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Algorithm 4 REGIME—-exploration

Input: The number of total episodes K, bonus parameter [ and regularization parameter Aex.
fork=1,--- ,Kdo
Initialize: Q% (-,-) + 0, Vfi, (-) + 0.
forh=H,---,1do
Compute the covariance matrix: A¥ « S¥=1 gy (st ai)pp(sh, ai)T + Aexl.
Compute the bonus and reward:
by (-, ) < min { Bex || on (-, Weary—, H—h+ 1} and rf = bf /H.
Compute Q function:

Q5i(+,+) < Clipg gr_py1y <Clip[o,Hh+1]((wi]§)T¢h('a D+ rEC, )+ bE( ')>7

— k—1 i i %
where wy; = (AR) ™" 37700 On(sh, ap) - Vita (8h41)-
Compute value function and policy:

th() A r(flgaj\( Q];L(7 CL),’TFE(') «— arggleaj(QZ(Ua)'

end for

Collect a trajectory 7% = (s}, ay, sf, )&, by running 7% = {m}}}L| and add 7* into Dey.
end for N
Sample K states from the initial states {s}"" }2, and add them to Dj,.
Return Dey, Diy.

A DISCUSSION

Validity of Linear Parametrization. In this work we consider linear reward parametrization, or
more generally, linear trajectory embeddings. Such assumptions are commonly used in the theoretical
works of PbRL (Pacchiano et al., 2021; Zhu et al., 2023) and relevant examples can be borrowed
from the practical works (Pacchiano et al., 2020; Parker-Holder et al., 2020) like the behavior guided
class of algorithms for policy optimization. We admit that our analysis cannot cover all kinds of
reward parametrization, but we think it is a reasonable starting point to consider linear function
approximation for theoretical analysis.

Applicability of REGIME. Our results are not restricted to linear MDPs and low-rank MDPs. Our
main result (Theorem 1) only requires a suitable reward-free oracle for dynamics learning and in
practice there exist some oracles ready for use, even when the MDPs are very complicated (Xu et al.,
2022). This implies that by plugging in these general reward-free oracles, we are able to deal with
general MDPs as well.

Relationship to Active Learning. The trajectory collection process in Step 1 of REGIME utilizes
a similar idea to active learning. In active learning, people choose a trajectory pair to query human
feedback which can maximize the information gain in each iteration. Similarly, in our algorithm, the

estimated covariance matrix 3, can be regarded as the current information in n-th iteration. Then we
choose a pair of policies (7%, 7"1) which can maximize the information gain approximately (line

5, it is approximate because we are using an approximate dynamics P for evaluation).

B OMIT DETAILS IN SECTION 4

In this section we present the details of Algorithm 4 and Algorithm 5. Here Clipy, ()
means min{max{a, z},b}. In particular, when estimating (¢())s,;, we use the reward function
i (s,a) = énr(s,a)T 07 forall i’ € [H] (up to an R factor) where

Hh,’j _ % . €j, lf h/ = h,
h 0, otherwise.
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Algorithm S REGIME-planning

. _ PR R K,H _ 4,in K
Input: Dataset Do, = {(Sh’ah7$h+1)}i:1,h:1’Din = {s77 L,

regularization parameter A, policy , reward function (r;,)f_, .

forh’ =H,--- ,1do
Compute the covariance matrix: Aps <— Zfil bn (st ab Von (st ab )T + Aol
Compute the bonus: by (-, -) = min { Byillon (-, )l a,,)-1,2(H — h +1)}.

end for N

Initialize: Q% (-, -) <= 0,V (-) + 0.

forh’ =H,---,1do
Compute Q function:

bonus parameter 3p; and

-~
T,

(5 0) < CUPL_ (g pg1), H—h1) (Chp[—(H—h+1),H—h+1]((wZUTr)T%'('v VHrhe (45 ) +one (-, '))7

_ K . . A .
where w" = (Ap/) 7! 2121 b (sh,ah,) - YJ,’L(S}L,H).
Compute value function: V,;" () <= Equr,, Q) (-, ).

end for . .
Compute V7 (r) + + Zfil VT (s7™).
Return 17”(7“).

h,j
J,ﬂ'

Here e; is the one-hot vector whose j-th entry is 1. For simplicity, we denote v A @Th’j Tow”
by VRim QM3 qph3™ and let the estimation (¢(7))s,; be RV ™ (rd).

Then we have the following formal theorem characterizing the sample complexity of Algorithm 2:
Theorem 4. Let

)\ex = >\p1 = R27
Bex = CsdHRN\/log(dK HR/$), By = CpdH R\/log(dK H RNy (€')/9)
~ s H8B2R4d41 / . 2B2R2H4d21 1
€ €
where ¢ = W, Cs > 0 is a universal constant and k = 2 + exp(2rmax) +

exp(—2rmax). Then under Assumption 1 and 3, with probability at least 1 — 0, we have

V’!‘*,ﬁ' > V'r'*,* e
The proof is deferred to Appendix E.1.

B.1 LOG-LINEAR PoLicYy CLASS

The sample complexity in Theorem 2 depends on the covering number of the policy class II. Therefore
we want to find a policy class for linear MDPs that is rich enough (i.e., contains near-global-optimal
policies) while retains a small covering number at the same time. Indeed, the log-linear policy class
(Agarwal et al., 2020b) satisfies this requirement, which is defined as follows:

eXp(Cf—Lr(bh(Sﬂ a))
Y oarea exp(C, on(s,a’))

Here B(d, W) is the d-dimensional ball centered at the origin with radius W. The following
proposition characterizes the covering number of such log-linear policy class:

H:{w;wg(aw): ,gheB(d,W),vses,aeA,he[H]}

Proposition 1. Let 11 be the log-linear policy class. Then under Assumption 1, for any ¢ < 1, we
have log Nti(e) < Hdlog (12WR).

€

Meanwhile, we can quantify the bias of such log-linear policy class as follows:
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(B+(H+e)\/E)Hlog [A]|

VromTe —max VT <,
mell

Proposition 2. Let W = , then under Assumption 1 and 3, we have

where g is the global optimal policy.

Combining Theorem 4, Proposition | and Proposition 2, we know that the returned policy 7 by
Algorithm 2 with log-linear policy classes can indeed compete against the global optimal policy with
the following sample complexities:

- d5 2d2 - 2d2
Ntra:K'f'N:O(—’—:)aNhum:O(ﬁQ )
€ €

C PROOF OF THEOREM | WITH KNOWN TRANSITIONS

In this section, we consider the proof of Theorem 1 when transitions are known, i.e., ¢ = 0

and P = P*. In this case we have qAS(w) = ¢(m). We will deal with the unknown transition in
Appendix D.1.

First, note that from the definition of 7, we have
V?,% > V?,w*
- 9
where 7* is the optimal policy with respect to the ground-truth reward r*, ie., 7% =
argmaxyer V" 7. Therefore we can expand the suboptimality as follows:

VTR YR o (Y Ty (VR YRR (PR )
S (VT V) (VT VTR
= Er(ne. o) [(6(7), 0% — )] — Bz oy [(B(7), 6° — 0)]
= (p(r*) — ¢(7), 0" — B)
< llo(m™) = (M5, - 167 = lsn.rs 3)

where ¥, == AT + 31N (o(n0) — (1)) (¢(x0) — ¢(x1)) T for all n € [N + 1]. Here the
third step is due to the definition of value function and the last step comes from Cauchy-Schwartz
inequality. Next we will bound ||¢(7*) — ¢(%)||Z;]1+1 and ||0* — 0]|x ., respectively.

First for ||¢p(m*) — ¢(%)H2Xﬁrl’ notice that Xy 41 = %, forall n € [N + 1], which implies

A

1 Y 1 Y
lo(m™) = o(@llsn, < D lle(r*) = ¢(@)| g1 < i > lle(x™0) = p(x™) g
n=1 n=1

N+1

1 N
7% ; lo(wn0) — p(am |12, )

where the second step comes from the definition of 77 and 7™ ! and the last step is due to Cauchy-
Schwartz inequality. To bound the right hand side of (4), we utilize the following Elliptical Potential
Lemma:

Lemma 1 (Elliptical Potential Lemma). For any A > Ri and d > 1, consider a sequence of vectors
{a™ € R}, where ||z™|| < R, foralln € [N]. Let ¥, = A\ + Z;:ll 2™ (x™) 7, then we have

N
N
ni2
;:1 a2 < 2dlog <1 n d)

The proof is deferred to Appendix C.1. Since we have A > 4H R?, by Lemma 1 we know

N
D llé(rm0) — g(am1)|2 ., < v/2HdN log(1+ N/(Hd)).

n=1
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Combining the above inequality with (4), we have

|¢(7T*)QS(%HENLS\/QHdlog(l;rN/(Hd))' )

For ||0* — 9| || x .- first note that 0 is the MLE estimator. Let 3, denote the empirical cumulative

covariance matrix A + 37~ (¢(790) — ¢(791)) (¢(170) — $(1)) T, then from the literature (Zhu
et al., 2023), we know that MLE has the following guarantee:

Lemma 2 (MLE guarantee). For any A > 0 and § € (0, 1), with probability at least 1 — §, we have

16 — 6 < Cwine - VK2 (Hd +log(1/3)) + AHB?, ©6)

IS5
where k = 2 + exp(2rmax) + €Xp(—2rmax) and CyviLg > 0 is a universal constant.

The proof is deferred to Appendix C.2. With Lemma 2, to ||0* — 9| |Sn.. We only need to show SN41
is close to X y41. This can be achieved by the following concentration result from the literature:

Lemma 3 (Pacchiano et al. (2021)[Lemma 7]). For any A > 0 and ¢ € (0, 1), with probability at
least 1 — 9, we have

10° = 0113, < 200" =013 + CoonH*dR*Blog(N/3), (7)
where Ccon > 0 is a universal constant.

Therefore, combining (7) and (6), by union bound with probability at least 1 — J, we have that

16" — Bllsy,, < Cy - kBR\/XH3dlog(N/0), )

where C' is a universal constant.

Thus substituting (5) and (8) into (3), we have V*(r*) — V(r*, ) < € with probability at least 1 — §
as long as

A2 B2R?Hd? log(1/5)>

NZ@( ~

€
C.1 PROOF OF LEMMA 1

Note that when X > R2, we have ||2"||; -+ < 1 forall n € [N], which implies that for all n € [N],
we have

a0 < o (14 "2, ).

On the other hand, let w™ denote ||2"||5;-1, then we know for any n € [N — 1]

logdet Xy, 41 = det(Z,, + 2" (z™) ") = logdet(SY?(I + 71227 (2™) T271/2)51/2)
= logdet(,,) + logdet(I + (XY 22m) (2, 1/22™) )
= log det(2,,) + logdet(I + (X;Y/22™) T (21/22™))

= log det(%,,) + log (1 + ||$n||2z;1>’

where the fourth step is due to the property of determinants. Therefore we have

N
Z log (1 + ||x”||;1) = logdet Xy 41 — logdet 3¢ = log(det X y4+1/ det 1)
n=1

N
1 n\T
= log det (1—1— XZx”(m ) )

n=1
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Now let {\;}%_, denote the eigenvalues of 2 z™(z™)T, then we know
d
[I0+xm)

N

1
1 I - n(n\T 1
ogdet< +)\n§:1x (z™) )— og<i_1

d 2
< dlog (il da+ /\i/)\)) < dlog <1 + Nd];““”) < dlog (1 + J;[)

=1

where the third step comes from 7, \; = Tr(ny_l x"(a:")T> = 3N |l2"|]> < NR2 and
the last step is due to the fact that A > R2. This concludes our proof.
C.2 PROOF OF LEMMA 2

First note that we have the following lemma from literature:
Lemma 4 ( (Zhu et al., 2023)[Lemma 3.1]). For any X' > 0, with probability at least 1 — §, we have

—~ 2
|9(,*DH/I§O<\/H (Hd+]\lfog(l/5)) H,HBQ),

where D = & S, (6(0) = ¢(r 1)) ($(r°) — $(r1)T.
Therefore let N = % and from the above lemma we can obtain

< O(\/mQ(HcH—log(l/d)) N )\HB2>’

10 =05y,

N

N N

which is equivalent to

16— 6"|5,,, <O (\//#(Hd +log(1/5)) + AHBQ>.

This concludes our proof.

D PROOFS IN SECTION 3

D.1 PROOF OF THEOREM 1

Note that from the proof of Theorem 1 with known transition dynamics, we have:
VI VT < (@(n) = $(R), 07 = 0) + (VI — VT, ©

Then we have
VI VTR < () — d(n*), 0° — 0) + (b(7) — p(7), 0" — )
+(p(r*) — B(#), 0% — ) + (VT — VI, (10)

Now we only need to bound the three terms in the RHS of (10). For the first and second term, we
need to utilize the following lemma:

Lemma 5. Ler d}(s,a) and c/l\;lr(s7 a) denote the visitation measure of policy T under P* and P.
Then with probability at least 1 — 6 /4, we have for all h € [H] and 7 € 1],

| — ||y < he'. (11)

Let & denote the event when (11) holds. Then under event £, we further have the following lemma:

Lemma 6. Under event &1, for all policy w € 11 and vector v = [vy, - -+ ,vp] where vy, € R? and
|lvn]l < 2B for all h € [H] we have,

[{p(m) — §(m),v)| < BRH?¢'.
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Substitute Lemma 6 into (10), we have
VIE VT < () — 6(7), 0% — 0) + 2BRH? + (VT — VT,
Then by Cauchy-Schwartz inequality, we have under event &1,

ok r* 7 Y AN 1p* — Dl 2 1 Tt ynT
4 -V < [lo(m )_¢(7T)||2;1}H 16 9HEN+1 +2BRH € +(V Vvem). (12)

Following the same analysis in the proof of Theorem 1 with known transition, we know

l6(r*) = 6@ llg=r . < \/ QHdlog“; N/(Hd)

13)

Now we only need to bound [|6* — é||§N+l. Similar to the proof of Theorem 1 with known tran-
sition, we use ¥, and ¥, to denote A\ + Y7 ((x0) — ¢(x"1))(¢(n0) — ¢(x1))T and
A+ Z?;ll(gzﬁ(ﬂ’o) — (751))(o(79°) — ¢(791)) T respectively. Then under event £, we have the
following connection between ) N+1and Xn4q:

Lemma 7. Under event £1, we have

16" = Bls, < V200" = Ollny,, +2V2BRH.

Combining Lemma 7 with Lemma 2 and Lemma 3, we have under event £ N &,,
16" = blls., < V2(0" = Ollny., +2V2BRH?
< Cy - kBR\/AH3dlog(N/b) + 2v/2BRH?¢ , (14)
where Pr(£2) > 1 — ¢§/2 and C > 0 is a universal constant.
Now we only need to bound (V™™ — V™7), which can be achieved with Lemma 6:
VI = VT = (9(n7),0) — (0(7). 0)

= (#(r") = 6(1"),0) + (6(n") = 6(7),0) + ($(7) — 6(7),0) < 2BRH?¢,  (15)

where the last step comes from Lemma 6 and the definition of 7.

Combining (12), (13) (14) and (15), we have V" * — V"7 < ¢ with probability at least 1 — § as
long as

’ €

<
¢ = 6BRH?’

A2 R2PR2ITA g2
NZO(AH B*R IiQd log(l/é))'

D.2 PROOF OF LEMMA 5

First notice that d} (s,a) = df (s)m(a|s) and 32(57 a) = 32(3)7r(a|s), which implies that for all
h € [H]

dy —dy ||, =" |dr(s.a) — dj(s.a)| = Z |d7 (s) — dy(s)|m(als)
= " |di(s) —d |Z (als) ZW —d5(s)|.

Therefore we only need to prove Y |d7 (s) — (i}; (s)] < he forall h € [H]. We use induction

to prove this. First for the base case, we have ) |d](s) — dr(s)| = S| Pr(s) — ]31(3)] <€
according to the guarantee of the reward-free learnign oracle P.

Now assume that }__ |d7, (s) — JZ,(s)| < Weé forall b’ € [h] where h € [H — 1]. Then we have

Z!dhﬂ —di (s |—Z\Zd” (a/|s")Pu(s]s',a') — df.(s')m(a'|s") Py (sl @)

s’,a’

18
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dr(s') — dj.(s')

<(>

s,s’,a’

+ ( Z a7 (s m(a'|s')| Py

s,s’,a’

= (X |dits) - i)

S

w(a|$') Pi(sls',a"))

(s|s',a) = P (s]s', a')

)
a’|s’)2ﬁh(s|s',a’))

Py(ls',a’) = P (-]s'.a)|I1]

+E; p+|
< (h+1)€,
where the second step comes from the triangle inequality and the last step is dueto the induction
hypothesis and the guarantee of P. Therefore, we have ) _|dj_ ,(s) —df,(s)| < (h +1)€'. Then
by induction, we know Y _ |d} (s) — d}j( s)| < he for all h € [H], which concludes our proof.

D.3 PROOF OF LEMMA 6

Note that from the definition of ¢(7) we have

(o(7),v) = Err(m,pr) [Z@T (Sh,an) Uh:| Z > di(sn,an)dy, (shyan)vn

h=1 sh,an

Similarly, we have

H
Z Z h(Shsan)dp, (Shyan)vn.

Therefore,

H
() = d(m), o) <3N [dii(snran) = dfy(snyan)| - |85 (sn, an)onl

h=1sp,an

H
<2BRY Y |di(sn,an) — dj(sn, an)]
h=1sp,apn
H
<2BRY he < BRH?¢,
h=1

where the first step is due to the triangle inequality and the third step comes from Lemma 5. This
concludes our proof.

D.4 PROOF OF LEMMA 7

We use A6 to denote 6* — 6 in this proof. From Lemma 6, we know that for any policy ,

(é() — §(r), AG)| < BRH?e.
By the triangle inequality, this implies that for any policy 7°, 7!,
(B(x%) = B(x"), ABY] < [{(r°) — ("), AG)| + 2BRH.

Therefore we have for any policy 7%, 7!,

((r°) = o), AG)* < 2((x") — d(n'), AG)|* + 8(BRH?¢'). (16)

Note that from the definition of 3 ~N+1 and X1, we have

N
1802, = A0T (A + 30 (B(x™0) = S(x™ ) (B(x"0) — d(x"1)T ) A6
n=1

19
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~

—>\HMH2+ZI 70 — (™), AG)?

< 2(A|A0|? + S (6 - o), 20)?) +8(BRH?¢)?

n=1

=2[|A9|[3;,,,, + 8(BRH?€)?,
where the third step comes from (16). This implies that
105, ,, < V2||Ab|5 ., +2V2BRH?¢,

which concludes our proof.

E PROOFS IN SECTION 4 AND APPENDIX B

E.1 PROOF OF THEOREM 4

First note that Algorithm 4 provides us with the following guarantee:
Lemma 8. We have with probability at least 1 — 0/6 that

Eqympy (o [V (51)] < Chiny/@HAR? - log(Nii (¢ )dK HR]3) /K

where by, is defined in Algorithm 5 and Cyy, > 0 is a universal constant. Here Vlr’*(sl) =
maxyer Vi (s1).

Lemma 8 is adapted from Wang et al. (2020)[Lemma 3.2] and we highlight the difference of the
proof in Appendix E.2. Then we consider a €¢'-covering for II, denoted by C(II, ¢’). Following the
similar analysis in Wang et al. (2020)[Lemma 3.3], we have the following lemma:

Lemma 9. With probability 1 —§/6, for all h' € [H], policy m € C(I, €') and linear reward function
rwithry, € [—1,1], we have

PEC) S QT (L) S rw(- +ZPM ST () 4 26w ().

The proof of Lemma 9 is deferred to Appendix E.3. Denote the event in Lemma 8 and Lemma 9 by
&, and & respectively. Then under event £4 N &5, we have for all policy m € C(I1, ¢’) and all linear
reward function r with r, € [—1,1],

0 < By, opp () [V (51) = Vi (51)] < 2Eq, wpy (o [V (51)]

d3HOR? - log(dK HRN1(€')/9)
K

m. Here the first step comes from the left part of Lemma 9 and the second step is

due to the right part of Lemma 9.

<2HE, ~p,( )[Vb/ (s1)] < 2Clin\/ <e€, (17)

where g =

Note that in the proof of Lemma 13, we calculate the covering number of the function class {‘71r,7r
r is linear and r, € [—1,1]} for any fixed 7 in (24). Then by Azuma-Hoeffding’s inequality and
(24), we have with probability at least 1 — 4/6 that for all policy = € C(II, ¢’) and all linear reward
function 7 with r, € [—1, 1] that

< C.H. \/log(Nn(e’)HKdR/é) <en (18

]ESINP*()[‘/{.TF Zvvlrﬂ zln -

where C's > 0 is a universal constant.

Combining (17) and (18), we have with probability at least 1 — §/2 that for all policy = € C(II, ¢’)
and all linear reward function r with rj, € [—1, 1]

V™ (r) — V"™ < 2¢. (19)

20
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This implies that we can estimate the value function for all 7 € C(II, ¢’) and linear reward function r
with rp, € [—1, 1] up to estimation error 2¢.

Now we consider any policy 7 € II. Suppose that 7’ € C(II, ¢’) satisfies that

1) = mCl)lh < 20
seShelH] [n(-ls) = m,(-[s) ] < e 20)

Then we can bound |[V™(r) — V™ ()| and |[V"™™ — V"' | for all linear reward function r with
rp, € [—1, 1] respectively.

For |[V"™™ — v |, note that we have the following performance difference lemma:

Lemma 10. For any policy 7,7’ and reward function r, we have
H
Vi VT = S B pe (@4 (5, ), Th (ls) = maC1s))]
h=1
The proof is deferred to Appendix E.4. Therefore from Lemma 10 we have

H
|V1-,71-’ _ Vr,ﬂ'| S Z E?T7P* |:
h'=1

H
§§:Emp[

h'=1

(@™ (sw, ) w (1) = o (19))]

[T (1s) = ho (1)1 | < e @D

On the other hand, we have the following lemma to bound |‘77r (r) — v ()|

Lemma 11. Suppose (20) holds and V™ (r), V™ (r) are calculated as in Algorithm 5. Then for all
linear reward function v with 0 < (1) < T'max, we have

Heé
VdK —1

vl

VT (r) = V™ (r)] < €cover i=

(dK) (22)

The proof is deferred to Appendix E.5.

Combining (19),(21) and (22), we have for all policy m € II and linear reward function r with
0 <7(7) < Tmax

|‘7”(r) — VT < 2¢0 + He' + €cover- (23)

In particular, since (¢(7))n; = RV™7:™ we have for all policy 7 € Il and h € [H],j € [d],

~

‘(¢(7T))h7j - (¢(7T))h,j| < 2Reg + HRe' + Recover-

This implies that for all policy 7 € II and any v defined in Lemma 6, we have

{(¢(m)) — ($(r)),v)| < 2BHVA(2Reo + HRe' + Recoyer).

The rest of the proof is the same as Theorem 1 and thus is omitted here. The only difference is that
we need to show 7 is a near-optimal policy with respect to 7. This can be proved as follows:

Vi R (V?’* _ ‘77?(?)) n (‘7%(?) IR NG (?)) n <‘7W*(?) 7 — Vﬁ%)
S 460 + 2H6/ + 2€covera
where the last step comes from (23) and the definition of 7.
E.2 PROOF OF LEMMA 8

Here we outline the difference of the proof from Wang et al. (2020)[Lemma 3.2]. First, we also have
the following concentration guarantee:
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Lemma 12. Fix a policy w. Then with probability at least 1 — 6, we have for all h € [H)] and
ke [K .

(Vh+1 shi) — O Pr(s|sh, ah)ViF, (s >H O(dHR+\/log(dKHR/5)).

s'eS

The proof is almost the same as Lemma 13 and thus is omitted here. Then following the same
arguments in Wang et al. (2020), we have the following inequality under Lemma 12:

thsa th |3th+1(/)

s'eS
Note that V;F, ; (s) € [0, H — h] for all s € S, which implies that

< Bex”qsh(s?a‘)H(Aﬁ)_l

0< ZPh (s'|s,a)ViF i (") +rf(s,a) < H — h+ 1.
s'eS

Note that Clip is a contraction operator, which implies that

‘cnpmﬂ_hﬂ]((wh) on(s,a) +ri(s,a) <Z Pi(s']s,a)ViE 1 (s) +r,’§(s,a)>‘

s'eS

<]< Ton(s,0) = S Pr(s']s, )V (5)

s'eS

< Bexllonls, a)llary-1-

On the other hand,

Clip[o,H—h+1]((wh) bn(s,a) +rr(s,a) <Z Pr(s'|s,a Vh+1( " —|—rﬁ(s,a)> <H-h+1.
s'eS

This implies that

Clipig g1 sy (wh) T o (s.0) + rh(5,a) (ZPh o, a)Vikss (s ’>+r,’§<s,a>) < b (s.0).
s’eS

The rest of the proof is the same as Wang et al. (2020) and thus is omitted.

E.3 PROOF OF LEMMA 9
In the following discussion we will use ¢} to denote ¢y, (s}, aj). First we need the following

concentration lemma which is similar to Jin et al. (2020b)[Lemma B.3]:

Lemma 13. Fix a policy 7. Then with probability at least 1 — §, we have for all h € [H| and linear
reward functions v with ry, € [—1,1],

i( T (Shan) = D Pr(sIsh, ap) Vi (s >H O(dHR+/log(dK HR/5)).

s'eS

The proof is deferred to Appendix E.6. Then by union bound, we know with probability 1 — §/6, we
have for all policy 7w € C(I1, ¢’), h € [H| and linear reward functions r with r;, € [—1, 1] that

( h+1 3h+1 Z P (s |Sh7ah Tﬂ1(5/))

s'eS

O(dHR+\/log(dK HRNq(€')/6)).

-1
AL

Let & denote the event thar the above inequality holds. Then under &, following the same analysis
in (Wang et al., 2020)[Lemma 3.1], we have for all policy = € C(IL,€'), (s,a) € S x A, h € [H]
and linear reward functions r with , € [—1, 1] that

s, T = X P )T )] < (s, )l

s'eS
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Form the contraction property of Clip and the fact that >
[-(H—-h+1),H — h+ 1], we know

s’eS P}T(S,|Sva)v}:f1( /) + rh(sva) €

Clip[—(H—h+1),H—h+1]((w;m)Td)h(S?a) + Th(57a)) - Z P}T(S/|S7a)‘7}:f1 (5/) - Th(sv a’) S bh(’sva)
s'eS

Therefore, under £ we have

Q" (s,0) < m(s,a) + ) Pi(s'ls, )Vl (') + 2bu(s, a).

s/

Now we only need to prove under &, for all policy © € C(IL,¢'), (s,a) € S x A, h € [H] and

linear reward function r with rj, € [—1,1], we have Q}"" (s, a) < @2’”(3, a). We use induction to
prove this. The claim holds obviously for h = H + 1. Then we suppose for some h € [H], we have

Qpii(s,a) < @Z’L(s, a) for all policy w € C(II, €'), (s,a) € S x A and linear reward function r
with rp, € [—1,1]. Then we have:

VI;-TE( s) = Eonmnir(-]s) [Q2’11(5a a)] < +1(3) = Eanrmiia(19) [Q2’11(5»a)]-
This implies that

Clip[—(H7h+1),H7h+1]((w;ﬂr)—rﬁbh(&a) + (s, a)) + ba(s, a) Z Py (s']s,a)V, 7y (") + ma(s,a) = Q) (s, a).
s'eS

On the other hand we have
Wi(s,a) <H—-h+1.
Therefore we have

77 (s,0) < Q7 (s,a).

By induction we can prove the lemma.

E.4 PROOF OF LEMMA 10

For any two policies 7 and , it follows from the definition of V™™ and V™ that

yrr oy
—E, p- [rl(sl,al) FVIT (s )} —Err p- [V (51)]
=Err.pe [V (s2) = (V[ (s1) = ra(s1, 1))
=B pe [VI7 (52) = V3 (52)] + B pe [QF7 (51,01) = VY7 (51)]
=B, p- { V3™ (s2) = V3 (s2)| + Barr (@57 (s1,), 74 (1) = m (1)

i
I
M &

o, pe [(QL (sns ), (1) — ma(:]s))] -

>
Il
—

This concludes our proof.

E.5 PROOF OF LEMMA 11

For any h’ € [H], suppose maxses |‘7hr,j_1(s) - ‘A//;,fl(sﬂ < epr41, thenforany s € S,a € A, we
have

Q17 (s,0) = QT (s,0)| < [(wy" — wp™) T e (s,a)
K
ey low(s,a) (Aw) ™ dns(sh, ajy )|

i=1
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K K
< ey [ D llow sl o] [ D low(shoai)l?y,, ] < e VK.
i=1 i=1

Here the final step is comes from the auxiliary Lemma 14 and the fact that Ay, > R?I and thus
ZiKzl ||¢h'(87a)||%Ah,)_1 < Zszl 1<K.

Therefore we have

€ = max \V,;W(s) — ‘A/hr,”/(s)| < Hée' + VdKep 4.
s€

Note that €71 = 0, therefore we have
H 6/ %
VdK —1

€1 <
This concludes our proof.

E.6 PROOF OF LEMMA 13
The proof is almost the same as Jin et al. (2020b)[Lemma B.3] except that the function class of VI:W
is different. Therefore we only need to bound the covering number Ny, (€) of V,”™ where the distance

is defined as dist(V, V') = sup, |V (s) — V'(s)|. Note that V"™ belongs to the following function
class:

V= {Vw,A(S) = Eor(ls) |CUP[— (5 —h+1), H—h+1) (Clip[—(H—h+1),H—h+1] (w' én(s,a))
+Clpgg s ey (665, ) ) v € .

where the parameters (w, A) satisfy ||w|| < 2H/dK /A1, || Al < 51[2)1)\;11.

Note that for any Vi, a,, Vi, 4, € V, we have

diSt(le VA1 szyAz) < sup |:Chp[—(H—h+1),H—h+1] (wlTQsh’ (37 CL)) + Clip[O,Q(H—h+1)] (||¢(Sa Cl) ||A1 ):|

[0y 10T 5,0+ Clivg a6l

< sup |Clip(_ (g —p1y, mr—nop1) (Wi Onr(5,0)) = CHP (5r—py1), 1 —n1) (Ws Gne (s, a))‘

+ sup Chp[o,2(H7h+1)}(H¢(57 a)lla,) — Chp[o,z(Hth)](Hﬂs(Sv a)lla,)

< R sup ‘(wl — wg)TQS’ + R sup ‘(;ST(Al — A2)¢’
l¢ll<1 loll<1

< R(|lwy — w2 + V[l A1 — A2 r),
where the first and third step utilize the contraction property of Clip. Let C,, be the €¢/(2R)-cover
of {w € R : ||w]| < 27rmaxy/dK/Ap1} W.r.t. £2-norm and C4 be the (e/2R)-cover of {A € R4*4

[|A] < ,831)\;11} w.r.t. the Frobenius norm, then from the literature Jin et al. (2020b)[Lemma D.5],
we have

Ny(e) < log |Cu| + log|Ca| < dlog (1 + 8\/dKrr2naxR2/(>\ple2)) +d®log {1 + 8d1/2,651R2/(Aple2)]
(24)

The rest of the proof follows Jin et al. (2020b)[Lemma B.3] directly so we omit it here.
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E.7 PROOF OF PROPOSITION 1

First consider ¢ and ¢’ which satisfies:
ISk = Gl < €2, VR € [H].
Then we know forany h € [H|,s € S,a € A,

¢ dn(s,a) — (Ch) T dn(s,a)] < e.R. (25)

Now fix any i € [H] and s € S. To simplify writing, we use x(a) and 2’(a) to denote ¢, ¢5,(s,a) and
(¢)) T dn(s, a) respectively. Without loss of generality, we assume >, exp(z(a)) < 3" exp(z’(a)).
Then from (25) we have

Zexp(a: ) < Zexp ) < exp(e,R Zexp
a

Note that we have

C(ls) — _ exp(z(a) exp(z’(a))
i) = (ol = S| =y ~ e et |
2| exp(@(a) X exp(a(a)) — exp(a’(a)) Xy eXp(w(a’))‘
2o exp(z(a’)) - 3, exp(a’(a’)) '
For any a € A, if exp(x(a)) D oar exp(m’(a’)) - exp(x’(a)) D our exp(m(a’)) > 0, then

‘ exp(z Z exp(x — exp(z Z exp(z ‘

<exp(e,R) exp(x Z exp(z —exp(—e€,R) exp(x Z exp(z

=(exp(e,R) — exp(—e¢. R)) exp(x Zexp

Otherwise, we have
‘ exp(z Z exp(z —exp(x Z exp(x ’

<exp(e,R) exp(x Z exp(z —exp(x Z exp(z

=(exp(ezR) — 1) exp(z Zexp

Therefore we have
75, (-[s) = 75, (l9)]l1 <

(exp(e:R) — exp(—€.R)) 3, exp(x(a)) 3, exp(z(a’))
2o exp(z(a’)) - 3, exp(a’(a’))

< exp(2¢,R) — 1.
This implies that for any € < 1,

N0 < (Noaan () ) < (2)™,

€

where the first step uses exp(z) — 1 < z/1n2 when 2 < In 2. This concludes our proof.

E.8 PROOF OF PROPOSITION 2

First we consider the following entropy-regularized RL problem where we try to maximize the
following objective for some v > 0:

H
max Vo, (r*,m) := Ex p« {Z ry(sh,an) — alogmy (an|sp) |-
h=1
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From the literature (Nachum et al., 2017; Cen et al., 2022), we know that we can define corresponding
optimal regularized value function and Q function as follows:

Q;h(S, a) =ry(s,a) + E5h+1~Pﬁ('\S,a) [V;,h+1] )
Vz:,h(s) = nTlr%XECLhNW}L(b) [QZ,h(S, ah) —« IOg 7rh(ah|s)}a

where V17, ,(s) = 0 forall s € S. Note that we have V,;, (s) < H(1 + alog|A|) forall s € S
and h € [H]. The global optimal regularized policy is therefore

exp(Qg,n (s, a)/@)

o XP(Q (s, a/) /@)

o n(als) = 5

In particular, in linear MDPs, we have
Quplsa) = (s, (014 [ pi(Venna(o)as)
se

Therefore, Q, ,(s,a) = ¢n(s,a) "w}, ), where
|wi il < B+ H(1+ alog \A|)\/(§

This implies that 7 belongs to the log-linear policy class IT with W = (B4 H(1+alog |A|)vd)/cv.
On the other hand, let g denote the global unregularized optimal policy, then
v (T*a ﬂ'g) - maﬁc‘/(r*, 7T) < V*(T*7 ﬂ-g) - V(T*a 77;)
TE

= (V*(r*,mg) = Vi (r*,mg)) + (Vo (" mg) = Vi (7", mh)) + (Vi (%, m) = V(e )
<Vy(r*,ar) —V*(r*, k) < aHlog|A|.

Therefore we only need to let @ = to ensure V (r*, my) — max en V(r*, m) <e.

Hlofg [A|
F PROOF OF THEOREM 3

First from performance difference lemma (Lemma 10), we have

H
VT*77T -V = ZES;LNdﬁ [QTL(S}-“%) - Q;ﬂl(sh’ﬂ*)]
h=1

o~

B~z [Qn(sn, ) — Ap(sp, 7)) + B, ~az [An(sn,7) — An(sn, )]

M=

h=1
+Eq, gz [An(sn, 7) = Qj (s, 7))
H
> Z Eswd;j [QF (8n,T) — An(sn, T)] + Es,wdi [An(sn, 7*) — Q} (s, 7")]
h=1

E [A% (s, ) — Ap (s, 7) + Ap(sp, ) — AL (sp, 7))

I
M=

Sh,Ndﬁ

>
Il
—

I
M=

E,, ~az [(&n (s, 7). G — En) — (n(sn, 7). & — &)

h=1
H
= By ar (650, 7) = dn(sn, 7). & — €n)]
h=1
H o~
> = B, oaz [ (sh, T) — On(sn ™) s, 165 = Enllsn v (26)
h=1 :

26



Under review as a conference paper at ICLR 2024

Next we will bound || E,, ~di [Dn(sh, T) — dn(sh, 7r*)]|\2}_1N
v v, N+
for [[E,, wqz [¢n(sn, ) = dn(sn, 7)]|ls-1 . notice that Xy, n41 = S, forall n € [N+ 1], which
v h,N+1
implies

and ||&* —€|ls, o 4, respectively. First
. :

N
s, maz (00 (50, T) = dnlsn, )]l < ;]21 VB g (6050, 7) = (507l st
1 3 h,n,0 hon.l
S 7 2 Moo ldn(on, 7 ) = dnCon 7 Dl
1 N
: mJ 2oyt oln(on 7m0) = gn(on, TGy
. [HoR 70 .

N )
where the third step comes from the definition of 7™ and 7"»™! and the last step comes from

Elliptical Potential Lemma (Lemma 1) and the fact that A > 4R?.

For ||& — Gullsuwes let %, denote A+ 7N (¢n(shm, ahmO0)
én (s a ) (@ (s a0 — ¢ (s a™M))T . Then similar to Lemma 3, we
have with probability at least 1 — §/2,

165, = €nll% wpn < 20165 = €015, | + 2CcondR* B* log(N/9). (28)

On the other hand, similar to Lemma 2, MLE guarantees us that with probability at least 1 — 6/2,

1€ — €l ., < 20w - /W2, (d + og(1/8)) + AB2, (29)

where Kagy = 2 + exp(2Baay) + exp(—2Bady)-
Therefore combining (28) and (29), we have with probability at least 1 — 4,

||£>k - thZh,N-H < O(KadeR\/W)~ (30)

Thus combining (26), (27) and (30) via union bound, we have V*(r*) —V (r*,7) < € with probability
at least 1 — ¢ as long as

NZO adv

~(/\/-e2 !

B?R*H?d? log(l/é))

€
G AUXILIARY LEMMAS

Lemma 14 (Jin et al. (2020b)[Lemma D.1]). Let A = \I + Zf; ¢iq§: where ¢; € R and X\ > 0,
then we have Zfil o] Ao < d.
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