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Algorithm 4 REGIME-exploration
Input: The number of total episodes K, bonus parameter βex and regularization parameter λex.
for k = 1, · · · ,K do

Initialize: QkH+1(·, ·)← 0, V kH+1(·)← 0.
for h = H, · · · , 1 do

Compute the covariance matrix: Λkh ←
∑k−1
i=1 φh(sih, a

i
h)φh(sih, a

i
h)> + λexI .

Compute the bonus and reward:
bkh(·, ·)← min

{
βex‖φh(·, ·)‖(Λkh)−1 , H − h+ 1

}
and rkh = bkh/H .

Compute Q function:

Qkh(·, ·)← Clip[0,H−h+1]

(
Clip[0,H−h+1]((w

k
h)>φh(·, ·) + rkh(·, ·)) + bkh(·, ·)

)
,

where wkh = (Λkh)−1
∑k−1
i=1 φh(sih, a

i
h) · V kh+1(sih+1).

Compute value function and policy:

V kh (·)← max
a∈A

Qkh(·, a), πkh(·)← arg max
a∈A

Qkh(·, a).

end for
Collect a trajectory τk = (skh, a

k
h, s

k
h+1)Hh=1 by running πk = {πkh}Hh=1 and add τk into Dex.

end for
Sample K states from the initial states {si,in1 }Ki=1 and add them to Din.
Return Dex,Din.

A DISCUSSION

Validity of Linear Parametrization. In this work we consider linear reward parametrization, or
more generally, linear trajectory embeddings. Such assumptions are commonly used in the theoretical
works of PbRL (Pacchiano et al., 2021; Zhu et al., 2023) and relevant examples can be borrowed
from the practical works (Pacchiano et al., 2020; Parker-Holder et al., 2020) like the behavior guided
class of algorithms for policy optimization. We admit that our analysis cannot cover all kinds of
reward parametrization, but we think it is a reasonable starting point to consider linear function
approximation for theoretical analysis.

Applicability of REGIME. Our results are not restricted to linear MDPs and low-rank MDPs. Our
main result (Theorem 1) only requires a suitable reward-free oracle for dynamics learning and in
practice there exist some oracles ready for use, even when the MDPs are very complicated (Xu et al.,
2022). This implies that by plugging in these general reward-free oracles, we are able to deal with
general MDPs as well.

Relationship to Active Learning. The trajectory collection process in Step 1 of REGIME utilizes
a similar idea to active learning. In active learning, people choose a trajectory pair to query human
feedback which can maximize the information gain in each iteration. Similarly, in our algorithm, the
estimated covariance matrix Σ̂n can be regarded as the current information in n-th iteration. Then we
choose a pair of policies (πn,0, πn,1) which can maximize the information gain approximately (line
5, it is approximate because we are using an approximate dynamics P̂ for evaluation).

B OMIT DETAILS IN SECTION 4

In this section we present the details of Algorithm 4 and Algorithm 5. Here Clip[a,b](x)

means min{max{a, x}, b}. In particular, when estimating (φ(π))h,j , we use the reward function
rh,jh′ (s, a) = φh′(s, a)>θh,jh′ for all h′ ∈ [H] (up to an R factor) where

θh,jh′ =

{
1
R · ej , if h′ = h,

0, otherwise.

13
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Algorithm 5 REGIME-planning

Input: Dataset Dex = {(sih, aih, sih+1)}K,Hi=1,h=1,Din = {si,in1 }Ki=1, bonus parameter βpl and
regularization parameter λpl, policy π, reward function (rh)Hh=1.
for h′ = H, · · · , 1 do

Compute the covariance matrix: Λh′ ←
∑K
i=1 φh′(s

i
h′ , a

i
h′)φh′(s

i
h′ , a

i
h′)
> + λplI .

Compute the bonus: bh′(·, ·)← min
{
βpl‖φh′(·, ·)‖(Λh′ )−1 , 2(H − h+ 1)

}
.

end for
Initialize: Q̂r,πH+1(·, ·)← 0, V̂ r,πH+1(·)← 0.
for h′ = H, · · · , 1 do

Compute Q function:

Q̂r,πh′ (·, ·)← Clip[−(H−h+1),H−h+1]

(
Clip[−(H−h+1),H−h+1]((w

r,π
h′ )>φh′(·, ·)+rh′(·, ·))+bh′(·, ·)

)
,

where wr,πh′ = (Λh′)
−1
∑K
i=1 φh′(s

i
h′ , a

i
h′) · V̂

r,π
h′+1(sih′+1).

Compute value function: V̂ r,πh′ (·)← Ea∼πh′ Q̂
r,π
h′ (·, a).

end for
Compute V̂ π(r)← 1

K

∑K
i=1 V̂

r,π
1 (si,in1 ).

Return V̂ π(r).

Here ej is the one-hot vector whose j-th entry is 1. For simplicity, we denote V̂ r
h,j ,π, Q̂r

h,j ,π, wr
h,j ,π

by V h,j,π, Qh,j,π, wh,j,π and let the estimation (φ̂(π))h,j be RV̂ π(rh,j).

Then we have the following formal theorem characterizing the sample complexity of Algorithm 2:

Theorem 4. Let

λex = λpl = R2,

βex = CβdHR
√

log(dKHR/δ), βpl = CβdHR
√

log(dKHRNΠ(ε′)/δ)

λ ≥ 4HR2,K ≥ Õ
(H8B2R4d4 log(NΠ(ε′)/δ)

ε2

)
, N ≥ Õ

(λκ2B2R2H4d2 log(1/δ)

ε2

)
,

where ε′ = ε

72BR2H
√
dHKH−1

, Cβ > 0 is a universal constant and κ = 2 + exp(2rmax) +

exp(−2rmax). Then under Assumption 1 and 3, with probability at least 1− δ, we have

V r
∗,π̂ ≥ V r

∗,∗ − ε.

The proof is deferred to Appendix E.1.

B.1 LOG-LINEAR POLICY CLASS

The sample complexity in Theorem 2 depends on the covering number of the policy class Π. Therefore
we want to find a policy class for linear MDPs that is rich enough (i.e., contains near-global-optimal
policies) while retains a small covering number at the same time. Indeed, the log-linear policy class
(Agarwal et al., 2020b) satisfies this requirement, which is defined as follows:

Π =
{
π : πζh(a|s) =

exp(ζ>h φh(s, a))∑
a′∈A exp(ζ>h φh(s, a′))

, ζh ∈ B(d,W ),∀s ∈ S, a ∈ A, h ∈ [H]
}

Here B(d,W ) is the d-dimensional ball centered at the origin with radius W . The following
proposition characterizes the covering number of such log-linear policy class:

Proposition 1. Let Π be the log-linear policy class. Then under Assumption 1, for any ε ≤ 1, we
have logNΠ(ε) ≤ Hd log

(
12WR
ε

)
.

Meanwhile, we can quantify the bias of such log-linear policy class as follows:

14
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Proposition 2. Let W =

(
B+(H+ε)

√
d
)
H log |A|

ε , then under Assumption 1 and 3, we have

V r
∗,πg −max

π∈Π
V r
∗,π ≤ ε,

where πg is the global optimal policy.

Combining Theorem 4, Proposition 1 and Proposition 2, we know that the returned policy π̂ by
Algorithm 2 with log-linear policy classes can indeed compete against the global optimal policy with
the following sample complexities:

Ntra = K +N = Õ
(
d5 + κ2d2

ε2

)
, Nhum = Õ

(
κ2d2

ε2

)
.

C PROOF OF THEOREM 1 WITH KNOWN TRANSITIONS

In this section, we consider the proof of Theorem 1 when transitions are known, i.e., ε′ = 0

and P̂ = P ∗. In this case we have φ̂(π) = φ(π). We will deal with the unknown transition in
Appendix D.1.

First, note that from the definition of π̂, we have

V r̂,π̂ ≥ V r̂,π
∗
,

where π∗ is the optimal policy with respect to the ground-truth reward r∗, i.e., π∗ =
arg maxπ∈Π V

r∗,π . Therefore we can expand the suboptimality as follows:

V r
∗,∗ − V r

∗,π̂ = (V r
∗,∗ − V r̂,π

∗
) + (V r̂,π

∗
− V r̂,π̂) + (V r̂,π̂ − V r

∗,π̂)

≤ (V r
∗,∗ − V r̂,π

∗
) + (V r̂,π̂ − V r

∗,π̂)

= Eτ∼(π∗,P∗)[〈φ(τ), θ∗ − θ̂〉]− Eτ∼(π̂,P∗)[〈φ(τ), θ∗ − θ̂〉]

= 〈φ(π∗)− φ(π̂), θ∗ − θ̂〉

≤ ‖φ(π∗)− φ(π̂)‖Σ−1
N+1
· ‖θ∗ − θ̂‖ΣN+1

, (3)

where Σn := λI +
∑n−1
i=1 (φ(πi,0) − φ(πi,1))(φ(πi,0) − φ(πi,1))> for all n ∈ [N + 1]. Here the

third step is due to the definition of value function and the last step comes from Cauchy-Schwartz
inequality. Next we will bound ‖φ(π∗)− φ(π̂)‖Σ−1

N+1
and ‖θ∗ − θ̂‖ΣN+1

respectively.

First for ‖φ(π∗)− φ(π̂)‖Σ−1
N+1

, notice that ΣN+1 � Σn for all n ∈ [N + 1], which implies

‖φ(π∗)− φ(π̂)‖Σ−1
N+1
≤ 1

N

N∑
n=1

‖φ(π∗)− φ(π̂)‖Σ−1
n
≤ 1

N

N∑
n=1

‖φ(πn,0)− φ(πn,1)‖Σ−1
n

≤ 1√
N

√√√√ N∑
n=1

‖φ(πn,0)− φ(πn,1)‖2
Σ−1
n
, (4)

where the second step comes from the definition of πn,0 and πn,1 and the last step is due to Cauchy-
Schwartz inequality. To bound the right hand side of (4), we utilize the following Elliptical Potential
Lemma:
Lemma 1 (Elliptical Potential Lemma). For any λ ≥ R2

x and d ≥ 1, consider a sequence of vectors
{xn ∈ Rd}Nn=1 where ‖xn‖ ≤ Rx for all n ∈ [N ]. Let Σn = λI +

∑n−1
i=1 x

n(xn)>, then we have
N∑
n=1

‖xn‖2
Σ−1
n
≤ 2d log

(
1 +

N

d

)
.

The proof is deferred to Appendix C.1. Since we have λ ≥ 4HR2, by Lemma 1 we know√√√√ N∑
n=1

‖φ(πn,0)− φ(πn,1)‖2
Σ−1
n
≤
√

2HdN log(1 +N/(Hd)).
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Combining the above inequality with (4), we have

‖φ(π∗)− φ(π̂)‖Σ−1
N+1
≤
√

2Hd log(1 +N/(Hd))

N
. (5)

For ‖θ∗ − θ̂‖ΣN+1
, first note that θ̂ is the MLE estimator. Let Σ̃n denote the empirical cumulative

covariance matrix λI +
∑n−1
i=1 (φ(τ i,0)−φ(τ i,1))(φ(τ i,0)−φ(τ i,1))>, then from the literature (Zhu

et al., 2023), we know that MLE has the following guarantee:
Lemma 2 (MLE guarantee). For any λ > 0 and δ ∈ (0, 1), with probability at least 1− δ, we have

‖θ̂ − θ∗‖Σ̃N+1
≤ CMLE ·

√
κ2(Hd+ log(1/δ)) + λHB2, (6)

where κ = 2 + exp(2rmax) + exp(−2rmax) and CMLE > 0 is a universal constant.

The proof is deferred to Appendix C.2. With Lemma 2, to ‖θ∗− θ̂‖ΣN+1
we only need to show Σ̃N+1

is close to ΣN+1. This can be achieved by the following concentration result from the literature:
Lemma 3 (Pacchiano et al. (2021)[Lemma 7]). For any λ > 0 and δ ∈ (0, 1), with probability at
least 1− δ, we have

‖θ∗ − θ̂‖2ΣN+1
≤ 2‖θ∗ − θ̂‖2

Σ̃N+1
+ CCONH

3dR2B2 log(N/δ), (7)

where CCON > 0 is a universal constant.

Therefore, combining (7) and (6), by union bound with probability at least 1− δ, we have that

‖θ∗ − θ̂‖ΣN+1
≤ C1 · κBR

√
λH3d log(N/δ), (8)

where C1 is a universal constant.

Thus substituting (5) and (8) into (3), we have V ∗(r∗)− V (r∗, π̂) ≤ ε with probability at least 1− δ
as long as

N ≥ Õ
(λκ2B2R2H4d2 log(1/δ)

ε2

)
.

C.1 PROOF OF LEMMA 1

Note that when λ ≥ R2
x, we have ‖xn‖Σ−1

n
≤ 1 for all n ∈ [N ], which implies that for all n ∈ [N ],

we have

‖xn‖2
Σ−1
n
≤ log

(
1 + ‖xn‖2

Σ−1
n

)
.

On the other hand, let wn denote ‖xn‖Σ−1
n

, then we know for any n ∈ [N − 1]

log det Σn+1 = det(Σn + xn(xn)>) = log det(Σ1/2
n (I + Σ−1/2

n xn(xn)>Σ−1/2
n )Σ1/2

n )

= log det(Σn) + log det(I + (Σ−1/2
n xn)(Σ−1/2

n xn)>)

= log det(Σn) + log det(I + (Σ−1/2
n xn)>(Σ−1/2

n xn))

= log det(Σn) + log

(
1 + ‖xn‖2

Σ−1
n

)
,

where the fourth step is due to the property of determinants. Therefore we have

N∑
n=1

log

(
1 + ‖xn‖2

Σ−1
n

)
= log det ΣN+1 − log det Σ1 = log(det ΣN+1/ det Σ1)

= log det

(
I +

1

λ

N∑
n=1

xn(xn)>
)
.
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Now let {λi}di=1 denote the eigenvalues of
∑N
n=1 x

n(xn)>, then we know

log det

(
I +

1

λ

N∑
n=1

xn(xn)>
)

= log

( d∏
i=1

(1 + λi/λ)

)

≤ d log

(
1

d

d∑
i=1

(1 + λi/λ)

)
≤ d log

(
1 +

NR2
x

dλ

)
≤ d log

(
1 +

N

d

)
,

where the third step comes from
∑d
i=1 λi = Tr

(∑N
n=1 x

n(xn)>
)

=
∑N
n=1 ‖xn‖2 ≤ NR2

x and

the last step is due to the fact that λ ≥ R2
x. This concludes our proof.

C.2 PROOF OF LEMMA 2

First note that we have the following lemma from literature:
Lemma 4 ( (Zhu et al., 2023)[Lemma 3.1]). For any λ′ > 0, with probability at least 1− δ, we have

‖θ̂ − θ∗‖D+λ′I ≤ O
(√

κ2(Hd+ log(1/δ))

N
+ λ′HB2

)
,

where D = 1
N

∑N
i=1(φ(τ i,0)− φ(τ i,1))(φ(τ i,0)− φ(τ i,1))>.

Therefore let λ′ = λ
N and from the above lemma we can obtain

‖θ̂ − θ∗‖ Σ̃N+1
N

≤ O
(√

κ2(Hd+ log(1/δ))

N
+
λHB2

N

)
,

which is equivalent to

‖θ̂ − θ∗‖Σ̃N+1
≤ O

(√
κ2(Hd+ log(1/δ)) + λHB2

)
.

This concludes our proof.

D PROOFS IN SECTION 3

D.1 PROOF OF THEOREM 1

Note that from the proof of Theorem 1 with known transition dynamics, we have:

V r
∗,∗ − V r

∗,π̂ ≤ 〈φ(π∗)− φ(π̂), θ∗ − θ̂〉+ (V r̂,π
∗
− V r̂,π̂), (9)

Then we have

V r
∗,∗ − V r

∗,π̂ ≤ 〈φ(π∗)− φ̂(π∗), θ∗ − θ̂〉+ 〈φ̂(π̂)− φ(π̂), θ∗ − θ̂〉

+ 〈φ̂(π∗)− φ̂(π̂), θ∗ − θ̂〉+ (V r̂,π
∗
− V r̂,π̂). (10)

Now we only need to bound the three terms in the RHS of (10). For the first and second term, we
need to utilize the following lemma:

Lemma 5. Let dπh(s, a) and d̂πh(s, a) denote the visitation measure of policy π under P ∗ and P̂ .
Then with probability at least 1− δ/4, we have for all h ∈ [H] and π ∈ Π,

‖dπh − d̂πh‖1 ≤ hε′. (11)

Let E1 denote the event when (11) holds. Then under event E1, we further have the following lemma:
Lemma 6. Under event E1, for all policy π ∈ Π and vector v = [v1, · · · , vH ] where vh ∈ Rd and
‖vh‖ ≤ 2B for all h ∈ [H] we have,

|〈φ(π)− φ̂(π), v〉| ≤ BRH2ε′.
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Substitute Lemma 6 into (10), we have

V r
∗,∗ − V r

∗,π̂ ≤ 〈φ̂(π∗)− φ̂(π̂), θ∗ − θ̂〉+ 2BRH2ε′ + (V r̂,π
∗
− V r̂,π̂).

Then by Cauchy-Schwartz inequality, we have under event E1,

V r
∗,∗ − V r

∗,π̂ ≤ ‖φ̂(π∗)− φ̂(π̂)‖Σ̂−1
N+1
· ‖θ∗ − θ̂‖Σ̂N+1

+ 2BRH2ε′ + (V r̂,π
∗
− V r̂,π̂). (12)

Following the same analysis in the proof of Theorem 1 with known transition, we know

‖φ̂(π∗)− φ̂(π̂)‖Σ̂−1
N+1
≤
√

2Hd log(1 +N/(Hd))

N
. (13)

Now we only need to bound ‖θ∗ − θ̂‖Σ̂N+1
. Similar to the proof of Theorem 1 with known tran-

sition, we use Σn and Σ̃n to denote λI +
∑n−1
i=1 (φ(πi,0) − φ(πi,1))(φ(πi,0) − φ(πi,1))> and

λI +
∑n−1
i=1 (φ(τ i,0)− φ(τ i,1))(φ(τ i,0)− φ(τ i,1))> respectively. Then under event E1, we have the

following connection between Σ̂N+1 and ΣN+1:
Lemma 7. Under event E1, we have

‖θ∗ − θ̂‖Σ̂N+1
≤
√

2‖θ∗ − θ̂‖ΣN+1
+ 2
√

2BRH2ε′.

Combining Lemma 7 with Lemma 2 and Lemma 3, we have under event E1 ∩ E2,

‖θ∗ − θ̂‖Σ̂N+1
≤
√

2‖θ∗ − θ̂‖ΣN+1
+ 2
√

2BRH2ε′

≤ C2 · κBR
√
λH3d log(N/δ) + 2

√
2BRH2ε′, (14)

where Pr(E2) ≥ 1− δ/2 and C2 > 0 is a universal constant.

Now we only need to bound (V r̂,π
∗ − V r̂,π̂), which can be achieved with Lemma 6:

V r̂,π
∗
− V r̂,π̂ = 〈φ(π∗), θ̂〉 − 〈φ(π̂), θ̂〉

= 〈φ(π∗)− φ̂(π∗), θ̂〉+ 〈φ̂(π∗)− φ̂(π̂), θ̂〉+ 〈φ̂(π̂)− φ(π̂), θ̂〉 ≤ 2BRH2ε′, (15)

where the last step comes from Lemma 6 and the definition of π̂.

Combining (12), (13) (14) and (15), we have V r
∗,∗ − V r∗,π̂ ≤ ε with probability at least 1− δ as

long as

ε′ ≤ ε

6BRH2
, N ≥ Õ

(λκ2B2R2H4d2 log(1/δ)

ε2

)
.

D.2 PROOF OF LEMMA 5

First notice that dπh(s, a) = dπh(s)π(a|s) and d̂πh(s, a) = d̂πh(s)π(a|s), which implies that for all
h ∈ [H] ∥∥dπh − d̂πh∥∥1

=
∑
s,a

∣∣dπh(s, a)− d̂πh(s, a)
∣∣ =

∑
s,a

∣∣dπh(s)− d̂πh(s)
∣∣π(a|s)

=
∑
s

∣∣dπh(s)− d̂πh(s)
∣∣∑
a

π(a|s) =
∑
s

∣∣dπh(s)− d̂πh(s)
∣∣.

Therefore we only need to prove
∑
s

∣∣dπh(s) − d̂πh(s)
∣∣ ≤ hε′ for all h ∈ [H]. We use induction

to prove this. First for the base case, we have
∑
s |dπ1 (s) − d̂π1 (s)| =

∑
s

∣∣P ∗1 (s) − P̂1(s)
∣∣ ≤ ε′

according to the guarantee of the reward-free learnign oracle P .

Now assume that
∑
s

∣∣dπh′(s)− d̂πh′(s)∣∣ ≤ h′ε′ for all h′ ∈ [h] where h ∈ [H − 1]. Then we have∑
s

∣∣dπh+1(s)− d̂πh+1(s)
∣∣ =

∑
s

∣∣∣∑
s′,a′

d̂πh(s′)π(a′|s′)P̂h(s|s′, a′)− dπh(s′)π(a′|s′)P ∗h (s|s′, a′)
∣∣∣
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≤
( ∑
s,s′,a′

∣∣∣d̂πh(s′)− dπh(s′)
∣∣∣π(a′|s′)P̂h(s|s′, a′)

)
+
( ∑
s,s′,a′

dπh(s′)π(a′|s′)
∣∣∣P̂h(s|s′, a′)− P ∗h (s|s′, a′)

∣∣∣)
=
(∑

s′

∣∣∣d̂πh(s′)− dπh(s′)
∣∣∣∑
a′

π(a′|s′)
∑
s

P̂h(s|s′, a′)
)

+ Eπ,P∗ [‖P̂h(·|s′, a′)− P ∗h (·|s′, a′)‖1]

≤ (h+ 1)ε′,

where the second step comes from the triangle inequality and the last step is dueto the induction
hypothesis and the guarantee of P . Therefore, we have

∑
s |dπh+1(s)− d̂πh+1(s)| ≤ (h+ 1)ε′. Then

by induction, we know
∑
s |dπh(s)− d̂πh(s)| ≤ hε′ for all h ∈ [H], which concludes our proof.

D.3 PROOF OF LEMMA 6

Note that from the definition of φ(π) we have

〈φ(π), v〉 = Eτ∼(π,P∗)

[ H∑
h=1

φ>h (sh, ah)vh

]
=

H∑
h=1

∑
sh,ah

dπh(sh, ah)φ>h (sh, ah)vh.

Similarly, we have

〈φ̂(π), v〉 =

H∑
h=1

∑
sh,ah

d̂πh(sh, ah)φ>h (sh, ah)vh.

Therefore,

|〈φ(π)− φ̂(π), v〉| ≤
H∑
h=1

∑
sh,ah

|d̂πh(sh, ah)− dπh(sh, ah)| · |φ>h (sh, ah)vh|

≤ 2BR

H∑
h=1

∑
sh,ah

|d̂πh(sh, ah)− dπh(sh, ah)|

≤ 2BR

H∑
h=1

hε′ ≤ BRH2ε′,

where the first step is due to the triangle inequality and the third step comes from Lemma 5. This
concludes our proof.

D.4 PROOF OF LEMMA 7

We use ∆θ to denote θ∗ − θ̂ in this proof. From Lemma 6, we know that for any policy π,

|〈φ(π)− φ̂(π),∆θ〉| ≤ BRH2ε′.

By the triangle inequality, this implies that for any policy π0, π1,

|〈φ̂(π0)− φ̂(π1),∆θ〉| ≤ |〈φ(π0)− φ(π1),∆θ〉|+ 2BRH2ε′.

Therefore we have for any policy π0, π1,

|〈φ̂(π0)− φ̂(π1),∆θ〉|2 ≤ 2|〈φ(π0)− φ(π1),∆θ〉|2 + 8(BRH2ε′)2. (16)

Note that from the definition of Σ̂N+1 and ΣN+1, we have

‖∆θ‖2
Σ̂N+1

= ∆θ>
(
λI +

N∑
n=1

(φ̂(πn,0)− φ̂(πn,1))(φ̂(πn,0)− φ̂(πn,1))>
)

∆θ
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= λ‖∆θ‖2 +

N∑
n=1

|〈φ̂(πn,0)− φ̂(πn,1),∆θ〉|2

≤ 2
(
λ‖∆θ‖2 +

N∑
n=1

|〈φ(πn,0)− φ(πn,1),∆θ〉|2
)

+ 8(BRH2ε′)2

= 2‖∆θ‖2ΣN+1
+ 8(BRH2ε′)2,

where the third step comes from (16). This implies that

‖∆θ‖Σ̂N+1
≤
√

2‖∆θ‖ΣN+1
+ 2
√

2BRH2ε′,

which concludes our proof.

E PROOFS IN SECTION 4 AND APPENDIX B

E.1 PROOF OF THEOREM 4

First note that Algorithm 4 provides us with the following guarantee:
Lemma 8. We have with probability at least 1− δ/6 that

Es1∼P1(·)[V
b/H,∗
1 (s1)] ≤ Clin

√
d3H4R2 · log(NΠ(ε′)dKHR/δ)/K,

where bh is defined in Algorithm 5 and Clin > 0 is a universal constant. Here V r,∗1 (s1) :=
maxπ∈Π V

r,π
1 (s1).

Lemma 8 is adapted from Wang et al. (2020)[Lemma 3.2] and we highlight the difference of the
proof in Appendix E.2. Then we consider a ε′-covering for Π, denoted by C(Π, ε′). Following the
similar analysis in Wang et al. (2020)[Lemma 3.3], we have the following lemma:
Lemma 9. With probability 1−δ/6, for all h′ ∈ [H], policy π ∈ C(Π, ε′) and linear reward function
r with rh ∈ [−1, 1], we have

Qr,πh′ (·, ·) ≤ Q̂r,πh′ (·, ·) ≤ rh′(·, ·) +
∑
s′

P ∗h′(s
′|·, ·)V̂ r,πh′+1(s′) + 2bh′(·, ·).

The proof of Lemma 9 is deferred to Appendix E.3. Denote the event in Lemma 8 and Lemma 9 by
E4 and E5 respectively. Then under event E4 ∩ E5, we have for all policy π ∈ C(Π, ε′) and all linear
reward function r with rh ∈ [−1, 1],

0 ≤ Es1∼P∗1 (·)[V̂
r,π
1 (s1)− V r,π1 (s1)] ≤ 2Es1∼P∗1 (·)[V

b,π
1 (s1)]

≤ 2HEs1∼P1(·)[V
b/H,∗
1 (s1)] ≤ 2Clin

√
d3H6R2 · log(dKHRNΠ(ε′)/δ)

K
≤ ε0, (17)

where ε0 = ε
72BR

√
Hd

. Here the first step comes from the left part of Lemma 9 and the second step is
due to the right part of Lemma 9.

Note that in the proof of Lemma 13, we calculate the covering number of the function class {V̂ r,π1 :
r is linear and rh ∈ [−1, 1]} for any fixed π in (24). Then by Azuma-Hoeffding’s inequality and
(24), we have with probability at least 1− δ/6 that for all policy π ∈ C(Π, ε′) and all linear reward
function r with rh ∈ [−1, 1] that∣∣∣Es1∼P∗1 (·)[V̂

r,π
1 (s1)]− 1

K

K∑
i=1

V̂ r,π1 (si,in1 )
∣∣∣ ≤ C3H ·

√
log(NΠ(ε′)HKdR/δ)

K
≤ ε0, (18)

where C3 > 0 is a universal constant.

Combining (17) and (18), we have with probability at least 1− δ/2 that for all policy π ∈ C(Π, ε′)
and all linear reward function r with rh ∈ [−1, 1]

|V̂ π(r)− V r,π| ≤ 2ε0. (19)
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This implies that we can estimate the value function for all π ∈ C(Π, ε′) and linear reward function r
with rh ∈ [−1, 1] up to estimation error 2ε0.

Now we consider any policy π ∈ Π. Suppose that π′ ∈ C(Π, ε′) satisfies that

max
s∈S,h∈[H]

‖πh(·|s)− π′h(·|s)‖1 ≤ ε′. (20)

Then we can bound |V̂ π(r) − V̂ π
′
(r)| and |V r,π − V r,π

′ | for all linear reward function r with
rh ∈ [−1, 1] respectively.

For |V r,π − V r,π′ |, note that we have the following performance difference lemma:
Lemma 10. For any policy π, π′ and reward function r, we have

V r,π
′
− V r,π =

H∑
h=1

Eπ′,P∗
[
〈Qr,πh (sh, ·), π′h(·|s)− πh(·|s)〉

]
.

The proof is deferred to Appendix E.4. Therefore from Lemma 10 we have

|V r,π
′
− V r,π| ≤

H∑
h′=1

Eπ,P∗
[∣∣〈Qrh,j ,π′h′ (sh′ , ·), πh′(·|s)− π′h′(·|s)〉

∣∣]
≤

H∑
h′=1

Eπ,P∗
[
‖πh′(·|s)− π′h′(·|s)‖1

]
≤ Hε′. (21)

On the other hand, we have the following lemma to bound |V̂ π(r)− V̂ π′(r)|:
Lemma 11. Suppose (20) holds and V̂ π(r), V̂ π

′
(r) are calculated as in Algorithm 5. Then for all

linear reward function r with 0 ≤ r(τ) ≤ rmax, we have

|V̂ π(r)− V̂ π
′
(r)| ≤ εcover :=

Hε′√
dK − 1

· (dK)
H
2 . (22)

The proof is deferred to Appendix E.5.

Combining (19),(21) and (22), we have for all policy π ∈ Π and linear reward function r with
0 ≤ r(τ) ≤ rmax,

|V̂ π(r)− V r,π| ≤ 2ε0 +Hε′ + εcover. (23)

In particular, since (φ(π))h,j = RV r
h,j ,π , we have for all policy π ∈ Π and h ∈ [H], j ∈ [d],

|(φ(π))h,j − (φ̂(π))h,j | ≤ 2Rε0 +HRε′ +Rεcover.

This implies that for all policy π ∈ Π and any v defined in Lemma 6, we have

|〈(φ(π))− (φ̂(π)), v〉| ≤ 2BH
√
d(2Rε0 +HRε′ +Rεcover).

The rest of the proof is the same as Theorem 1 and thus is omitted here. The only difference is that
we need to show π̂ is a near-optimal policy with respect to r̂. This can be proved as follows:

V r̂,∗ − V r̂,π̂ =
(
V r̂,∗ − V̂ π̂(r̂)

)
+
(
V̂ π̂(r̂)− V̂ π

∗(r̂)(r̂)
)

+
(
V̂ π
∗(r̂)(r̂)− V r̂,π̂

)
≤ 4ε0 + 2Hε′ + 2εcover,

where the last step comes from (23) and the definition of π̂.

E.2 PROOF OF LEMMA 8

Here we outline the difference of the proof from Wang et al. (2020)[Lemma 3.2]. First, we also have
the following concentration guarantee:
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Lemma 12. Fix a policy π. Then with probability at least 1 − δ, we have for all h ∈ [H] and
k ∈ [K],∥∥∥∥ k∑

i=1

φih

(
V kh+1(sih+1)−

∑
s′∈S

P ∗h (s′|sih, aih)V kh+1(s′)

)∥∥∥∥
Λ−1
h

≤ O
(
dHR

√
log(dKHR/δ)

)
.

The proof is almost the same as Lemma 13 and thus is omitted here. Then following the same
arguments in Wang et al. (2020), we have the following inequality under Lemma 12:∣∣∣∣φh(s, a)>wkh −

∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′)

∣∣∣∣ ≤ βex‖φh(s, a)‖(Λkh)−1 .

Note that V kh+1(s) ∈ [0, H − h] for all s ∈ S, which implies that

0 ≤
∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′) + rkh(s, a) ≤ H − h+ 1.

Note that Clip is a contraction operator, which implies that∣∣∣∣Clip[0,H−h+1]((w
k
h)>φh(s, a) + rkh(s, a))−

(∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′) + rkh(s, a)

)∣∣∣∣
≤
∣∣∣∣(wkh)>φh(s, a)−

∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′)

∣∣∣∣ ≤ βex‖φh(s, a)‖(Λkh)−1 .

On the other hand,∣∣∣∣Clip[0,H−h+1]((w
k
h)>φh(s, a) + rkh(s, a))−

(∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′) + rkh(s, a)

)∣∣∣∣ ≤ H − h+ 1.

This implies that∣∣∣∣Clip[0,H−h+1]((w
k
h)>φh(s, a) + rkh(s, a))−

(∑
s′∈S

P ∗h (s′|s, a)V kh+1(s′) + rkh(s, a)

)∣∣∣∣ ≤ bkh(s, a).

The rest of the proof is the same as Wang et al. (2020) and thus is omitted.

E.3 PROOF OF LEMMA 9

In the following discussion we will use φih to denote φh(sih, a
i
h). First we need the following

concentration lemma which is similar to Jin et al. (2020b)[Lemma B.3]:
Lemma 13. Fix a policy π. Then with probability at least 1− δ, we have for all h ∈ [H] and linear
reward functions r with rh ∈ [−1, 1],∥∥∥∥ K∑

i=1

φih

(
V̂ r,πh+1(sih+1)−

∑
s′∈S

P ∗h (s′|sih, aih)V̂ r,πh+1(s′)

)∥∥∥∥
Λ−1
h

≤ O
(
dHR

√
log(dKHR/δ)

)
.

The proof is deferred to Appendix E.6. Then by union bound, we know with probability 1− δ/6, we
have for all policy π ∈ C(Π, ε′), h ∈ [H] and linear reward functions r with rh ∈ [−1, 1] that∥∥∥∥ K∑
i=1

φih

(
V̂ r,πh+1(sih+1)−

∑
s′∈S

P ∗h (s′|sih, aih)V̂ r,πh+1(s′)

)∥∥∥∥
Λ−1
h

≤ O
(
dHR

√
log(dKHRNΠ(ε′)/δ)

)
.

Let E6 denote the event thar the above inequality holds. Then under E6, following the same analysis
in (Wang et al., 2020)[Lemma 3.1], we have for all policy π ∈ C(Π, ε′), (s, a) ∈ S × A, h ∈ [H]
and linear reward functions r with rh ∈ [−1, 1] that∣∣∣∣φh(s, a)>wr,πh −

∑
s′∈S

P ∗h (s′|s, a)V̂ r,πh+1(s′)

∣∣∣∣ ≤ βpl‖φh(s, a)‖Λ−1
h
.
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Form the contraction property of Clip and the fact that
∑
s′∈S P

∗
h (s′|s, a)V̂ r,πh+1(s′) + rh(s, a) ∈

[−(H − h+ 1), H − h+ 1], we know∣∣∣∣Clip[−(H−h+1),H−h+1]((w
r,π
h )>φh(s, a) + rh(s, a))−

∑
s′∈S

P ∗h (s′|s, a)V̂ r,πh+1(s′)− rh(s, a)

∣∣∣∣ ≤ bh(s, a)

Therefore, under E6 we have

Q̂r,πh (s, a) ≤ rh(s, a) +
∑
s′

P ∗h (s′|s, a)V̂ r,πh+1(s′) + 2bh(s, a).

Now we only need to prove under E6, for all policy π ∈ C(Π, ε′), (s, a) ∈ S × A, h ∈ [H] and
linear reward function r with rh ∈ [−1, 1], we have Qr,πh (s, a) ≤ Q̂r,πh (s, a). We use induction to
prove this. The claim holds obviously for h = H + 1. Then we suppose for some h ∈ [H], we have
Qr,πh+1(s, a) ≤ Q̂r,πh+1(s, a) for all policy π ∈ C(Π, ε′), (s, a) ∈ S × A and linear reward function r
with rh ∈ [−1, 1]. Then we have:

V r,πh+1(s) = Ea∼πh+1(·|s)
[
Qr,πh+1(s, a)

]
≤ V̂ r,πh+1(s) = Ea∼πh+1(·|s)

[
Q̂r,πh+1(s, a)

]
.

This implies that

Clip[−(H−h+1),H−h+1]((w
r,π
h )>φh(s, a) + rh(s, a)) + bh(s, a) ≥

∑
s′∈S

P ∗h (s′|s, a)V r,πh+1(s′) + rh(s, a) = Qr,πh (s, a).

On the other hand we have

Qr,πh (s, a) ≤ H − h+ 1.

Therefore we have

Qr,πh (s, a) ≤ Q̂r,πh (s, a).

By induction we can prove the lemma.

E.4 PROOF OF LEMMA 10

For any two policies π′ and π, it follows from the definition of V r,π
′

and V r,π that

V r,π
′
− V r,π

=Eπ′,P∗
[
r1(s1, a1) + V r,π

′

2 (s2)
]
− Eπ′,P∗ [V r,π1 (s1)]

=Eπ′,P∗
[
V r,π

′

2 (s2)− (V r,π1 (s1)− r1(s1, a1))
]

=Eπ′,P∗
[
V r,π

′

2 (s2)− V r,π2 (s2)
]

+ Eπ′,P∗ [Qr,π1 (s1, a1)− V r,π1 (s1)]

=Eπ′,P∗
[
V r,π

′

2 (s2)− V r,π2 (s2)
]

+ Eπ′,P∗ [〈Qr,π1 (s1, ·), π′1(·|s1)− π1(·|s1)〉]

= · · · =
H∑
h=1

Eπ′,P∗ [〈Qr,πh (sh, ·), π′h(·|s)− πh(·|s)〉] .

This concludes our proof.

E.5 PROOF OF LEMMA 11

For any h′ ∈ [H], suppose maxs∈S |V̂ r,πh′+1(s)− V̂ r,π
′

h′+1(s)| ≤ εh′+1, then for any s ∈ S, a ∈ A, we
have

|Q̂r,πh′ (s, a)− Q̂r,π
′

h′ (s, a)| ≤ |(wr,πh′ − w
r,π′

h′ )>φh′(s, a)|

≤ εh′+1

K∑
i=1

|φh′(s, a)>(Λh′)
−1φh′(s

i
h′ , a

i
h′)|
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≤ εh′+1

√√√√[ K∑
i=1

‖φh′(s, a)‖2(Λh′ )−1

]
·
[ K∑
i=1

‖φh′(sih′ , aih′)‖2(Λh′ )−1

]
≤ εh′+1

√
dK.

Here the final step is comes from the auxiliary Lemma 14 and the fact that Λh′ ≥ R2I and thus∑K
i=1 ‖φh′(s, a)‖2(Λh′ )−1 ≤

∑K
i=1 1 ≤ K.

Therefore we have

εh′ := max
s∈S
|V̂ r,πh′ (s)− V̂ r,π

′

h′ (s)| ≤ Hε′ +
√
dKεh′+1.

Note that εH+1 = 0, therefore we have

ε1 ≤
Hε′√
dK − 1

· (dK)
H
2 ,

This concludes our proof.

E.6 PROOF OF LEMMA 13

The proof is almost the same as Jin et al. (2020b)[Lemma B.3] except that the function class of V r,πh
is different. Therefore we only need to bound the covering numberNV(ε) of V r,πh where the distance
is defined as dist(V, V ′) = sups |V (s)− V ′(s)|. Note that V r,πh belongs to the following function
class:

V =

{
Vw,A(s) = Ea∼π(·|s)

[
Clip[−(H−h+1),H−h+1]

(
Clip[−(H−h+1),H−h+1](w

>φh′(s, a))

+Clip[0,2(H−h+1)](‖φ(s, a)‖A)

)]
,∀s ∈ S

}
,

where the parameters (w,A) satisfy ‖w‖ ≤ 2H
√
dK/λpl, ‖A‖ ≤ β2

plλ
−1
pl .

Note that for any Vw1,A1 , Vw2,A2 ∈ V , we have

dist(Vw1,A1 , Vw2,A2) ≤ sup
s,a

∣∣∣∣[Clip[−(H−h+1),H−h+1](w
>
1 φh′(s, a)) + Clip[0,2(H−h+1)](‖φ(s, a)‖A1)

]
−
[
Clip[−(H−h+1),H−h+1](w

>
2 φh′(s, a)) + Clip[0,2(H−h+1)](‖φ(s, a)‖A2)

]∣∣∣∣
≤ sup

s,a

∣∣∣∣Clip[−(H−h+1),H−h+1](w
>
1 φh′(s, a))− Clip[−(H−h+1),H−h+1](w

>
2 φh′(s, a))

∣∣∣∣
+ sup

s,a

∣∣∣∣Clip[0,2(H−h+1)](‖φ(s, a)‖A1
)− Clip[0,2(H−h+1)](‖φ(s, a)‖A2

)

∣∣∣∣
≤ R sup

‖φ‖≤1

∣∣∣(w1 − w2)>φ
∣∣∣+R sup

‖φ‖≤1

√∣∣∣φ>(A1 −A2)φ
∣∣∣

≤ R(‖w1 − w2‖+
√
‖A1 −A2‖F ),

where the first and third step utilize the contraction property of Clip. Let Cw be the ε/(2R)-cover
of {w ∈ Rd : ‖w‖ ≤ 2rmax

√
dK/λpl} w.r.t. `2-norm and CA be the (ε/2R)-cover of {A ∈ Rd×d :

‖A‖ ≤ β2
plλ
−1
pl } w.r.t. the Frobenius norm, then from the literature Jin et al. (2020b)[Lemma D.5],

we have

NV(ε) ≤ log |Cw|+ log |CA| ≤ d log
(

1 + 8
√
dKr2

maxR
2/(λplε2)

)
+ d2 log

[
1 + 8d1/2β2

plR
2/(λplε

2)
]
.

(24)

The rest of the proof follows Jin et al. (2020b)[Lemma B.3] directly so we omit it here.
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E.7 PROOF OF PROPOSITION 1

First consider ζ and ζ ′ which satisfies:

‖ζh − ζ ′h‖ ≤ εz,∀h ∈ [H].

Then we know for any h ∈ [H], s ∈ S, a ∈ A,

|ζ>h φh(s, a)− (ζ ′h)>φh(s, a)| ≤ εzR. (25)

Now fix any h ∈ [H] and s ∈ S . To simplify writing, we use x(a) and x′(a) to denote ζ>h φh(s, a) and
(ζ ′h)>φh(s, a) respectively. Without loss of generality, we assume

∑
a exp(x(a)) ≤

∑
a exp(x′(a)).

Then from (25) we have∑
a

exp(x(a)) ≤
∑
a

exp(x′(a)) ≤ exp(εzR)
∑
a

exp(x(a)).

Note that we have

‖πζh(·|s)− πζ
′

h (·|s)‖1 =
∑
a

∣∣∣ exp(x(a))∑
a′ exp(x(a′))

− exp(x′(a))∑
a′ exp(x′(a′))

∣∣∣
=

∑
a

∣∣∣ exp(x(a))
∑
a′ exp(x′(a′))− exp(x′(a))

∑
a′ exp(x(a′))

∣∣∣∑
a′ exp(x(a′)) ·

∑
a′ exp(x′(a′))

.

For any a ∈ A, if exp(x(a))
∑
a′ exp(x′(a′))− exp(x′(a))

∑
a′ exp(x(a′)) ≥ 0, then∣∣∣ exp(x(a))

∑
a′

exp(x′(a′))− exp(x′(a))
∑
a′

exp(x(a′))
∣∣∣

≤ exp(εzR) exp(x(a))
∑
a′

exp(x(a′))− exp(−εzR) exp(x(a))
∑
a′

exp(x(a′))

=(exp(εzR)− exp(−εzR)) exp(x(a))
∑
a′

exp(x(a′)).

Otherwise, we have∣∣∣ exp(x(a))
∑
a′

exp(x′(a′))− exp(x′(a))
∑
a′

exp(x(a′))
∣∣∣

≤ exp(εzR) exp(x(a))
∑
a′

exp(x(a′))− exp(x(a))
∑
a′

exp(x(a′))

=(exp(εzR)− 1) exp(x(a))
∑
a′

exp(x(a′)).

Therefore we have

‖πζh(·|s)− πζ
′

h (·|s)‖1 ≤
(exp(εzR)− exp(−εzR))

∑
a exp(x(a))

∑
a′ exp(x(a′))∑

a′ exp(x(a′)) ·
∑
a′ exp(x′(a′))

≤ exp(2εzR)− 1.

This implies that for any ε ≤ 1,

NΠ(ε) ≤
(
NB(d,W )

( ln 2

2R
ε
))H

≤
(12WR

ε

)Hd
,

where the first step uses exp(x)− 1 ≤ x/ ln 2 when x ≤ ln 2. This concludes our proof.

E.8 PROOF OF PROPOSITION 2

First we consider the following entropy-regularized RL problem where we try to maximize the
following objective for some α > 0:

max
π

Vα(r∗, π) := Eπ,P∗
[ H∑
h=1

r∗h(sh, ah)− α log πh(ah|sh)
]
.
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From the literature (Nachum et al., 2017; Cen et al., 2022), we know that we can define corresponding
optimal regularized value function and Q function as follows:

Q∗α,h(s, a) = r∗h(s, a) + Esh+1∼P∗h (·|s,a)

[
V ∗α,h+1

]
,

V ∗α,h(s) = max
πh

Eah∼πh(·|s)
[
Q∗α,h(s, ah)− α log πh(ah|s)

]
,

where V ∗α,H+1(s) = 0 for all s ∈ S. Note that we have V ∗α,h(s) ≤ H(1 + α log |A|) for all s ∈ S
and h ∈ [H]. The global optimal regularized policy is therefore

π∗α,h(a|s) =
exp(Q∗α,h(s, a)/α)∑
a′ exp(Q∗α,h(s, a′)/α)

.

In particular, in linear MDPs, we have

Q∗α,h(s, a) = φh(s, a)>
(
θ∗h +

∫
s∈S

µ∗h(s)V ∗α,h+1(s)ds

)
.

Therefore, Q∗α,h(s, a) = φh(s, a)>w∗α,h where

‖w∗α,h‖ ≤ B +H(1 + α log |A|)
√
d.

This implies that π∗α belongs to the log-linear policy class Π withW = (B+H(1+α log |A|)
√
d)/α.

On the other hand, let πg denote the global unregularized optimal policy, then

V ∗(r∗, πg)−max
π∈Π

V (r∗, π) ≤ V ∗(r∗, πg)− V (r∗, π∗α)

=
(
V ∗(r∗, πg)− V ∗α (r∗, πg)

)
+
(
V ∗α (r∗, πg)− V ∗α (r∗, π∗α)

)
+
(
V ∗α (r∗, π∗α)− V ∗(r∗, π∗α)

)
≤ V ∗α (r∗, π∗α)− V ∗(r∗, π∗α) ≤ αH log |A|.

Therefore we only need to let α = ε
H log |A| to ensure V (r∗, πg)−maxπ∈Π V (r∗, π) ≤ ε.

F PROOF OF THEOREM 3

First from performance difference lemma (Lemma 10), we have

V r
∗,π̂ − V r

∗,∗ =

H∑
h=1

Esh∼dπ̂h [Q∗h(sh, π̂)−Q∗h(sh, π
∗)]

=

H∑
h=1

Esh∼dπ̂h [Q∗h(sh, π̂)− Âh(sh, π̂)] + Esh∼dπ̂h [Âh(sh, π̂)− Âh(sh, π
∗)]

+ Esh∼dπ̂h [Âh(sh, π
∗)−Q∗h(sh, π

∗)]

≥
H∑
h=1

Esh∼dπ̂h [Q∗h(sh, π̂)− Âh(sh, π̂)] + Esh∼dπ̂h [Âh(sh, π
∗)−Q∗h(sh, π

∗)]

=

H∑
h=1

Esh∼dπ̂h [A∗h(sh, π̂)− Âh(sh, π̂) + Âh(sh, π
∗)−A∗h(sh, π

∗)]

=

H∑
h=1

Esh∼dπ̂h [〈φh(sh, π̂), ξ∗h − ξ̂h〉 − 〈φh(sh, π
∗), ξ∗h − ξ̂h〉]

=

H∑
h=1

Esh∼dπ̂h [〈φh(sh, π̂)− φh(sh, π
∗), ξ∗h − ξ̂h〉]

≥ −
H∑
h=1

‖Esh∼dπ̂h [φh(sh, π̂)− φh(sh, π
∗)]‖Σ−1

h,N+1
· ‖ξ∗h − ξ̂h‖Σh,N+1

. (26)
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Next we will bound ‖Esh∼dπ̂h [φh(sh, π̂)−φh(sh, π
∗)]‖Σ−1

h,N+1
and ‖ξ∗− ξ̂‖Σh,N+1

respectively. First
for ‖Esh∼dπ̂h [φh(sh, π̂)−φh(sh, π

∗)]‖Σ−1
h,N+1

, notice that Σh,N+1 � Σh,n for all n ∈ [N+1], which
implies

‖Esh∼dπ̂h [φh(sh, π̂)− φh(sh, π
∗)]‖Σ−1

h,N+1
≤ 1

N

N∑
n=1

‖Esh∼dπ̂h [φh(sh, π̂)− φh(sh, π
∗)]‖Σ−1

h,n

≤ 1

N

N∑
n=1

‖Esh∼πh,n,0 [φh(sh, π
h,n,0)− φh(sh, π

h,n,1)]‖Σ−1
h,n

≤ 1√
N

√√√√ N∑
n=1

‖Esh∼πh,n,0 [φh(sh, πh,n,0)− φh(sh, πh,n,1)]‖2
Σ−1
h,n

≤
√

2d log(1 +N/d)

N
, (27)

where the third step comes from the definition of πh,n,0 and πh,n,1 and the last step comes from
Elliptical Potential Lemma (Lemma 1) and the fact that λ ≥ 4R2.

For ‖ξ∗h − ξ̂h‖Σh,N+1
, let Σ̃h,n denote λI +

∑n−1
i=1 (φh(sh,n, ah,n,0) −

φh(sh,n, ah,n,1))(φh(sh,n, ah,n,0) − φh(sh,n, ah,n,1))> . Then similar to Lemma 3, we
have with probability at least 1− δ/2,

‖ξ∗h − ξ̂h‖2Σh,N+1
≤ 2‖ξ∗h − ξ̂h‖2Σ̃h,N+1

+ 2CCONdR
2B2 log(N/δ). (28)

On the other hand, similar to Lemma 2, MLE guarantees us that with probability at least 1− δ/2,

‖ξ̂h − ξ∗h‖Σ̃h,N+1
≤ 2CMLE ·

√
κ2

adv(d+ log(1/δ)) + λB2, (29)

where κadv = 2 + exp(2Badv) + exp(−2Badv).

Therefore combining (28) and (29), we have with probability at least 1− δ,

‖ξ∗ − ξ̂h‖Σh,N+1
≤ O

(
κadvBR

√
λd log(N/δ)

)
. (30)

Thus combining (26), (27) and (30) via union bound, we have V ∗(r∗)−V (r∗, π̂) ≤ εwith probability
at least 1− δ as long as

N ≥ Õ
(λκ2

advB
2R2H2d2 log(1/δ)

ε2

)
.

G AUXILIARY LEMMAS

Lemma 14 (Jin et al. (2020b)[Lemma D.1]). Let Λ = λI +
∑K
i=1 φiφ

>
i where φi ∈ Rd and λ > 0,

then we have
∑K
i=1 φ

>
i Λ−1φi ≤ d.
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