, we collect preference feedback on the collected trajectories
from human experts. In the third step, we aim to learn the underlying hidden reward functions using
the collected trajectories in the first step and preference feedback in the second step. In the fourth step,
we learn the optimal policy by solving the offline RL problem under the learned reward function. Our
approach can be understood as performing experimental design for PbRL, which allows us to separate
the data-collection process from the process of querying human feedback, eliminating the need for
constantly keeping human in the training loop. For instance, we only need to keep human experts in
step 2 above, while we can freely perform hyperparameter tuning / model selection for the rest steps
without requiring human experts sitting next to the computers. This process can significantly reduce
the burden from human experts.

Our contributions can be summarized as follows:

• We propose an efficient experimental design algorithm for PbRL. Our algorithm is specifically
designed for linear reward parametrization, which is commonly used in models such as the Bradley-
Terry-Luce model, and can handle unknown transitions. This flexibility allows us to handle
non-tabular transition models like low-rank MDPs (Agarwal et al., 2020a) and linear MDPs (Jin
et al., 2019). To the best of the our knowledge, existing works with statistical guarantees cannot
incorporate these models efficiently. Notably, our experimental design algorithm does not depend
on any information of the reward and is reward-agnostic. Therefore, the collected trajectories can
indeed be reused for learning many reward functions at the same time.

• Our key idea is to decouple the interaction with the environment and the collection of human
feedback. This decoupling not only simplifies the process of obtaining human feedback in practice
but also results in a significant reduction in the sample complexity associated with human feedback
compared to existing works (Pacchiano et al., 2021; Chen et al., 2022b). This improvement is
particularly valuable as collecting human feedback is often a resource-intensive process.

• To circumvent the scaling with the maximum per-trajectory reward in the trajectory-based compari-
son setting, we further investigate preference-based RL with action-based comparison and propose
a provably efficient algorithm for this setting. We show that in this case the sample complexity
only scales with the bound of the advantage functions of the optimal policy, which can be much
smaller than the maximum per-trajectory reward (Ross et al., 2011; Agarwal et al., 2019).

1.1 RELATED WORKS

We refer the readers to Wirth et al. (2017) for an overview of Preference-based RL (PbRL). PbRL
has been well-explored in bandit setting under the notion of dueling bandits (Yue et al., 2012; Zoghi
et al., 2014; Dudík et al., 2015), where the goal is to find the optimal arm in the bandit given human
preference over action pairs. For MDPs, in addition to Pacchiano et al. (2021); Chen et al. (2022b),
which we compare in the introduction, Novoseller et al. (2020); Xu et al. (2020) have also developed
algorithms with sample complexity guarantees. Novoseller et al. (2020) proposes a double posterior
sampling algorithm with an asymptotic regret sublinear in the horizon H . Xu et al. (2020) proposes a
PAC RL algorithm but relies on potentially strong assumptions such as Strong Stochastic Transitivity.
Note both of Novoseller et al. (2020); Xu et al. (2020) are limited to the tabular setting.

Our algorithm shares a similar concept with reward-free RL which focuses on exploration in the
state-action space without using explicit rewards. Reward-free RL has been studied in many MDPs
such as tabular MDPs (Jin et al., 2020a), linear MDPs (Wang et al., 2020), low-rank MDPs (Agarwal
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et al., 2020a) and several other models (Chen et al., 2022a; Zanette et al., 2020; Qiu et al., 2021). The
goal of reward-free RL is to gather exploratory state-action data to address the challenge of unknown
transitions before observing rewards. In contrast, our approach aims to design a single exploration
distribution from which we can draw trajectory pairs to solicit human feedback for learning reward
functions. Our setting can be considered as an experimental design for PbRL.

2 PRELIMINARIES

We introduce our formulation of Markov decision processes (MDPs) and PbRL.

2.1 MDPS WITH LINEAR REWARD PARAMETRIZATION

We consider a finite-horizon MDP M = (S,A, P ∗, r∗, H), where S is the state space, A is the
action space, P ∗ = {P ∗h}Hh=1 is the ground-truth transition dynamics, r∗ = {r∗h}Hh=1 is the ground-
truth reward function, and H is the horizon. Specifically, for each h ∈ [H] ([H] := (1, · · · , H)),
P ∗h : S × A → ∆(S) and r∗h : S × A → [0, 1] represent the transition and reward function at step
h, respectively. Moreover, we use P1(·) to denote the initial state distribution. Here, both r∗, P ∗
are unknown to the learner. In this work, we assume that the cumulative reward of any trajectory
τ = (sh, ah)Hh=1 does not exceed rmax, i.e.,

∑H
h=1 rh(sh, ah) ≤ rmax.

Policies and value functions. A policy π = {πh}Hh=1 where πh : S → ∆(A) for each h ∈ [H]
characterizes the action selection probability for every state at each step. In this paper, we assume
the policy belongs to a policy class Π, which can be infinite. Given a reward function r and policy
π, the associated value function and Q function at time step h are defined as follows: V r,πh (s) =

Eπ,P∗ [
∑H
h′=h rh(sh, ah)|sh = s], Qr,πh (s, a) = Eπ,P∗ [

∑H
h′=h rh(sh, ah)|sh = s, ah = a]. Here,

Eπ,P∗ [·] represents the expectation of the distribution of the trajectory induced by a policy π and
the transition P ∗. We use V r,π to denote the expected cumulative rewards of policy π with respect
to reward function r under P ∗, i.e., V r,π := Es∼P∗1 V

r,π
1 (s), and use V r,∗ to denote the maximal

expected cumulative rewards with respect to reward function r under P ∗, i.e., V r,∗ := maxπ∈Π V
r,π .

In particular, let π∗ denote the best policy in Π with respect to r∗, i.e., arg maxπ∈Π V
r∗,π . In contrast,

we denote the globally optimal policy by πg := arg maxπ∈ΠMar V
r∗,π where ΠMar is the set of all

Markovian policies. Note that when Π 6= ΠMar, π∗ might not be optimal compared to πg.

Linear reward parametrization. To learn the unknown reward function, it is necessary to make
structural assumptions about the reward. We consider a setting where the true reward function
possesses a linear structure:

Assumption 1 (Linear Reward Parametrization). We assume MDP has a linear reward parametriza-
tion with respect to (w.r.t.) known feature vectors φh(s, a) ∈ Rd. Specifically, for each h ∈ [H], there
exists an unknown vector θ∗h ∈ Rd such that r∗h(s, a) = φh(s, a)>θ∗h for all (s, a) ∈ S × A. For
technical purposes, we suppose for all s ∈ S, a ∈ A, h ∈ [H], we have ‖φh(s, a)‖ ≤ R, ‖θ∗h‖ ≤ B.

Note when d = |S||A| and setting φh(s, a) as one-hot encoding vectors, we can encompass the
tabular setting. Linear reward parametrization is commonly used in the literature of preference-based
RL with statistical guarantees (Pacchiano et al., 2021; Zhu et al., 2023). See Appendix A for more
details.

Notation. We use r∗(τ) :=
∑H
h=1 r

∗
h(sh, ah) to denote the ground-truth cumula-

tive rewards of trajectory τ . In particular, r∗(τ) = 〈φ(τ), θ∗〉 where φ(τ) :=
[φ1(s1, a1)>, · · · , φH(sH , aH)>]>, θ∗ := [θ∗>1 , · · · , θ∗>H ]>. We use φ(π) to denote
Eτ∼(π,P∗)[φ(τ)] for simplicity. We also use Θ(B) to denote the set {θ ∈ Rd : ‖θ‖ ≤ B}
and Θ(B,H) to denote the set {θ ∈ RHd : θ = [θ>1 , · · · , θ>H ]>, θh ∈ Θ(B),∀h ∈ [H]} ∩ {θ ∈
RHd : 〈φ(τ), θ∗〉 ≤ rmax,∀τ}. We use the notation f = O(g) when there exists a universal constant
C > 0 such that f ≤ Cg and Õ(g) := O(g log g).

2.2 PREFERENCE-BASED REINFORCEMENT LEARNING

In this paper, we consider a framework for PbRL that mainly consists of the following four steps:

• Step 1: Collect a dataset of trajectory pairsDreward = (τn,0, τn,1)
N
n=1 in a reward-agnostic fashion,

where τn,i = {sn,ih , an,ih , sn,ih+1}Hh=1 for n ∈ [N ] and i ∈ (0, 1).

• Step 2: Obtain preference feedback from human experts for each pair of trajectories in Dreward.
Namely, if trajectory τn,1 is preferred over τn,0, then assign on = 1, otherwise assign on = 0.
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Algorithm 1 REGIME: Experimental Design for Querying Human Preference

1: Input: Regularization parameter λ, model estimation accuracy ε′, parameters ε, δ.
2: Initialize Σ1 = λI
3: Estimate model P̂ ← P(Π, ε′, δ/4) (Possibly, requires the interaction with the enviroment.)
4: for n = 1, · · · , N do
5: Compute (πn,0, πn,1)← arg maxπ0,π1∈Π ‖φ̂(π0)− φ̂(π1)‖Σ̂−1

n
.

6: Update Σ̂n+1 = Σ̂n + (φ̂(π0)− φ̂(π1))(φ̂(π0)− φ̂(π1))>.
7: end for
8: for n = 1, · · · , N do
9: Collect a pair of trajectories τn,0, τn,1 from the enviroment by πn,0, πn,1, respectively.

10: Add it to Dreward.
11: end for.
12: Obtain the preference labels {on}Nn=1 for Dreward from human experts.
13: Run MLE θ̂ ← arg maxθ∈Θ(B,H) L(θ,Dreward, {on}Nn=1) where L(θ,Dreward, {on}Nn=1) is

defined in (1).
14: Return π̂ = arg maxπ∈Π〈φ̂(π), θ̂〉.

• Step 3: Estimate the ground truth reward using the dataset Dreward and preference labels {on}Nn=1.

• Step 4: Run RL algorithms (either online or offline) using the learned rewards and obtain a policy
π̂ that maximizes the cumulative learned rewards.

The above framework has been applied in practical applications, such as PEBBLE (Lee et al., 2021).
However, these algorithms lack provable sample efficiency guarantees. In particular, it remains
unclear in the literature how to collect the trajectories in Step 1 to enable accurate estimation of
the ground truth reward. In our work, we strive to develop a concrete algorithm that adheres to the
above framework while ensuring theoretical sample efficiency. We also emphasize that step 1 is
reward-agnostic, and the collected dataset can be re-used for learning many different rewards as long
as they are linear in the feature φ.

Preference model. In this work, we assume the preference label follows the Bradley-Terry-Luce
(BTL) model (Bradley and Terry, 1952) in Step 2, i.e., we have the following assumption:

Assumption 2. Suppose for any pair of trajectory (τ0, τ1), we have

P(o = 1) = P(τ1 � τ0) = σ(r∗(τ1)− r∗(τ0)) = exp(r∗(τ1))
exp(r∗(τ0))+exp(r∗(τ1)) ,

where o is the human preference over (τ0, τ1) and σ(·) is the sigmoid function.

Our analysis will leverage the quantity κ := sup|x|≤rmax
|1/σ′(x)| = 2+exp(2rmax)+exp(−2rmax)

to measure the difficulty of estimating the true reward from the BTL preference model.

3 ALGORITHM: REGIME
We propose an algorithm specifically designed for the PbRL setting when the transitions are unknown.
In order to handle unknown transitions, we use the following mild oracle:

Definition 1 (Reward-free RL oracle). A reward-free learning oracle P(Π, ε, δ) can return an
estimated model P̂ such that with probability at least 1 − δ, we have for all policy π ∈ Π and
h ∈ [H], s ∈ S, a ∈ A, ‖P̂1(·)− P ∗1 (·)‖1 ≤ ε′,Eπ,P∗ [‖P̂h(·|s, a)− P ∗h (·|s, a)‖1] ≤ ε′ where ‖ · ‖1
denotes total variation distance (i.e., `1-norm).

This oracle necessitates accurate model learning through interactions with the environment. The
required guarantee is relatively mild since we do not require a point-wise error guarantee, but rather
an expectation-based guarantee under the ground truth transition. This oracle holds true not only in
tabular MDPs (Jin et al., 2020a), but also in low-rank MDPs (Agarwal et al., 2020a; 2022), where the
only assumption is the low-rank property of the transition dynamics, and features could be unknown
to the learner. Low-rank MDPs find wide application in practical scenarios, including blocked MDPs
(Du et al., 2019; Zhang et al., 2020a;b; Sodhani et al., 2021; 2022).
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3.1 ALGORITHM

The algorithm is described in Algorithm 1. Given a learned model P̂ , we use φ̂(π) = Eτ∼(π,P̂ )[φ(τ)]

to estimate φ(π) := Eτ∼(π,P?)[φ(τ)]. The algorithm mainly consists of four steps as follows.

Step 1: Collection of state-action trajectories by interacting with the environment (Line 4–11).
To learn the ground truth reward function, we collect exploratory state-action trajectories that cover
the space spanned by φ(·) before collecting any human feedback. To achieve this, at each iteration,
we identify a set of explorative policy pairs that are not covered by existing data. We measure
the extent to which the trajectory generated by (π0, π1) can be covered by computing the norm of
φ̂(π0) − φ̂(π1) on the metric induced by the inverse covariance matrix Σ−1

n at time step n. After
iterating this procedure N times and obtaining sets of policies {(πn,0, πn,1)}Nn=1, we sample N
exploratory trajectory pairs by executing the policy pairs (πn,0, πn,1) for n ∈ [N ]. Notably, this
trajectory-collection process is reward-agnostic and thus the collected samples can be used to learn
multiple rewards in multi-task RL.

Step 2: Collection of preference feedback by interacting with human experts (Line 12). If
trajectory τn,1 is preferred over τn,0, then assign on = 1, otherwise assign on = 0.

Step 3: Reward learning via MLE (Line 13). We adopt the widely-used maximum likelihood
estimation (MLE) approach to learn the reward function, which has also been employed in other works
Ouyang et al. (2022); Christiano et al. (2017); Brown et al. (2019); Shin et al. (2023); Zhu et al. (2023).
Specifically, we learn the reward model by maximizing the log-likelihood L(θ,Dreward, {on}Nn=1):∑N

n=1 log
(
on · σ(〈θ, φ(τn,1)− φ(τn,0)〉) + (1− on) · σ(〈θ, φ(τn,0)− φ(τn,1)〉)

)
. (1)

Step 4: RL with respect to learned rewards (Line 14). We obtain the near-optimal policy that
maximizes the cumulative learned rewards.

Our algorithm differs significantly from the algorithms proposed in Pacchiano et al. (2021); Chen
et al. (2022b). In their algorithms, they repeat the following steps: (a) collect new trajectories from
the environment using policies based on the current learned reward and transition models, (b) collect
human feedback for the obtained trajectories, (c) update the reward and transition models. A potential
issue with this approach is that every time human feedback is collected, agents need to interact with
the environment, causing a wait time for humans. In contrast, our algorithm first collects exploratory
trajectories without collecting any human feedback in Step 1. Then, we query human feedback and
learn the reward model in Step 2-3. As a result, we decouple the step of collecting exploratory data
from that of collecting human feedback. Hence, in our algorithm, we can efficiently query human
feedback in parallel, mirroring common practice done in InstructGPT. Moreover, our algorithm’s
design leads to lower sample complexity for both trajectory pairs and human feedback than Pacchiano
et al. (2021); Chen et al. (2022b). See Appendix A for our technical novelty.
Remark 1. Our collection method in Step 1 shares a similar idea to active learning. See Appendix A.
Remark 2. The majority of computational cost lies in line 5 in Algorithm 1. To implement the
algorithm, gradient ascent can be applied here to solve the optimization problem. See Appendix A.

Remark 3. In Step 4 (Line 14), it is not necessary to use the same P̂ as in Line 3. Instead, any
sample-efficient RL algorithm can be employed w.r.t. the learned reward such as Lee et al. (2021).

3.2 ANALYSIS

Now we provide the sample complexity of Algorithm 1 as shown in the following theorem.
Theorem 1. Let

λ ≥ 4HR2, N ≥ Õ
(λκ2B2R2H4d2 log(1/δ)

ε2

)
, ε′ ≤ ε

6BR
√
H5d logN

,

Then under Assumption 1 and 2, with probability at least 1− δ, we have

V r
∗,π̂ ≥ V r

∗,∗ − ε.
Note the sample complexity in Theorem 1 does not depend on the complexity of Π and thus we can
learn arbitrary policy classes. When Π = ΠMar, we have π∗ = πg and thus we can compete against
the global optimal policy.
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Since the sample complexity of human feedback, denoted by Nhum, is equal to N , Theorem 1 shows
that the sample complexity of human feedback required to learn an ε-optimal policy scales with
Õ(1/ε2) and is polynomial in the norm bounds B,R, the horizon H , and the dimension of the feature
space d. Notably, the sample complexity of human feedback Nhum only depends on the structural
complexity of the reward function, regardless of the underlying transition model. This is because
while our theorem requires that the learned transition model is accurate enough (ε′ ≤ ε

6BRH2 ),
we do not need human feedback to learn the transition model for this purpose. This property of
our algorithm is particularly desirable when collecting human feedback is much more expensive
than collecting trajectories from the environment. Existing works with sample-efficient guarantees,
such as Pacchiano et al. (2021); Chen et al. (2022b), do not have this property. Our algorithm’s
favorable property can be attributed to the careful design of the algorithm, where the step of collecting
trajectories and learning transitions is reward-agnostic and thus separated from the step of collecting
human feedback and learning rewards. Furthermore, note that our results algorithm indeed works
beyond low-rank MDPs, as long as there exists a suitable reward-free model-learning oracle. See
Appendix A for more details.

As the most relevant work, we compare our results with Pacchiano et al. (2021), which considers
online learning in PbRL with unknown tabular transition models and linear reward parameterization.
Let Ntra and Nhum denote the number of required trajectory pairs and human feedback, respectively.
Then, to obtain an ε-optimal policy, the algorithm in Pacchiano et al. (2021, Theorem 2) requires:

Ntra = Nhum = Õ
(
|S|2|A|d+ κ2d2

ε2
log

1

δ

)
.

Here we omit the dependence on B,R,H to facilitates the comparison. In contrast, in the setting
considered in Pacchiano et al. (2021), by leveraging the reward-free learning oracle from Jin et al.
(2020a), our algorithm achieves the following sample complexity:

NtraÕ
(
|S|2|A|d+ κ2d2

ε2
log

1

δ

)
, Nhum = Õ

(
κ2d2

ε2
log

1

δ

)
,

where the number of required trajectory-pairs comes from Jin et al. (2020a)[Lemma 3.6]. We observe
that our algorithm achieves a better sample complexity for human feedbacks than the previous work
while retaining the total trajectory complexity. In particular, our algorithm has the advantage that
Nhum depends only on the feature dimension d and not on |S| or |A|. This improvement is significant
since obtaining human feedback is often costly. Lastly, we note that a similar comparison can be
made to the work of Chen et al. (2022b), which considers reward and transition models with bounded
Eluder dimension.

4 REGIME IN LINEAR MDPS

So far, we have considered PbRL given reward-free RL oracle satisfying Definition 1. Existing works
have shown the existence of such a model-based reward-free RL oracle in low-rank MDPs (Agarwal
et al., 2020a; 2022). However, these results have not been extended to linear MDPs (Jin et al., 2020b)
where model-free techiniques are necessary. Linear MDPs are relevant to our setting because linear
reward parametrization naturally holds in linear MDPs. Unfortunately, a direct reduction from linear
MDPs to low-rank MDPs may introduce a dependence on the cardinality of S without assuming
strong inductive bias in the function class. In this section, we propose a model-free algorithm that can
overcome this dependence by making slight modifications to Algorithm 1. We begin by providing the
definition of linear MDPs.

Assumption 3 (Linear MDPs (Jin et al., 2020b)). We suppose MDP is linear with respect to some
known feature vectors φh(s, a) ∈ Rd(h ∈ [H], s ∈ S, a ∈ A). More specifically, if for each h ∈ [H],
there exist d unknown signed measures µ∗h = (ψ

(1)
h , · · · , ψ(d)

h ) over S and an unknown vector
θ∗h ∈ Rd such that P ∗h (·|s, a) = φh(s, a)>µ∗h(·) and r∗h(s, a) = φh(s, a)>θ∗h for all (s, a) ∈ S ×A.
For technical purposes, we suppose the norm bound ‖µ∗h(s)‖2 ≤

√
d for any s ∈ S.

In addition, we use NΠ(ε) to denote the covering number of Π, which is defined as follows:

Definition 2 (ε-covering number). The ε-covering number of the policy class Π, denoted by NΠ(ε),
is the minimum integer n such that there exists a subset Π′ ⊂ Π with |Π′| = n and for any π ∈ Π
there exists π′ ∈ Π′ such that maxs∈S,h∈[H] ‖πh(·|s)− π′h(·|s)‖1 ≤ ε.
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Algorithm 2 REGIME-lin
Input: Regularization parameter λ, feature estimation sample complexity K.
Call Algorithm 4 with generating K trajectories by interacting with the environment.
Call Algorithm 5 with reward function (rh,jh′ )h′∈[H] to estimate (φ̂(π))h,j for all π ∈ Π, h ∈
[H], j ∈ [d] using K trajectories. Let φ̂(π) = [φ̂1(π), · · · , φ̂H(π)] where the j-th entry of φ̂h(π)

is (φ̂(π))h,j .
for n = 1, · · · , N do

Compute (πn,0, πn,1)← arg maxπ0,π1∈Π ‖φ̂(π0)− φ̂(π1)‖Σ̂−1
n

.

Update Σ̂n+1 = Σ̂n + (φ̂(π0)− φ̂(π1))(φ̂(π0)− φ̂(π1))>.
end for
for n = 1, · · · , N do

Collect a pair of trajectories τn,0, τn,1 from the environment by πn,0, πn,1, respectively.
Add (τn,0, τn,1) to Dreward.

end for
Obtain the preference labels {o(n)}Nn=1 from human experts.
Run MLE θ̂ ← arg minθ∈Θ(B,H) Lλ(θ,Dreward, {o(n)}Nn=1).
Return π̂ = arg maxπ∈Π V̂

π(r̂) where V̂ π(r̂) is obtained by calling Algorithm 5 with reward
function r̂ = {r̂h}Hh=1 for all π where r̂h(s, a) = 〈φh(s, a), θ̂〉.

4.1 ALGORITHM

The reward-free RL oracle that satisfies Definition 1 for learning accurate transitions may be exces-
sively strong for linear MDPs. Upon closer examination of Algorithm 1, it becomes apparent that
the learned transition model is solely used for estimating φ(π). Therefore, our approach focuses on
achieving a precise estimation of φ(π).
Our main algorithm is described in Algorithm 2 with subroutines for estimating φ̂(π). The overall
structure of the primary algorithm resembles that of Algorithm 1. The key distinction lies in the part
to accurately estimate φ̂(π) within the subroutines, without relying on the abstract reward-free RL
oracle (Definition 1). In the following, we provide a brief explanation of these subroutines. The
detailed descriptions of these subroutines is deferred to Algorithm 4 and 5 in Appendix B.

Collecting exploratory data to learn transitions. Being inspired by the approach in Jin et al.
(2020b); Wang et al. (2020), we construct an exploratory dataset by running LSVI-UCB (Jin et al.,
2020b) with rewards equivalent to the bonus. Specifically, in the k-th iteration, we recursively apply
the least square value iteration with a bonus term {bkh(s, a)}Hh=1, which is introduced to induce
exploration. This process yields an exploratory policy πk based on exploratory rewards {rkh}Hh=1,
where rkh = bkh/H . We then collect a trajectory by executing policy πk. By repeating this procedure
for K iterations, we accumulate an exploratory dataset. The detailed algorithm is provided in
Appendix B (Algorithm 4). It is important to note that this step involves generating K trajectories
through interactions with the environment.

Estimating φ(π) using the exploratory data. Let (φ(π))h,j denote the j-th entry of φh(π) :=
Eπ[φh(sh, ah)]. Then to estimate φ(π), we only need to estimate (φ(π))h,j for all h ∈ [H], j ∈ [d].
Note that for all π ∈ Π, we have φ(π) =

[
Eπ,P∗ [φ1(s1, a1)>], · · · ,Eπ,P∗ [φH(sH , aH)>]

]>
. Here,

the key observation is that (φ(π))h,j is exactly the expected cumulative rewards with respect to the
following reward function rh,jh′ (s, a) = φh′(s, a)>θh,jh′ for all h′ ∈ [H] (up to an R factor) where
θh,jh′ = 1

R · ej for h′ = h and θh,jh′ = 0, otherwise (h′ 6= h). Here ej is the one-hot encoding vector
whose j-th entry is 1. Therefore, with the collected dataset, we can run the least square policy
evaluation to estimate (φ(π))h,j . The detail is in Algorithm 5 in Appendix B.

4.2 ANALYSIS

Now we present the sample complexity of Algorithm 2. The formal statement and proof are deferred
to Appendix B and E.1.

Theorem 2 (Informal). By choosing parameters in an appropriate way and setting
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K ≥ Õ
(
H9B2R4d5 log(NΠ(ε′)/δ)

ε2

)
, N ≥ Õ

(
λκ2B2R2H4d2 log(1/δ)

ε2

)
, ε′ = ε

72BR2H
√
dHKH−1

under Assumption 1,2, and 3, with probability at least 1−δ, we have V r
∗,π̂ ≥ V r∗,∗−ε. Furthermore,

by selecting a policy class Π properly, we have V r
∗,π̂ ≥ V r∗,πg − 2ε by replacing log(NΠ(ε′)/δ) =

Hd log
(

12WR
ε′

)
where W =

(
B+(H+ε)

√
d
)
H log |A|

ε .

The first statement says Algorithm 2 can learn an ε-optimal policy with the number of trajectory-pairs
and human feedbacks as follows:

Ntra = K +N = Õ
(
d5 logNΠ(ε′)+κ2d2

ε2

)
, Nhum = Õ

(
κ2d2

ε2

)
.

Since the sample complexity depends on the covering number of Π, we need to carefully choose the
policy class. When we choose Π to be the log-linear policy class:

Π =
{
π = {πζh}

H
h=1 : πζh(a|s) =

exp(ζ>h φh(s, a))∑
a′∈A exp(ζ>h φh(s, a′))

, ζh ∈ B(d,W ), ∀s ∈ S, a ∈ A, h ∈ [H]
}
,

although π∗ 6= πg, we can show that the value of π∗ is close to the value of πg up to ε by setting
sufficiently large W . This immediately leads to the second statement in Theorem 2. Consequently,
to learn an ε-global-optimal policy, it is concluded that the number of required trajectory pairs and
human feedbacks for Algorithm 2 does not depend on |S| at all.

Finally, we compare our work to Chen et al. (2022b), as it is the only existing work that addresses
provable PbRL with non-tabular transition models. Their algorithm exhibits sample complexities that
depend on the Eluder dimension associated with the transition models. However, in linear MDPs, it
remains uncertain whether we can get upper-bound on the Eluder dimension without introducing a
dependence on |S|. Consequently, our Algorithm 2 is the first provable PbRL algorithm capable of
achieving polynomial sample complexity that is independent of |S| in linear MDPs.

5 REGIME WITH ACTION-BASED COMPARISON

The drawback of the current results is that the sample complexity is dependent on κ, which can exhibit
exponential growth in rmax under the BTL model. This is due to the fact that sup|x|≤rmax

|1/σ′(x)| =
O(exp(rmax)). Such dependence on rmax is undesirable, especially when rewards are dense and
rmax scales linearly with H . Similar limitations are present in existing works, such as Pacchiano et al.
(2021); Chen et al. (2022b). To address this challenge, we consider the action-based comparison
model (Zhu et al., 2023) in this section. Here, we assume that humans compare two actions based on
their optimal Q-values. Given a tuple (s, a0, a1, h), the human provides feedback o following

P(o = 1|s, a0, a1, h) = P(a1 � a0|s, h) = σ(A∗h(s, a1)−A∗h(s, a0)), (2)
where A∗h is the advantage function of the optimal policy. Similar to trajectory-based comparisons
with linear reward parametrization, we assume linearly parameterized advantage functions:
Assumption 4 (Linear Advantage Parametrization). An MDP has linear advantage functions with
respect to some known feature vectors φh(s, a) ∈ Rd(h ∈ [H], s ∈ S, a ∈ A) if for each h ∈ [H],
there exists an unknown vector ξ∗h ∈ Rd such that A∗h(s, a) = φh(s, a)>ξ∗h for all (s, a) ∈ S × A.
We assume for all s ∈ S, a ∈ A, h ∈ [H], we have ‖φh(s, a)‖ ≤ R, ‖ξ∗h‖ ≤ B.

Generally, the value of |A∗h(s, a)| tends to be much smaller than H since a large value of |A∗h(s, a)|
implies that it may be difficult to recover from a previous incorrect action even under the best policy
π∗ (Ross et al., 2011; Agarwal et al., 2019). Therefore, by defining Badv = sup(s,a) |A∗h(s, a)|, we
expect that Badv will be much smaller than H , even in scenarios with dense rewards.

In the following discussion, we will use Z(B, h) to denote the convex set {ζ ∈ Rd : ‖ζ‖ ≤
B, 〈φh(s, a), ζ〉 ≤ Badv,∀s ∈ S, a ∈ A}. We consider the setting where Π = ΠMar and assume the
transition model is known for brevity. In the case of unknown transition models, we can employ the
same approach as described in Section 3 with reward-free RL oracles.

We present our algorithm for action-based comparison models in Algorithm 3. In Line 19 we denote

L(ξ,Dhadv, {oh,n}Nn=1) :=

N∑
n=1

log
(
oh,n · σ(〈ξ, φh(sh,n, ah,n,1)− φ(sh,n, ah,n,0)〉)

8
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Algorithm 3 REGIME-action
1: Input: Regularization parameter λ.
2: for h = 1, · · · , H do
3: Initialize Σh,1 = λI .
4: for n = 1, · · · , N do
5: Compute: (πh,n,0, πh,n,1)← arg maxπ0,π1∈Π ‖Esh∼π0 [φh(sh, π

0)−φh(sh, π
1)]‖Σ−1

h,n
,

6: where φh(s, π) = Ea∼πh(·|s)[φh(s, a)].
7: Update:

Σh,n+1 = Σh,n+(Esh∼πh,n,0 [φh(sh, π
h,n,0)− φh(sh, π

h,n,1)])

· (Esh∼πh,n,0 [φh(sh, π
h,n,0)− φh(sh, π

h,n,1)])>

8: end for
9: end for

10: for h = 1, · · · , H do
11: for n = 1, · · · , N do
12: Sample sh,n at time step h by executing a policy πh,n,0 = {πh,n,0k }Hk=1.
13: Sample actions ah,n,0 ∼ πh,n,0h (·|sh,n), ah,n,1 ∼ πh,n,1h (·|sh,n).
14: Add (sh,n, ah,n,0, ah,n,1) to Dhadv.
15: (These steps involve the interaction with environment)
16: end for
17: end for
18: Obtain the preference labels {oh,n}Nn=1 for Dhadv from human experts.
19: Run MLE ξ̂h ← arg minξ∈Z(B,h) L(ξ,Dhadv, {oh,n}Nn=1).
20: Compute: for all s ∈ S, a ∈ A, h ∈ [H]:
21: Âh(s, a)← φh(s, a)>ξ̂h, π̂h(s)← arg maxa∈A Âh(s, a).
22: Return π̂ = {π̂}Hh=1.

+ (1− oh,n) · σ(〈ξ, φh(sh,n, ah,n,0)− φ(sh,n, ah,n,1)〉)
)
,

where Dhadv = {sh,n, ah,n,0, ah,n,1}Nn=1.

5.1 ANALYSIS

Theorem 3. Let

λ ≥ 4R2, N ≥ Õ(λκ2
advB

2R2H2d2 log(1/δ)/ε2)

where κadv = sup|x|≤Badv
|1/σ′(x)| in REGIME-action. Then under Assumption 4, with proba-

bility at least 1− δ, we have V r
∗,π̂ ≥ V r∗,∗ − ε.

Theorem 3 demonstrates that for the action-based comparison model, the number of required human
feedbacks scales with κadv instead of κ. This implies that when σ is a commonly used sigmoid
function, the sample complexity is exponential in Badv rather than rmax. Crucially, Badv is always
less than or equal to rmax, and as mentioned earlier, Badv can be o(H) even in dense reward settings
where rmax = Θ(H). Consequently, we achieve superior sample complexity compared to the
trajectory-based comparison setting.

6 SUMMARY

We consider the problem of how to query human feedback efficiently in PbRL, i.e., the experimental
design problem in PbRL. In particular, we design a reward-agnostic trajectory collection algorithm
for human feedback querying when the transition dynamics is unknown. Our algorithm provably
requires less human feedback to learn the true reward and optimal policy than existing literature. Our
results also go beyond the tabular cases and cover common MDPs models including linear MDPs and
low-rank MDPs. Further, we consider the action-based comparison setting and propose corresponding
algorithms to circumvent the exponential scaling with rmax of trajectory-based comparison setting.
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A DISCUSSION

Validity of Linear Parametrization. In this work we consider linear reward parametrization, or
more generally, linear trajectory embeddings. Such assumptions are commonly used in the theoretical
works of PbRL (Pacchiano et al., 2021; Zhu et al., 2023) and relevant examples can be borrowed
from the practical works (Pacchiano et al., 2020; Parker-Holder et al., 2020) like the behavior guided
class of algorithms for policy optimization. We admit that our analysis cannot cover all kinds of
reward parametrization, but we think it is a reasonable starting point to consider linear function
approximation for theoretical analysis.

Applicability of REGIME. Our results are not restricted to linear MDPs and low-rank MDPs. Our
main result (Theorem 1) only requires a suitable reward-free oracle for dynamics learning and in
practice there exist some oracles ready for use, even when the MDPs are very complicated (Xu et al.,
2022). This implies that by plugging in these general reward-free oracles, we are able to deal with
general MDPs as well.

Relationship to Active Learning. The trajectory collection process in Step 1 of REGIME utilizes
a similar idea to active learning. In active learning, people choose a trajectory pair to query human
feedback which can maximize the information gain in each iteration. Similarly, in our algorithm, the
estimated covariance matrix Σ̂n can be regarded as the current information in n-th iteration. Then we
choose a pair of policies (πn,0, πn,1) which can maximize the information gain approximately (line
5, it is approximate because we are using an approximate dynamics P̂ for evaluation).

Implementation of Algorithm 1. The majority of computational cost of Algorithm 1 lies in
line 5. To implement the algorithm, gradient ascent can be applied here to solve the optimization
problem. More specifically, assume that π0 and π1 are parameterized by ν0 and ν1 (for example,
they might be parametrized by a neural network). Then the gradient of the objective f(ν0, ν1) :=

‖φ̂(π0)− φ̂(π1)‖Σ̂−1
n

with respect to ν0 (gradient of ν1 can be similarly computed) can be computed
as:

∂f(ν0, ν1)

∂ν0
= 2

∂φ̂(π0)

∂ν0
· Σ̂−1

n · (φ̂(π0)− φ̂(π1))

Here φ̂(π0) and φ̂(π1) can be estimated efficiently by simulating π0 and π1 in P̂ . For ∂φ̂(π0)
∂ν0 , we

show in Section 4 that each coordinate of φ̂(π0) is indeed a value function with respect to a certain
reward function under P̂ . Therefore we can apply the techniques in policy gradient literature such as
REINFORCE to estimate ∂φ̂(π0)

∂ν0 efficiently.

Technical Novelty. The novelty of our algorithm mainly lies in the reward-agnostic trajectory
collection procedure (line 4-11 in Algorithm 1). For the other steps in the framework, we follow the
common practice in empirical works and thus they are the same as the practical work. Our reward-
agnostic trajectory collection procedure takes inspiration from the existing works in reward-free
exploration RL and online PbRL. However, it is not a simple combination of the existing algorithms.
More specifically, our analysis has the following challenges that are not solved in the literature:

• First, almost all the reward-free exploration literature is focused on learning the transition dynamics
of the MDPs. Our problem is completely different because our main task is to learn the reward
function from human preferences. Consequently, our iterative collection procedure (line 4-11
in Algorithm 1) also differs from the reward-free exploration literature. For example, Wang
et al. (2020) is the closest work to ours and studies the reward-free exploration in linear MDPs.
They utilize a variant of UCB-LSVI, which is quite different from our collection procedure.
Correspondingly, we can not directly use the existing analysis either and need to come up with new
proofs.

• Second, our framework is also different from the existing online PbRL (Pacchiano et al., 2021;
Chen et al., 2022b). In their algorithms, the reward-learning process and exploration phase are not
decoupled and the analysis heavily relies on the utilization of optimism. In contrast, our algorithm
does not use optimism and thus their analysis techniques also do not apply here.
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Algorithm 4 REGIME-exploration
Input: The number of total episodes K, bonus parameter βex and regularization parameter λex.
for k = 1, · · · ,K do

Initialize: QkH+1(·, ·)← 0, V kH+1(·)← 0.
for h = H, · · · , 1 do

Compute the covariance matrix: Λkh ←
∑k−1
i=1 φh(sih, a

i
h)φh(sih, a

i
h)> + λexI .

Compute the bonus and reward:
bkh(·, ·)← min

{
βex‖φh(·, ·)‖(Λkh)−1 , H − h+ 1

}
and rkh = bkh/H .

Compute Q function:

Qkh(·, ·)← Clip[0,H−h+1]

(
Clip[0,H−h+1]((w

k
h)>φh(·, ·) + rkh(·, ·)) + bkh(·, ·)

)
,

where wkh = (Λkh)−1
∑k−1
i=1 φh(sih, a

i
h) · V kh+1(sih+1).

Compute value function and policy:

V kh (·)← max
a∈A

Qkh(·, a), πkh(·)← arg max
a∈A

Qkh(·, a).

end for
Collect a trajectory τk = (skh, a

k
h, s

k
h+1)Hh=1 by running πk = {πkh}Hh=1 and add τk into Dex.

end for
Sample K states from the initial states {si,in1 }Ki=1 and add them to Din.
Return Dex,Din.

• Third, our analysis of REGIME-lin differs from the one in the literature on linear MDPs. This
is because while the style of our algorithm is akin to multi-policy evaluation in linear MDPs,
the current literature of linear MDPs mainly focuses on Q-learning-style algorithms for policy
optimization (Jin et al., 2019; Wang et al., 2020).
More specifically, in REGIME-lin, we want to evaluate all the policies in a policy class under
a certain reward function. This brings a new challenge that does not occur in Jin et al. (2019);
Wang et al. (2020): our learning difficulty will scale with the size of the policy class . This forces
us to find and analyze an appropriate policy class that is able to approximate the optimal policy
while retaining a relatively small size. In addition, a key component of our analysis is the new
concentration inequality in Lemma 13, which also differs from the existing concentration lemma in
Jin et al. (2019); Wang et al. (2020) and may be of independent interest.

B OMIT DETAILS IN SECTION 4

In this section we present the details of Algorithm 4 and Algorithm 5. Here Clip[a,b](x)

means min{max{a, x}, b}. In particular, when estimating (φ(π))h,j , we use the reward function
rh,jh′ (s, a) = φh′(s, a)>θh,jh′ for all h′ ∈ [H] (up to an R factor) where

θh,jh′ =

{
1
R · ej , if h′ = h,

0, otherwise.

Here ej is the one-hot vector whose j-th entry is 1. For simplicity, we denote V̂ r
h,j ,π, Q̂r

h,j ,π, wr
h,j ,π

by V h,j,π, Qh,j,π, wh,j,π and let the estimation (φ̂(π))h,j be RV̂ π(rh,j).

Then we have the following formal theorem characterizing the sample complexity of Algorithm 2:

Theorem 4. Let

λex = λpl = R2,

βex = CβdHR
√

log(dKHR/δ), βpl = CβdHR
√

log(dKHRNΠ(ε′)/δ)

λ ≥ 4HR2,K ≥ Õ
(H8B2R4d4 log(NΠ(ε′)/δ)

ε2

)
, N ≥ Õ

(λκ2B2R2H4d2 log(1/δ)

ε2

)
,
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Algorithm 5 REGIME-planning

Input: Dataset Dex = {(sih, aih, sih+1)}K,Hi=1,h=1,Din = {si,in1 }Ki=1, bonus parameter βpl and
regularization parameter λpl, policy π, reward function (rh)Hh=1.
for h′ = H, · · · , 1 do

Compute the covariance matrix: Λh′ ←
∑K
i=1 φh′(s

i
h′ , a

i
h′)φh′(s

i
h′ , a

i
h′)
> + λplI .

Compute the bonus: bh′(·, ·)← min
{
βpl‖φh′(·, ·)‖(Λh′ )−1 , 2(H − h+ 1)

}
.

end for
Initialize: Q̂r,πH+1(·, ·)← 0, V̂ r,πH+1(·)← 0.
for h′ = H, · · · , 1 do

Compute Q function:

Q̂r,πh′ (·, ·)← Clip[−(H−h+1),H−h+1]

(
Clip[−(H−h+1),H−h+1]((w

r,π
h′ )>φh′(·, ·)+rh′(·, ·))+bh′(·, ·)

)
,

where wr,πh′ = (Λh′)
−1
∑K
i=1 φh′(s

i
h′ , a

i
h′) · V̂

r,π
h′+1(sih′+1).

Compute value function: V̂ r,πh′ (·)← Ea∼πh′ Q̂
r,π
h′ (·, a).

end for
Compute V̂ π(r)← 1

K

∑K
i=1 V̂

r,π
1 (si,in1 ).

Return V̂ π(r).

where ε′ = ε

72BR2H
√
dHKH−1

, Cβ > 0 is a universal constant and κ = 2 + exp(2rmax) +

exp(−2rmax). Then under Assumption 1 and 3, with probability at least 1− δ, we have

V r
∗,π̂ ≥ V r

∗,∗ − ε.

The proof is deferred to Appendix E.1.

B.1 LOG-LINEAR POLICY CLASS

The sample complexity in Theorem 2 depends on the covering number of the policy class Π. Therefore
we want to find a policy class for linear MDPs that is rich enough (i.e., contains near-global-optimal
policies) while retains a small covering number at the same time. Indeed, the log-linear policy class
(Agarwal et al., 2020b) satisfies this requirement, which is defined as follows:

Π =
{
π : πζh(a|s) =

exp(ζ>h φh(s, a))∑
a′∈A exp(ζ>h φh(s, a′))

, ζh ∈ B(d,W ),∀s ∈ S, a ∈ A, h ∈ [H]
}

Here B(d,W ) is the d-dimensional ball centered at the origin with radius W . The following
proposition characterizes the covering number of such log-linear policy class:
Proposition 1. Let Π be the log-linear policy class. Then under Assumption 1, for any ε ≤ 1, we
have logNΠ(ε) ≤ Hd log

(
12WR
ε

)
.

Meanwhile, we can quantify the bias of such log-linear policy class as follows:

Proposition 2. Let W =

(
B+(H+ε)

√
d
)
H log |A|

ε , then under Assumption 1 and 3, we have

V r
∗,πg −max

π∈Π
V r
∗,π ≤ ε,

where πg is the global optimal policy.

Combining Theorem 4, Proposition 1 and Proposition 2, we know that the returned policy π̂ by
Algorithm 2 with log-linear policy classes can indeed compete against the global optimal policy with
the following sample complexities:

Ntra = K +N = Õ
(
d5 + κ2d2

ε2

)
, Nhum = Õ

(
κ2d2

ε2

)
.
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C PROOF OF THEOREM 1 WITH KNOWN TRANSITIONS

In this section, we consider the proof of Theorem 1 when transitions are known, i.e., ε′ = 0

and P̂ = P ∗. In this case we have φ̂(π) = φ(π). We will deal with the unknown transition in
Appendix D.1.

First, note that from the definition of π̂, we have

V r̂,π̂ ≥ V r̂,π
∗
,

where π∗ is the optimal policy with respect to the ground-truth reward r∗, i.e., π∗ =
arg maxπ∈Π V

r∗,π . Therefore we can expand the suboptimality as follows:

V r
∗,∗ − V r

∗,π̂ = (V r
∗,∗ − V r̂,π

∗
) + (V r̂,π

∗
− V r̂,π̂) + (V r̂,π̂ − V r

∗,π̂)

≤ (V r
∗,∗ − V r̂,π

∗
) + (V r̂,π̂ − V r

∗,π̂)

= Eτ∼(π∗,P∗)[〈φ(τ), θ∗ − θ̂〉]− Eτ∼(π̂,P∗)[〈φ(τ), θ∗ − θ̂〉]

= 〈φ(π∗)− φ(π̂), θ∗ − θ̂〉

≤ ‖φ(π∗)− φ(π̂)‖Σ−1
N+1
· ‖θ∗ − θ̂‖ΣN+1

, (3)

where Σn := λI +
∑n−1
i=1 (φ(πi,0) − φ(πi,1))(φ(πi,0) − φ(πi,1))> for all n ∈ [N + 1]. Here the

third step is due to the definition of value function and the last step comes from Cauchy-Schwartz
inequality. Next we will bound ‖φ(π∗)− φ(π̂)‖Σ−1

N+1
and ‖θ∗ − θ̂‖ΣN+1

respectively.

First for ‖φ(π∗)− φ(π̂)‖Σ−1
N+1

, notice that ΣN+1 � Σn for all n ∈ [N + 1], which implies

‖φ(π∗)− φ(π̂)‖Σ−1
N+1
≤ 1

N

N∑
n=1

‖φ(π∗)− φ(π̂)‖Σ−1
n
≤ 1

N

N∑
n=1

‖φ(πn,0)− φ(πn,1)‖Σ−1
n

≤ 1√
N

√√√√ N∑
n=1

‖φ(πn,0)− φ(πn,1)‖2
Σ−1
n
, (4)

where the second step comes from the definition of πn,0 and πn,1 and the last step is due to Cauchy-
Schwartz inequality. To bound the right hand side of (4), we utilize the following Elliptical Potential
Lemma:

Lemma 1 (Elliptical Potential Lemma). For any λ ≥ R2
x and d ≥ 1, consider a sequence of vectors

{xn ∈ Rd}Nn=1 where ‖xn‖ ≤ Rx for all n ∈ [N ]. Let Σn = λI +
∑n−1
i=1 x

n(xn)>, then we have

N∑
n=1

‖xn‖2
Σ−1
n
≤ 2d log

(
1 +

N

d

)
.

The proof is deferred to Appendix C.1. Since we have λ ≥ 4HR2, by Lemma 1 we know√√√√ N∑
n=1

‖φ(πn,0)− φ(πn,1)‖2
Σ−1
n
≤
√

2HdN log(1 +N/(Hd)).

Combining the above inequality with (4), we have

‖φ(π∗)− φ(π̂)‖Σ−1
N+1
≤
√

2Hd log(1 +N/(Hd))

N
. (5)

For ‖θ∗ − θ̂‖ΣN+1
, first note that θ̂ is the MLE estimator. Let Σ̃n denote the empirical cumulative

covariance matrix λI +
∑n−1
i=1 (φ(τ i,0)−φ(τ i,1))(φ(τ i,0)−φ(τ i,1))>, then from the literature (Zhu

et al., 2023), we know that MLE has the following guarantee:
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Lemma 2 (MLE guarantee). For any λ > 0 and δ ∈ (0, 1), with probability at least 1− δ, we have

‖θ̂ − θ∗‖Σ̃N+1
≤ CMLE ·

√
κ2(Hd+ log(1/δ)) + λHB2, (6)

where κ = 2 + exp(2rmax) + exp(−2rmax) and CMLE > 0 is a universal constant.

The proof is deferred to Appendix C.2. With Lemma 2, to ‖θ∗− θ̂‖ΣN+1
we only need to show Σ̃N+1

is close to ΣN+1. This can be achieved by the following concentration result from the literature:
Lemma 3 (Pacchiano et al. (2021)[Lemma 7]). For any λ > 0 and δ ∈ (0, 1), with probability at
least 1− δ, we have

‖θ∗ − θ̂‖2ΣN+1
≤ 2‖θ∗ − θ̂‖2

Σ̃N+1
+ CCONH

3dR2B2 log(N/δ), (7)

where CCON > 0 is a universal constant.

Therefore, combining (7) and (6), by union bound with probability at least 1− δ, we have that

‖θ∗ − θ̂‖ΣN+1
≤ C1 · κBR

√
λH3d log(N/δ), (8)

where C1 is a universal constant.

Thus substituting (5) and (8) into (3), we have V ∗(r∗)− V (r∗, π̂) ≤ ε with probability at least 1− δ
as long as

N ≥ Õ
(λκ2B2R2H4d2 log(1/δ)

ε2

)
.

C.1 PROOF OF LEMMA 1

Note that when λ ≥ R2
x, we have ‖xn‖Σ−1

n
≤ 1 for all n ∈ [N ], which implies that for all n ∈ [N ],

we have

‖xn‖2
Σ−1
n
≤ log

(
1 + ‖xn‖2

Σ−1
n

)
.

On the other hand, let wn denote ‖xn‖Σ−1
n

, then we know for any n ∈ [N − 1]

log det Σn+1 = det(Σn + xn(xn)>) = log det(Σ1/2
n (I + Σ−1/2

n xn(xn)>Σ−1/2
n )Σ1/2

n )

= log det(Σn) + log det(I + (Σ−1/2
n xn)(Σ−1/2

n xn)>)

= log det(Σn) + log det(I + (Σ−1/2
n xn)>(Σ−1/2

n xn))

= log det(Σn) + log

(
1 + ‖xn‖2

Σ−1
n

)
,

where the fourth step is due to the property of determinants. Therefore we have
N∑
n=1

log

(
1 + ‖xn‖2

Σ−1
n

)
= log det ΣN+1 − log det Σ1 = log(det ΣN+1/ det Σ1)

= log det

(
I +

1

λ

N∑
n=1

xn(xn)>
)
.

Now let {λi}di=1 denote the eigenvalues of
∑N
n=1 x

n(xn)>, then we know

log det

(
I +

1

λ

N∑
n=1

xn(xn)>
)

= log

( d∏
i=1

(1 + λi/λ)

)

≤ d log

(
1

d

d∑
i=1

(1 + λi/λ)

)
≤ d log

(
1 +

NR2
x

dλ

)
≤ d log

(
1 +

N

d

)
,

where the third step comes from
∑d
i=1 λi = Tr

(∑N
n=1 x

n(xn)>
)

=
∑N
n=1 ‖xn‖2 ≤ NR2

x and

the last step is due to the fact that λ ≥ R2
x. This concludes our proof.
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C.2 PROOF OF LEMMA 2

First note that we have the following lemma from literature:
Lemma 4 ( (Zhu et al., 2023)[Lemma 3.1]). For any λ′ > 0, with probability at least 1− δ, we have

‖θ̂ − θ∗‖D+λ′I ≤ O
(√

κ2(Hd+ log(1/δ))

N
+ λ′HB2

)
,

where D = 1
N

∑N
i=1(φ(τ i,0)− φ(τ i,1))(φ(τ i,0)− φ(τ i,1))>.

Therefore let λ′ = λ
N and from the above lemma we can obtain

‖θ̂ − θ∗‖ Σ̃N+1
N

≤ O
(√

κ2(Hd+ log(1/δ))

N
+
λHB2

N

)
,

which is equivalent to

‖θ̂ − θ∗‖Σ̃N+1
≤ O

(√
κ2(Hd+ log(1/δ)) + λHB2

)
.

This concludes our proof.

D PROOFS IN SECTION 3

D.1 PROOF OF THEOREM 1

Note that from the proof of Theorem 1 with known transition dynamics, we have:

V r
∗,∗ − V r

∗,π̂ ≤ 〈φ(π∗)− φ(π̂), θ∗ − θ̂〉+ (V r̂,π
∗
− V r̂,π̂), (9)

Then we have

V r
∗,∗ − V r

∗,π̂ ≤ 〈φ(π∗)− φ̂(π∗), θ∗ − θ̂〉+ 〈φ̂(π̂)− φ(π̂), θ∗ − θ̂〉

+ 〈φ̂(π∗)− φ̂(π̂), θ∗ − θ̂〉+ (V r̂,π
∗
− V r̂,π̂). (10)

Now we only need to bound the three terms in the RHS of (10). For the first and second term, we
need to utilize the following lemma:

Lemma 5. Let dπh(s, a) and d̂πh(s, a) denote the visitation measure of policy π under P ∗ and P̂ .
Then with probability at least 1− δ/4, we have for all h ∈ [H] and π ∈ Π,

‖dπh − d̂πh‖1 ≤ hε′. (11)

Let E1 denote the event when (11) holds. Then under event E1, we further have the following lemma:
Lemma 6. Under event E1, for all policy π ∈ Π and vector v = [v1, · · · , vH ] where vh ∈ Rd and
‖vh‖ ≤ 2B for all h ∈ [H] we have,

|〈φ(π)− φ̂(π), v〉| ≤ BRH2ε′.

Substitute Lemma 6 into (10), we have

V r
∗,∗ − V r

∗,π̂ ≤ 〈φ̂(π∗)− φ̂(π̂), θ∗ − θ̂〉+ 2BRH2ε′ + (V r̂,π
∗
− V r̂,π̂).

Then by Cauchy-Schwartz inequality, we have under event E1,

V r
∗,∗ − V r

∗,π̂ ≤ ‖φ̂(π∗)− φ̂(π̂)‖Σ̂−1
N+1
· ‖θ∗ − θ̂‖Σ̂N+1

+ 2BRH2ε′ + (V r̂,π
∗
− V r̂,π̂). (12)

Following the same analysis in the proof of Theorem 1 with known transition, we know

‖φ̂(π∗)− φ̂(π̂)‖Σ̂−1
N+1
≤
√

2Hd log(1 +N/(Hd))

N
. (13)
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Now we only need to bound ‖θ∗ − θ̂‖Σ̂N+1
. Similar to the proof of Theorem 1 with known tran-

sition, we use Σn and Σ̃n to denote λI +
∑n−1
i=1 (φ(πi,0) − φ(πi,1))(φ(πi,0) − φ(πi,1))> and

λI +
∑n−1
i=1 (φ(τ i,0)− φ(τ i,1))(φ(τ i,0)− φ(τ i,1))> respectively. Then under event E1, we have the

following connection between Σ̂N+1 and ΣN+1:
Lemma 7. Under event E1, we have

‖θ∗ − θ̂‖Σ̂N+1
≤
√

2‖θ∗ − θ̂‖ΣN+1
+ 2
√

2NBRH2ε′.

Combining Lemma 7 with Lemma 2 and Lemma 3, we have under event E1 ∩ E2,

‖θ∗ − θ̂‖Σ̂N+1
≤
√

2‖θ∗ − θ̂‖ΣN+1
+ 2
√

2NBRH2ε′

≤ C2 · κBR
√
λH3d log(N/δ) + 2

√
2NBRH2ε′, (14)

where Pr(E2) ≥ 1− δ/2 and C2 > 0 is a universal constant.

Now we only need to bound (V r̂,π
∗ − V r̂,π̂), which can be achieved with Lemma 6:

V r̂,π
∗
− V r̂,π̂ = 〈φ(π∗), θ̂〉 − 〈φ(π̂), θ̂〉

= 〈φ(π∗)− φ̂(π∗), θ̂〉+ 〈φ̂(π∗)− φ̂(π̂), θ̂〉+ 〈φ̂(π̂)− φ(π̂), θ̂〉 ≤ 2BRH2ε′, (15)
where the last step comes from Lemma 6 and the definition of π̂.

Combining (12), (13) (14) and (15), we have V r
∗,∗ − V r∗,π̂ ≤ ε with probability at least 1− δ as

long as

ε′ ≤ ε

6BRH2
, N ≥ Õ

(λκ2B2R2H4d2 log(1/δ)

ε2

)
.

D.2 PROOF OF LEMMA 5

First notice that dπh(s, a) = dπh(s)π(a|s) and d̂πh(s, a) = d̂πh(s)π(a|s), which implies that for all
h ∈ [H] ∥∥dπh − d̂πh∥∥1

=
∑
s,a

∣∣dπh(s, a)− d̂πh(s, a)
∣∣ =

∑
s,a

∣∣dπh(s)− d̂πh(s)
∣∣π(a|s)

=
∑
s

∣∣dπh(s)− d̂πh(s)
∣∣∑
a

π(a|s) =
∑
s

∣∣dπh(s)− d̂πh(s)
∣∣.

Therefore we only need to prove
∑
s

∣∣dπh(s) − d̂πh(s)
∣∣ ≤ hε′ for all h ∈ [H]. We use induction

to prove this. First for the base case, we have
∑
s |dπ1 (s) − d̂π1 (s)| =

∑
s

∣∣P ∗1 (s) − P̂1(s)
∣∣ ≤ ε′

according to the guarantee of the reward-free learnign oracle P .

Now assume that
∑
s

∣∣dπh′(s)− d̂πh′(s)∣∣ ≤ h′ε′ for all h′ ∈ [h] where h ∈ [H − 1]. Then we have∑
s

∣∣dπh+1(s)− d̂πh+1(s)
∣∣ =

∑
s

∣∣∣∑
s′,a′

d̂πh(s′)π(a′|s′)P̂h(s|s′, a′)− dπh(s′)π(a′|s′)P ∗h (s|s′, a′)
∣∣∣

≤
( ∑
s,s′,a′

∣∣∣d̂πh(s′)− dπh(s′)
∣∣∣π(a′|s′)P̂h(s|s′, a′)

)
+
( ∑
s,s′,a′

dπh(s′)π(a′|s′)
∣∣∣P̂h(s|s′, a′)− P ∗h (s|s′, a′)

∣∣∣)
=
(∑

s′

∣∣∣d̂πh(s′)− dπh(s′)
∣∣∣∑
a′

π(a′|s′)
∑
s

P̂h(s|s′, a′)
)

+ Eπ,P∗ [‖P̂h(·|s′, a′)− P ∗h (·|s′, a′)‖1]

≤ (h+ 1)ε′,

where the second step comes from the triangle inequality and the last step is dueto the induction
hypothesis and the guarantee of P . Therefore, we have

∑
s |dπh+1(s)− d̂πh+1(s)| ≤ (h+ 1)ε′. Then

by induction, we know
∑
s |dπh(s)− d̂πh(s)| ≤ hε′ for all h ∈ [H], which concludes our proof.
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D.3 PROOF OF LEMMA 6

Note that from the definition of φ(π) we have

〈φ(π), v〉 = Eτ∼(π,P∗)

[ H∑
h=1

φ>h (sh, ah)vh

]
=

H∑
h=1

∑
sh,ah

dπh(sh, ah)φ>h (sh, ah)vh.

Similarly, we have

〈φ̂(π), v〉 =

H∑
h=1

∑
sh,ah

d̂πh(sh, ah)φ>h (sh, ah)vh.

Therefore,

|〈φ(π)− φ̂(π), v〉| ≤
H∑
h=1

∑
sh,ah

|d̂πh(sh, ah)− dπh(sh, ah)| · |φ>h (sh, ah)vh|

≤ 2BR

H∑
h=1

∑
sh,ah

|d̂πh(sh, ah)− dπh(sh, ah)|

≤ 2BR

H∑
h=1

hε′ ≤ BRH2ε′,

where the first step is due to the triangle inequality and the third step comes from Lemma 5. This
concludes our proof.

D.4 PROOF OF LEMMA 7

We use ∆θ to denote θ∗ − θ̂ in this proof. From Lemma 6, we know that for any policy π,

|〈φ(π)− φ̂(π),∆θ〉| ≤ BRH2ε′.

By the triangle inequality, this implies that for any policy π0, π1,

|〈φ̂(π0)− φ̂(π1),∆θ〉| ≤ |〈φ(π0)− φ(π1),∆θ〉|+ 2BRH2ε′.

Therefore we have for any policy π0, π1,

|〈φ̂(π0)− φ̂(π1),∆θ〉|2 ≤ 2|〈φ(π0)− φ(π1),∆θ〉|2 + 8(BRH2ε′)2. (16)

Note that from the definition of Σ̂N+1 and ΣN+1, we have

‖∆θ‖2
Σ̂N+1

= ∆θ>
(
λI +

N∑
n=1

(φ̂(πn,0)− φ̂(πn,1))(φ̂(πn,0)− φ̂(πn,1))>
)

∆θ

= λ‖∆θ‖2 +

N∑
n=1

|〈φ̂(πn,0)− φ̂(πn,1),∆θ〉|2

≤ 2
(
λ‖∆θ‖2 +

N∑
n=1

|〈φ(πn,0)− φ(πn,1),∆θ〉|2
)

+ 8N(BRH2ε′)2

= 2‖∆θ‖2ΣN+1
+ 8N(BRH2ε′)2,

where the third step comes from (16). This implies that

‖∆θ‖Σ̂N+1
≤
√

2‖∆θ‖ΣN+1
+ 2
√

2NBRH2ε′,

which concludes our proof.
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E PROOFS IN SECTION 4 AND APPENDIX B

E.1 PROOF OF THEOREM 4

First note that Algorithm 4 provides us with the following guarantee:
Lemma 8. We have with probability at least 1− δ/6 that

Es1∼P1(·)[V
b/H,∗
1 (s1)] ≤ Clin

√
d3H4R2 · log(NΠ(ε′)dKHR/δ)/K,

where bh is defined in Algorithm 5 and Clin > 0 is a universal constant. Here V r,∗1 (s1) :=
maxπ∈Π V

r,π
1 (s1).

Lemma 8 is adapted from Wang et al. (2020)[Lemma 3.2] and we highlight the difference of the
proof in Appendix E.2. Then we consider a ε′-covering for Π, denoted by C(Π, ε′). Following the
similar analysis in Wang et al. (2020)[Lemma 3.3], we have the following lemma:
Lemma 9. With probability 1−δ/6, for all h′ ∈ [H], policy π ∈ C(Π, ε′) and linear reward function
r with rh ∈ [−1, 1], we have

Qr,πh′ (·, ·) ≤ Q̂r,πh′ (·, ·) ≤ rh′(·, ·) +
∑
s′

P ∗h′(s
′|·, ·)V̂ r,πh′+1(s′) + 2bh′(·, ·).

The proof of Lemma 9 is deferred to Appendix E.3. Denote the event in Lemma 8 and Lemma 9 by
E4 and E5 respectively. Then under event E4 ∩ E5, we have for all policy π ∈ C(Π, ε′) and all linear
reward function r with rh ∈ [−1, 1],

0 ≤ Es1∼P∗1 (·)[V̂
r,π
1 (s1)− V r,π1 (s1)] ≤ 2Es1∼P∗1 (·)[V

b,π
1 (s1)]

≤ 2HEs1∼P1(·)[V
b/H,∗
1 (s1)] ≤ 2Clin

√
d3H6R2 · log(dKHRNΠ(ε′)/δ)

K
≤ ε0, (17)

where ε0 = ε
72BR

√
Hd

. Here the first step comes from the left part of Lemma 9 and the second step is
due to the right part of Lemma 9.

Note that in the proof of Lemma 13, we calculate the covering number of the function class {V̂ r,π1 :
r is linear and rh ∈ [−1, 1]} for any fixed π in (24). Then by Azuma-Hoeffding’s inequality and
(24), we have with probability at least 1− δ/6 that for all policy π ∈ C(Π, ε′) and all linear reward
function r with rh ∈ [−1, 1] that∣∣∣Es1∼P∗1 (·)[V̂

r,π
1 (s1)]− 1

K

K∑
i=1

V̂ r,π1 (si,in1 )
∣∣∣ ≤ C3H ·

√
log(NΠ(ε′)HKdR/δ)

K
≤ ε0, (18)

where C3 > 0 is a universal constant.

Combining (17) and (18), we have with probability at least 1− δ/2 that for all policy π ∈ C(Π, ε′)
and all linear reward function r with rh ∈ [−1, 1]

|V̂ π(r)− V r,π| ≤ 2ε0. (19)

This implies that we can estimate the value function for all π ∈ C(Π, ε′) and linear reward function r
with rh ∈ [−1, 1] up to estimation error 2ε0.

Now we consider any policy π ∈ Π. Suppose that π′ ∈ C(Π, ε′) satisfies that

max
s∈S,h∈[H]

‖πh(·|s)− π′h(·|s)‖1 ≤ ε′. (20)

Then we can bound |V̂ π(r) − V̂ π
′
(r)| and |V r,π − V r,π

′ | for all linear reward function r with
rh ∈ [−1, 1] respectively.

For |V r,π − V r,π′ |, note that we have the following performance difference lemma:
Lemma 10. For any policy π, π′ and reward function r, we have

V r,π
′
− V r,π =

H∑
h=1

Eπ′,P∗
[
〈Qr,πh (sh, ·), π′h(·|s)− πh(·|s)〉

]
.
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The proof is deferred to Appendix E.4. Therefore from Lemma 10 we have

|V r,π
′
− V r,π| ≤

H∑
h′=1

Eπ,P∗
[∣∣〈Qrh,j ,π′h′ (sh′ , ·), πh′(·|s)− π′h′(·|s)〉

∣∣]
≤

H∑
h′=1

Eπ,P∗
[
‖πh′(·|s)− π′h′(·|s)‖1

]
≤ Hε′. (21)

On the other hand, we have the following lemma to bound |V̂ π(r)− V̂ π′(r)|:
Lemma 11. Suppose (20) holds and V̂ π(r), V̂ π

′
(r) are calculated as in Algorithm 5. Then for all

linear reward function r with 0 ≤ r(τ) ≤ rmax, we have

|V̂ π(r)− V̂ π
′
(r)| ≤ εcover :=

Hε′√
dK − 1

· (dK)
H
2 . (22)

The proof is deferred to Appendix E.5.

Combining (19),(21) and (22), we have for all policy π ∈ Π and linear reward function r with
0 ≤ r(τ) ≤ rmax,

|V̂ π(r)− V r,π| ≤ 2ε0 +Hε′ + εcover. (23)

In particular, since (φ(π))h,j = RV r
h,j ,π , we have for all policy π ∈ Π and h ∈ [H], j ∈ [d],

|(φ(π))h,j − (φ̂(π))h,j | ≤ 2Rε0 +HRε′ +Rεcover.

This implies that for all policy π ∈ Π and any v defined in Lemma 6, we have

|〈(φ(π))− (φ̂(π)), v〉| ≤ 2BH
√
d(2Rε0 +HRε′ +Rεcover).

The rest of the proof is the same as Theorem 1 and thus is omitted here. The only difference is that
we need to show π̂ is a near-optimal policy with respect to r̂. This can be proved as follows:

V r̂,∗ − V r̂,π̂ =
(
V r̂,∗ − V̂ π̂(r̂)

)
+
(
V̂ π̂(r̂)− V̂ π

∗(r̂)(r̂)
)

+
(
V̂ π
∗(r̂)(r̂)− V r̂,π̂

)
≤ 4ε0 + 2Hε′ + 2εcover,

where the last step comes from (23) and the definition of π̂.

E.2 PROOF OF LEMMA 8

Here we outline the difference of the proof from Wang et al. (2020)[Lemma 3.2]. First, we also have
the following concentration guarantee:
Lemma 12. Fix a policy π. Then with probability at least 1 − δ, we have for all h ∈ [H] and
k ∈ [K],∥∥∥∥ k∑

i=1

φih

(
V kh+1(sih+1)−

∑
s′∈S

P ∗h (s′|sih, aih)V kh+1(s′)

)∥∥∥∥
Λ−1
h

≤ O
(
dHR

√
log(dKHR/δ)

)
.

The proof is almost the same as Lemma 13 and thus is omitted here. Then following the same
arguments in Wang et al. (2020), we have the following inequality under Lemma 12:∣∣∣∣φh(s, a)>wkh −

∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′)

∣∣∣∣ ≤ βex‖φh(s, a)‖(Λkh)−1 .

Note that V kh+1(s) ∈ [0, H − h] for all s ∈ S, which implies that

0 ≤
∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′) + rkh(s, a) ≤ H − h+ 1.
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Note that Clip is a contraction operator, which implies that∣∣∣∣Clip[0,H−h+1]((w
k
h)>φh(s, a) + rkh(s, a))−

(∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′) + rkh(s, a)

)∣∣∣∣
≤
∣∣∣∣(wkh)>φh(s, a)−

∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′)

∣∣∣∣ ≤ βex‖φh(s, a)‖(Λkh)−1 .

On the other hand,∣∣∣∣Clip[0,H−h+1]((w
k
h)>φh(s, a) + rkh(s, a))−

(∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′) + rkh(s, a)

)∣∣∣∣ ≤ H − h+ 1.

This implies that∣∣∣∣Clip[0,H−h+1]((w
k
h)>φh(s, a) + rkh(s, a))−

(∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′) + rkh(s, a)

)∣∣∣∣ ≤ bkh(s, a).

The rest of the proof is the same as Wang et al. (2020) and thus is omitted.

E.3 PROOF OF LEMMA 9

In the following discussion we will use φih to denote φh(sih, a
i
h). First we need the following

concentration lemma which is similar to Jin et al. (2020b)[Lemma B.3]:
Lemma 13. Fix a policy π. Then with probability at least 1− δ, we have for all h ∈ [H] and linear
reward functions r with rh ∈ [−1, 1],∥∥∥∥ K∑

i=1

φih

(
V̂ r,πh+1(sih+1)−

∑
s′∈S

P ∗h (s′|sih, aih)V̂ r,πh+1(s′)

)∥∥∥∥
Λ−1
h

≤ O
(
dHR

√
log(dKHR/δ)

)
.

The proof is deferred to Appendix E.6. Then by union bound, we know with probability 1− δ/6, we
have for all policy π ∈ C(Π, ε′), h ∈ [H] and linear reward functions r with rh ∈ [−1, 1] that∥∥∥∥ K∑
i=1

φih

(
V̂ r,πh+1(sih+1)−

∑
s′∈S

P ∗h (s′|sih, aih)V̂ r,πh+1(s′)

)∥∥∥∥
Λ−1
h

≤ O
(
dHR

√
log(dKHRNΠ(ε′)/δ)

)
.

Let E6 denote the event thar the above inequality holds. Then under E6, following the same analysis
in (Wang et al., 2020)[Lemma 3.1], we have for all policy π ∈ C(Π, ε′), (s, a) ∈ S × A, h ∈ [H]
and linear reward functions r with rh ∈ [−1, 1] that∣∣∣∣φh(s, a)>wr,πh −

∑
s′∈S

P ∗h (s′|s, a)V̂ r,πh+1(s′)

∣∣∣∣ ≤ βpl‖φh(s, a)‖Λ−1
h
.

Form the contraction property of Clip and the fact that
∑
s′∈S P

∗
h (s′|s, a)V̂ r,πh+1(s′) + rh(s, a) ∈

[−(H − h+ 1), H − h+ 1], we know∣∣∣∣Clip[−(H−h+1),H−h+1]((w
r,π
h )>φh(s, a) + rh(s, a))−

∑
s′∈S

P ∗h (s′|s, a)V̂ r,πh+1(s′)− rh(s, a)

∣∣∣∣ ≤ bh(s, a)

Therefore, under E6 we have

Q̂r,πh (s, a) ≤ rh(s, a) +
∑
s′

P ∗h (s′|s, a)V̂ r,πh+1(s′) + 2bh(s, a).

Now we only need to prove under E6, for all policy π ∈ C(Π, ε′), (s, a) ∈ S × A, h ∈ [H] and
linear reward function r with rh ∈ [−1, 1], we have Qr,πh (s, a) ≤ Q̂r,πh (s, a). We use induction to
prove this. The claim holds obviously for h = H + 1. Then we suppose for some h ∈ [H], we have
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Qr,πh+1(s, a) ≤ Q̂r,πh+1(s, a) for all policy π ∈ C(Π, ε′), (s, a) ∈ S × A and linear reward function r
with rh ∈ [−1, 1]. Then we have:

V r,πh+1(s) = Ea∼πh+1(·|s)
[
Qr,πh+1(s, a)

]
≤ V̂ r,πh+1(s) = Ea∼πh+1(·|s)

[
Q̂r,πh+1(s, a)

]
.

This implies that

Clip[−(H−h+1),H−h+1]((w
r,π
h )>φh(s, a) + rh(s, a)) + bh(s, a) ≥

∑
s′∈S

P ∗h (s′|s, a)V r,πh+1(s′) + rh(s, a) = Qr,πh (s, a).

On the other hand we have

Qr,πh (s, a) ≤ H − h+ 1.

Therefore we have

Qr,πh (s, a) ≤ Q̂r,πh (s, a).

By induction we can prove the lemma.

E.4 PROOF OF LEMMA 10

For any two policies π′ and π, it follows from the definition of V r,π
′

and V r,π that

V r,π
′
− V r,π

=Eπ′,P∗
[
r1(s1, a1) + V r,π

′

2 (s2)
]
− Eπ′,P∗ [V r,π1 (s1)]

=Eπ′,P∗
[
V r,π

′

2 (s2)− (V r,π1 (s1)− r1(s1, a1))
]

=Eπ′,P∗
[
V r,π

′

2 (s2)− V r,π2 (s2)
]

+ Eπ′,P∗ [Qr,π1 (s1, a1)− V r,π1 (s1)]

=Eπ′,P∗
[
V r,π

′

2 (s2)− V r,π2 (s2)
]

+ Eπ′,P∗ [〈Qr,π1 (s1, ·), π′1(·|s1)− π1(·|s1)〉]

= · · · =
H∑
h=1

Eπ′,P∗ [〈Qr,πh (sh, ·), π′h(·|s)− πh(·|s)〉] .

This concludes our proof.

E.5 PROOF OF LEMMA 11

For any h′ ∈ [H], suppose maxs∈S |V̂ r,πh′+1(s)− V̂ r,π
′

h′+1(s)| ≤ εh′+1, then for any s ∈ S, a ∈ A, we
have

|Q̂r,πh′ (s, a)− Q̂r,π
′

h′ (s, a)| ≤ |(wr,πh′ − w
r,π′

h′ )>φh′(s, a)|

≤ εh′+1

K∑
i=1

|φh′(s, a)>(Λh′)
−1φh′(s

i
h′ , a

i
h′)|

≤ εh′+1

√√√√[ K∑
i=1

‖φh′(s, a)‖2(Λh′ )−1

]
·
[ K∑
i=1

‖φh′(sih′ , aih′)‖2(Λh′ )−1

]
≤ εh′+1

√
dK.

Here the final step is comes from the auxiliary Lemma 14 and the fact that Λh′ ≥ R2I and thus∑K
i=1 ‖φh′(s, a)‖2(Λh′ )−1 ≤

∑K
i=1 1 ≤ K.

Therefore we have

εh′ := max
s∈S
|V̂ r,πh′ (s)− V̂ r,π

′

h′ (s)| ≤ Hε′ +
√
dKεh′+1.

Note that εH+1 = 0, therefore we have

ε1 ≤
Hε′√
dK − 1

· (dK)
H
2 ,

This concludes our proof.
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E.6 PROOF OF LEMMA 13

The proof is almost the same as Jin et al. (2020b)[Lemma B.3] except that the function class of V r,πh
is different. Therefore we only need to bound the covering numberNV(ε) of V r,πh where the distance
is defined as dist(V, V ′) = sups |V (s)− V ′(s)|. Note that V r,πh belongs to the following function
class:

V =

{
Vw,A(s) = Ea∼π(·|s)

[
Clip[−(H−h+1),H−h+1]

(
Clip[−(H−h+1),H−h+1](w

>φh′(s, a))

+Clip[0,2(H−h+1)](‖φ(s, a)‖A)

)]
,∀s ∈ S

}
,

where the parameters (w,A) satisfy ‖w‖ ≤ 2H
√
dK/λpl, ‖A‖ ≤ β2

plλ
−1
pl .

Note that for any Vw1,A1 , Vw2,A2 ∈ V , we have

dist(Vw1,A1 , Vw2,A2) ≤ sup
s,a

∣∣∣∣[Clip[−(H−h+1),H−h+1](w
>
1 φh′(s, a)) + Clip[0,2(H−h+1)](‖φ(s, a)‖A1)

]
−
[
Clip[−(H−h+1),H−h+1](w

>
2 φh′(s, a)) + Clip[0,2(H−h+1)](‖φ(s, a)‖A2

)
]∣∣∣∣

≤ sup
s,a

∣∣∣∣Clip[−(H−h+1),H−h+1](w
>
1 φh′(s, a))− Clip[−(H−h+1),H−h+1](w

>
2 φh′(s, a))

∣∣∣∣
+ sup

s,a

∣∣∣∣Clip[0,2(H−h+1)](‖φ(s, a)‖A1)− Clip[0,2(H−h+1)](‖φ(s, a)‖A2)

∣∣∣∣
≤ R sup

‖φ‖≤1

∣∣∣(w1 − w2)>φ
∣∣∣+R sup

‖φ‖≤1

√∣∣∣φ>(A1 −A2)φ
∣∣∣

≤ R(‖w1 − w2‖+
√
‖A1 −A2‖F ),

where the first and third step utilize the contraction property of Clip. Let Cw be the ε/(2R)-cover
of {w ∈ Rd : ‖w‖ ≤ 2rmax

√
dK/λpl} w.r.t. `2-norm and CA be the (ε/2R)-cover of {A ∈ Rd×d :

‖A‖ ≤ β2
plλ
−1
pl } w.r.t. the Frobenius norm, then from the literature Jin et al. (2020b)[Lemma D.5],

we have

NV(ε) ≤ log |Cw|+ log |CA| ≤ d log
(

1 + 8
√
dKr2

maxR
2/(λplε2)

)
+ d2 log

[
1 + 8d1/2β2

plR
2/(λplε

2)
]
.

(24)

The rest of the proof follows Jin et al. (2020b)[Lemma B.3] directly so we omit it here.

E.7 PROOF OF PROPOSITION 1

First consider ζ and ζ ′ which satisfies:

‖ζh − ζ ′h‖ ≤ εz,∀h ∈ [H].

Then we know for any h ∈ [H], s ∈ S, a ∈ A,

|ζ>h φh(s, a)− (ζ ′h)>φh(s, a)| ≤ εzR. (25)

Now fix any h ∈ [H] and s ∈ S . To simplify writing, we use x(a) and x′(a) to denote ζ>h φh(s, a) and
(ζ ′h)>φh(s, a) respectively. Without loss of generality, we assume

∑
a exp(x(a)) ≤

∑
a exp(x′(a)).

Then from (25) we have∑
a

exp(x(a)) ≤
∑
a

exp(x′(a)) ≤ exp(εzR)
∑
a

exp(x(a)).

Note that we have

‖πζh(·|s)− πζ
′

h (·|s)‖1 =
∑
a

∣∣∣ exp(x(a))∑
a′ exp(x(a′))

− exp(x′(a))∑
a′ exp(x′(a′))

∣∣∣
25
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=

∑
a

∣∣∣ exp(x(a))
∑
a′ exp(x′(a′))− exp(x′(a))

∑
a′ exp(x(a′))

∣∣∣∑
a′ exp(x(a′)) ·

∑
a′ exp(x′(a′))

.

For any a ∈ A, if exp(x(a))
∑
a′ exp(x′(a′))− exp(x′(a))

∑
a′ exp(x(a′)) ≥ 0, then∣∣∣ exp(x(a))

∑
a′

exp(x′(a′))− exp(x′(a))
∑
a′

exp(x(a′))
∣∣∣

≤ exp(εzR) exp(x(a))
∑
a′

exp(x(a′))− exp(−εzR) exp(x(a))
∑
a′

exp(x(a′))

=(exp(εzR)− exp(−εzR)) exp(x(a))
∑
a′

exp(x(a′)).

Otherwise, we have∣∣∣ exp(x(a))
∑
a′

exp(x′(a′))− exp(x′(a))
∑
a′

exp(x(a′))
∣∣∣

≤ exp(εzR) exp(x(a))
∑
a′

exp(x(a′))− exp(x(a))
∑
a′

exp(x(a′))

=(exp(εzR)− 1) exp(x(a))
∑
a′

exp(x(a′)).

Therefore we have

‖πζh(·|s)− πζ
′

h (·|s)‖1 ≤
(exp(εzR)− exp(−εzR))

∑
a exp(x(a))

∑
a′ exp(x(a′))∑

a′ exp(x(a′)) ·
∑
a′ exp(x′(a′))

≤ exp(2εzR)− 1.

This implies that for any ε ≤ 1,

NΠ(ε) ≤
(
NB(d,W )

( ln 2

2R
ε
))H

≤
(12WR

ε

)Hd
,

where the first step uses exp(x)− 1 ≤ x/ ln 2 when x ≤ ln 2. This concludes our proof.

E.8 PROOF OF PROPOSITION 2

First we consider the following entropy-regularized RL problem where we try to maximize the
following objective for some α > 0:

max
π

Vα(r∗, π) := Eπ,P∗
[ H∑
h=1

r∗h(sh, ah)− α log πh(ah|sh)
]
.

From the literature (Nachum et al., 2017; Cen et al., 2022), we know that we can define corresponding
optimal regularized value function and Q function as follows:

Q∗α,h(s, a) = r∗h(s, a) + Esh+1∼P∗h (·|s,a)

[
V ∗α,h+1

]
,

V ∗α,h(s) = max
πh

Eah∼πh(·|s)
[
Q∗α,h(s, ah)− α log πh(ah|s)

]
,

where V ∗α,H+1(s) = 0 for all s ∈ S. Note that we have V ∗α,h(s) ≤ H(1 + α log |A|) for all s ∈ S
and h ∈ [H]. The global optimal regularized policy is therefore

π∗α,h(a|s) =
exp(Q∗α,h(s, a)/α)∑
a′ exp(Q∗α,h(s, a′)/α)

.

In particular, in linear MDPs, we have

Q∗α,h(s, a) = φh(s, a)>
(
θ∗h +

∫
s∈S

µ∗h(s)V ∗α,h+1(s)ds

)
.
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Therefore, Q∗α,h(s, a) = φh(s, a)>w∗α,h where

‖w∗α,h‖ ≤ B +H(1 + α log |A|)
√
d.

This implies that π∗α belongs to the log-linear policy class Π withW = (B+H(1+α log |A|)
√
d)/α.

On the other hand, let πg denote the global unregularized optimal policy, then

V ∗(r∗, πg)−max
π∈Π

V (r∗, π) ≤ V ∗(r∗, πg)− V (r∗, π∗α)

=
(
V ∗(r∗, πg)− V ∗α (r∗, πg)

)
+
(
V ∗α (r∗, πg)− V ∗α (r∗, π∗α)

)
+
(
V ∗α (r∗, π∗α)− V ∗(r∗, π∗α)

)
≤ V ∗α (r∗, π∗α)− V ∗(r∗, π∗α) ≤ αH log |A|.

Therefore we only need to let α = ε
H log |A| to ensure V (r∗, πg)−maxπ∈Π V (r∗, π) ≤ ε.

F PROOF OF THEOREM 3

First from performance difference lemma (Lemma 10), we have

V r
∗,π̂ − V r

∗,∗ =

H∑
h=1

Esh∼dπ̂h [Q∗h(sh, π̂)−Q∗h(sh, π
∗)]

=

H∑
h=1

Esh∼dπ̂h [Q∗h(sh, π̂)− Âh(sh, π̂)] + Esh∼dπ̂h [Âh(sh, π̂)− Âh(sh, π
∗)]

+ Esh∼dπ̂h [Âh(sh, π
∗)−Q∗h(sh, π

∗)]

≥
H∑
h=1

Esh∼dπ̂h [Q∗h(sh, π̂)− Âh(sh, π̂)] + Esh∼dπ̂h [Âh(sh, π
∗)−Q∗h(sh, π

∗)]

=

H∑
h=1

Esh∼dπ̂h [A∗h(sh, π̂)− Âh(sh, π̂) + Âh(sh, π
∗)−A∗h(sh, π

∗)]

=

H∑
h=1

Esh∼dπ̂h [〈φh(sh, π̂), ξ∗h − ξ̂h〉 − 〈φh(sh, π
∗), ξ∗h − ξ̂h〉]

=

H∑
h=1

Esh∼dπ̂h [〈φh(sh, π̂)− φh(sh, π
∗), ξ∗h − ξ̂h〉]

≥ −
H∑
h=1

‖Esh∼dπ̂h [φh(sh, π̂)− φh(sh, π
∗)]‖Σ−1

h,N+1
· ‖ξ∗h − ξ̂h‖Σh,N+1

. (26)

Next we will bound ‖Esh∼dπ̂h [φh(sh, π̂)−φh(sh, π
∗)]‖Σ−1

h,N+1
and ‖ξ∗− ξ̂‖Σh,N+1

respectively. First
for ‖Esh∼dπ̂h [φh(sh, π̂)−φh(sh, π

∗)]‖Σ−1
h,N+1

, notice that Σh,N+1 � Σh,n for all n ∈ [N+1], which
implies

‖Esh∼dπ̂h [φh(sh, π̂)− φh(sh, π
∗)]‖Σ−1

h,N+1
≤ 1

N

N∑
n=1

‖Esh∼dπ̂h [φh(sh, π̂)− φh(sh, π
∗)]‖Σ−1

h,n

≤ 1

N

N∑
n=1

‖Esh∼πh,n,0 [φh(sh, π
h,n,0)− φh(sh, π

h,n,1)]‖Σ−1
h,n

≤ 1√
N

√√√√ N∑
n=1

‖Esh∼πh,n,0 [φh(sh, πh,n,0)− φh(sh, πh,n,1)]‖2
Σ−1
h,n

≤
√

2d log(1 +N/d)

N
, (27)
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where the third step comes from the definition of πh,n,0 and πh,n,1 and the last step comes from
Elliptical Potential Lemma (Lemma 1) and the fact that λ ≥ 4R2.

For ‖ξ∗h − ξ̂h‖Σh,N+1
, let Σ̃h,n denote λI +

∑n−1
i=1 (φh(sh,n, ah,n,0) −

φh(sh,n, ah,n,1))(φh(sh,n, ah,n,0) − φh(sh,n, ah,n,1))> . Then similar to Lemma 3, we
have with probability at least 1− δ/2,

‖ξ∗h − ξ̂h‖2Σh,N+1
≤ 2‖ξ∗h − ξ̂h‖2Σ̃h,N+1

+ 2CCONdR
2B2 log(N/δ). (28)

On the other hand, similar to Lemma 2, MLE guarantees us that with probability at least 1− δ/2,

‖ξ̂h − ξ∗h‖Σ̃h,N+1
≤ 2CMLE ·

√
κ2

adv(d+ log(1/δ)) + λB2, (29)

where κadv = 2 + exp(2Badv) + exp(−2Badv).

Therefore combining (28) and (29), we have with probability at least 1− δ,

‖ξ∗ − ξ̂h‖Σh,N+1
≤ O

(
κadvBR

√
λd log(N/δ)

)
. (30)

Thus combining (26), (27) and (30) via union bound, we have V ∗(r∗)−V (r∗, π̂) ≤ εwith probability
at least 1− δ as long as

N ≥ Õ
(λκ2

advB
2R2H2d2 log(1/δ)

ε2

)
.

G AUXILIARY LEMMAS

Lemma 14 (Jin et al. (2020b)[Lemma D.1]). Let Λ = λI +
∑K
i=1 φiφ

>
i where φi ∈ Rd and λ > 0,

then we have
∑K
i=1 φ

>
i Λ−1φi ≤ d.
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