
A Proofs
This section includes all proofs referenced in the main part of the paper, along with the associated
theorems and lemmas for completeness.

Theorem A.1. Let y(τ), β̂(τ), and f(·, β̂(τ)) be defined as above. Fix α(2), . . . , α(τ) ∈ [0, 1), and
let η(i, τ) def

=
∏τ
j=i

(
1− α(j)

)
, then for τ ≥ 1, we have that

y(τ) =

(
τ∑
i=2

α(i)η(i+ 1, τ)
(
K (K+ λIn)

−1
)τ−i+1

+ η(2, τ)
(
K (K+ λIn)

−1
)τ)

y,

f(x, β̂(τ)) = α(τ)f(x, β̂(1)) + (1− α(τ))f(x, β̂
(τ)
α=0)

for any x ∈ Rd, where β̂(τ)
α=0 is the minimizer in (3) with α(τ) = 0.

Proof. We prove the theorem by induction, where we let K̃ def
= K(K + λIn)

−1. For τ = 1,
the result hold trivially, and thus, assume it hold for τ = t. Since β(t+1) = ϕ(X)ᵀ(K +
λIn)

−1 (α(t+1)y + (1− α(t+1))y(t)
)

we have that

y(t+1) = ϕ(X)ϕ(X)ᵀ(K+ λIn)
−1
(
α(t+1)y + (1− α(t+1))y(t)

)
= α(t+1)K̃y + (1− α(t+1))K̃

(
t∑
i=2

α(i)η(i+ 1, t)K̃t−i+1 + η(2, t)K̃t

)
y

= α(t+1)K̃y +

(
t∑
i=2

α(i)η(i+ 1, t+ 1)K̃(t+1)−i+1 + η(2, t+ 1)K̃t+1

)
y

=

(
t+1∑
i=2

α(i)η(i+ 1, t+ 1)K̃(t+1)−i+1 + η(2, t+ 1)K̃t+1

)
y

which finalizes our induction proof for the first part. For the second part, note that it also holds
trivially for τ = 1. Thus assume, it holds for τ = t, then by direct manipulations

f(x,β(t+1)) = κ(x,X)ᵀ(K+ λIn)
−1
(
α(t+1)y + (1− α(t+1))y(t)

)
= α(t+1)f(x,β(1)) + (1− α(t+1))κ(x,X)ᵀ(K+ λIn)

−1y(t)

= α(t+1)f(x,β(1)) + (1− α(t+1))f(x, β̂
(t+1)
α=0 ),

where we let β̂(t+1)
α=0 denote the minimizer (3) with α(t+1) = 0; i.e. minimizing the classical kernel

ridge regression problem with targets y(t).

Lemma A.2. Let B(τ), and A be defined as above, and let B(0) def
= I. Then we can express B(τ)

recursively as

B(τ) = A
(
(1− α(τ))B(τ−1) + α(τ)In

)
,

and [B(τ)]k,k ∈ [0, 1] is (strictly) decreasing in τ for all k ∈ [n] and τ ≥ 1 if α(2) = · · · = α(τ) = α.

Proof. The case, τ = 1, is easy to verify, and we assume the claim holds for τ = t. Then note that

A
(
(1− α(t+1))B(t) + α(t+1)In

)
=

t∑
i=2

α(i)η(i+ 1, t+ 1)A(t+1)−i+1 + η(2, t+ 1)At+1 + α(t+1)A

=

t+1∑
i=2

α(i)η(i+ 1, t+ 1)A(t+1)−i+1 + η(2, t+ 1)At+1

= B(t+1),
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finalizing the induction proof. Now, assume α(2) = · · · = α(τ) = α and note that for any k and
τ ≥ 1, then

[A]k

(
(1− α)[B(τ−1)]k,k + α

)
= [B(τ)]k,k ≤ [B(τ−1)]k,k = [A]k

(
(1− α)[B(τ−2)]k,k + α

)
,

if and only if [B(τ−1)]k,k ≤ [B(τ−2)]k,k, and iteratively, if and only if [B(1)]k,k ≤ [B(0)]k,k. The
latter is indeed true, since B(1) = A, and finally, A = In if and only if λ = 0.

Theorem A.3. Assume α(2) = · · · = α(τ) = α. Then, for any pair of diagonals of D, i.e. dk and dj ,
where dk > dj , we have that for all τ ≥ 1,

[B(τ)]k,k
[B(τ)]j,j

=


1+ λ

dj

1+ λ
dk

, for α = 1,(
1+ λ

dj

1+ λ
dk

)τ
, for α = 0,

and if we let sgn(·) denote the sign function, i.e.

sgn(x)
def
=


1 if x > 0

0 if x = 0

−1 if x < 0

,

then for α ∈ (0, 1) we have that

sgn

(
[B(τ)]k,k
[B(τ)]j,j

− [B(τ−1)]k,k
[B(τ−1)]j,j

)
= sgn

(((
[B(τ−1)]k,k
[B(τ−1)]j,j

− [A]k,k
[A]j,j

)
[A]j,j

[B(τ−1)]k,k([A]k,k − [A]j,j)
+ 1

)−1
− α

)
.

Proof. First note that

[A]k,k
[A]j,j

=

dk
dk+λ
dj

dj+λ

=
1 + λ

dj

1 + λ
dk

,

and for α = 1, (12) amounts to B(τ) = A, which gives the first result. For α = 0, (12) amounts
to B(τ) = Aτ , and the second result follows. For the remainder we denote [B(τ−1)]k,k by Bk and
[A]k,k by Ak to simplify notation. We investigate the case where both r.h.s. and l.h.s. equals zero.
Thus, for α ∈ (0, 1), we observe that if

Bk

Bj
=

Ak

Aj

(1− α)Bk + α

(1− α)Bj + α
=

Ak

Aj

1−α
α Bk + 1

1−α
α Bj + 1

,

then we have that

Bj =
1

Ak

Aj

( 1−α
α Bk+1

Bk

)
− 1−α

α

=
Bk

Ak

Aj

(
1−α
α Bk + 1

)
− 1−α

α Bk

1− α
α

Bj + 1 =
1−α
α Bk

Ak

Aj

(
1−α
α Bk + 1

)
− 1−α

α Bk

+ 1 =

Ak

Aj

(
1−α
α Bk + 1

)
Ak

Aj

(
1−α
α Bk + 1

)
− 1−α

α Bk

,

which in turn yield that

Bk

Bj
=

Ak

Aj

(
1− α
α

Bk + 1

)( Ak

Aj

(
1−α
α Bk + 1

)
− 1−α

α Bk

Ak

Aj

(
1−α
α Bk + 1

) )

=
Ak

Aj

(
1− α
α

Bk + 1

)
− 1− α

α
Bk.
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Now, observe that 0 = α−
((

Bk
Bj
− Ak

Aj

)
Aj

Bk(Ak−Aj)
+ 1
)−1

yield that

Bk

Bj
=

1− α
α

Bk(Ak −Aj)

Aj
+

Ak

Aj
=

Ak

Aj

(
1− α
α

Bk + 1

)
− 1− α

α
Bk.

Thus, similar calculations with > and < instead of =, completes the claim.

Theorem A.4. Fix τ ≥ 2, λ > 0 and α(2), . . . , α(τ−1) ∈ R, then

α?(τ) = argmin
α(τ)∈R

∥∥∥ỹ − f(X̃, β̂(τ))
∥∥∥2
2

=

(
∂

∂α(τ) f(X̃, β̂
(τ))
)ᵀ (

ỹ − ỹ(1)
)

∥∥∥ ∂
∂α(τ) f(X̃, β̂(τ))

∥∥∥2 + 1,

= 1−

(
ỹ
(τ)
α=0 − ỹ(1)

)ᵀ (
ỹ − ỹ(1)

)
∥∥∥ỹ(τ)

α=0 − ỹ(1)
∥∥∥2
2

where ỹ(1) = f(X̃, β̂(1)), and ỹ
(τ)
α=0 = f(X̃, β̂

(τ)
α=0).

Proof. Let L(α(τ), λ) =
∥∥∥ỹ − f(X̃, β̂(τ))

∥∥∥2, where f depends on α(τ) and λ through β̂(τ). Note
that,

f(X̃, β̂(τ)) = κ(X̃,X)(K+ λI)−1
(
α(τ)y + (1− α(τ))y(τ−1)

)
∂

∂α(τ)
f(X̃, β̂(τ)) = κ(X̃,X)(K+ λI)−1

(
y − y(τ−1)

)
.

Then for fixed λ > 0, we have that

∂

∂α(τ)
L(α, λ) =

(
∂

∂α(τ)
f(X̃, β̂(τ))

)ᵀ (
2f(X̃, β̂(τ))− 2ỹ

)
and since we can decompose f(X̃, β̂(τ)) as

f(X̃, β̂(τ)) = α(τ)κ(X̃,X)(K+ λI)−1
(
y − y(τ−1)

)
+ κ(X̃,X)(K+ λI)−1y(τ−1)

= α(τ) ∂

∂α(τ)
f(X̃, β̂(τ)) + κ(X̃,X)(K+ λI)−1y(τ−1),

and set ∂
∂α(τ)L(α(τ), λ) = 0, we can solve as follows(
∂f (τ)

)ᵀ
ỹ −

(
∂f (τ)

)ᵀ
κ(X̃,X)(K+ λI)−1y(τ−1) = α(τ)

(
∂f (τ)

)ᵀ (
∂f (τ)

)
= α(τ)

∥∥∥∂f (τ)∥∥∥2 ,
where we use the notation ∂f (τ) def

= ∂
∂α(τ) f(X̃, β̂

(τ)) for brevity. Now since

−κ(X̃,X)(K+ λI)−1y(τ−1) = κ(X̃,X)(K+ λI)−1(y − y(τ−1))− κ(X̃,X)(K+ λI)−1y,

we can finalize the proof with

α?(τ) =

(
∂
∂αf(X̃, β̂

(τ))
)ᵀ (

ỹ − ỹ(1)
)

∥∥∥ ∂
∂αf(X̃, β̂

(τ))
∥∥∥2 + 1,

and noting that ∂
∂α(τ) f(X̃, β̂

(τ)) = ỹ(1) − ỹ
(τ)
α=0.
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Note, in the following we state and prove a slightly more general result than Theorem 4.5.

Theorem A.5. Let y(τ), β̂(τ), and f(·, β̂(τ)) be defined as above, and α ∈ [0, 1], then the following
limits hold

y(∞) def
= lim
τ→∞

y(τ) = αK (αK+ λIn)
−1

y

f(x, β̂(∞))
def
= lim
τ→∞

f(x, β̂(τ)) = ακ(x,X)ᵀ(K+ λIn)
−1 (In + (1− α)K(αK+ λIn)

−1)y
and if α > 0, then

y(∞) = K

(
K+

λ

α
In

)−1
y

f(x, β̂(∞)) = αf(x, β̂(1)) + (1− α)f(x, γ̂(∞))

where (17) corresponds to classical kernel ridge regression with amplified regularization parameter
λ
α , and we let γ̂(∞) denote the kernel ridge regression parameter associated with solving another
kernel ridge regression on the targets y(∞) with regularization parameter λ. Furthermore, the
convergence limτ→∞ y(τ) is of linear rate.

Proof. By (9) we have that K(K + λIn)
−1 = VD (D+ λIn)

−1
Vᵀ where λ > 0, D is positive

diagonal and V is orthogonal, and hence, the eigenvalues of K(K+ λIn)
−1 are all smaller than 1 in

absolute value, and thus (1− α)τ−1
(
K(K+ λIn)

−1)τ converge to the zero-matrix when τ →∞.
Thus, using the limit for a geometric series of matrices we get that

lim
τ→∞

y(τ) =

(
α

1− α
∞∑
i=1

(
(1− α)K(K+ λIn)

−1)i)y

=
α

1− α (1− α)K(K+ λIn)
−1(In − (1− α)K(K+ λIn)

−1)−1y

= αK (αK+ λIn)
−1

y.

If α > 0, the remaining result for limτ→∞ y(τ) follows directly. Now, by inserting y(∞) and
manipulating the result, we get that

f(x,β(∞)) = κ(x,X)ᵀ(K+ λIn)
−1
(
αy + (1− α)y(∞)

)
= κ(x,X)ᵀ(K+ λIn)

−1
(
αIn + (1− α)αK (αK+ λIn)

−1
)
y

= ακ(x,X)ᵀ(K+ λIn)
−1
(
In + (1− α)K (αK+ λIn)

−1
)
y,

and if α > 0, then

f(x,β(∞)) = αf(x,β(1)) + (1− α)κ(x,X)ᵀ(K+ λIn)
−1K

(
K+

λ

α
In

)−1
y

= αf(x,β(1)) + (1− α)f(x, γ̂(∞)),

where we let γ̂(∞) denote the kernel ridge regression parameter associated with the classical kernel
ridge regression problem on the targets y(∞) with regularization parameter λ.

Finally, denote by C
def
= (1− α)K(K+ λIn)

−1, then we have that

E(t)
def
=

t∑
i=1

Ci −
∞∑
i=1

Ci = Ct+1 (C− In)
−1
,

and thus for an additional s steps we have E(t+ s) = Ct+s+1(C− In)
−1 = CsE(t). Hence, the

convergence is of linear rate as claimed.
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B Experiments
In the following we show empirical results of performing a simple self-distillation procedure with
deep neural networks with varying choices of α to investigate the large scale effects. The experiments
are adapted from Mobahi et al. (2020) with the additional introduction of the α-parameter. For
stronger baselines of the possible performance gains from self-distillation see e.g. Furlanello et al.
(2018); Tian et al. (2020b); Ahn et al. (2019); Yang et al. (2018). The following sections provide
additional details to that of Section 5.

B.1 Experimental Setup
We perform self-distillation with ResNet-50 (He et al., 2016) networks on CIFAR-10 (Krizhevsky and
Hinton, 2009), with minor pre-processing and augmentations.15 The model is initialized randomly
at each step16 and trained as described in Section 5 with either estimated optimal parameters, α̂(τ),
or fixed α for all steps. We use Adam optimizer with a learning rate of 10−4, `2 regularization
with regularization coefficient 10−4, and train on the full 50000 training images and validate our
generalization performance on the 10000 test images. We use the weights from the last step of
optimization at each distillation step for the next step, irrespective of whether a better model occurred
earlier in the training. Our models are trained for a fixed 75 epochs, which does not allow our models
to overfit the training data, which is important for our models to be suitable for distillation procedures
(Dong et al., 2019). The experiments are performed on a single Nvidia Tesla V100 16GB GPU with
the PyTorch Lightning framework (Falcon, 2019).

B.2 Results
We repeat our experiment 4 times and illustrate the mean, minimum and maximum at each dis-
tillation step in Figure 5. Each experiment is 11 chains of distillation steps, corresponding to
α ∈ {0.0, 0.1, . . . , 0.9}, with the first model initialized identically across all chains. The accuracy
reported at the τ ’th step is based on comparing the training and validation predictions, Y(τ) and
f(X̃, β̂(τ)) with the original training and validation targets; Y and Ỹ.
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Figure 6: (Identical to Figure 5) Training and validation accuracy for five distillation steps with
ResNet-50 models on CIFAR-10. Comparing fixed α(t) for t = 2 . . . , τ and estimating optimal
weight with α̂(t) at each step. The experiment is repeated four times and the mean (and max/min in
shaded) is reported.

The theory introduced in Section 4 suggests that self-distillation corresponds to a progressively
amplified regularization of the solution, and larger α dampens the amount of regularization imposed
by the procedure more than small values of α. Thus, for small α we expect the training accuracy to
decrease with each distillation, but for larger α we might experience an increase in training accuracy,
due to additional training iterations and a sufficient amount of ground-truth target information being
kept in the optimization problem, which could prove beneficial. However, depending on the need
for increased regularization, we expect the validation accuracy to increase for some α, and possibly
decrease for α values either too small or too large. The above properties are observed in Figure 5,

15Training: We randomly flip an image horizontally with probability 1
2

, followed by a random 32× 32 crop
of the 40× 40 zero padded image. Finally we normalize the image to have mean 0 and standard deviation 1.
Validation: We normalize the image with the empirical mean and standard deviation from the training data.

16Note, we initialize the models equally across all α for one experiment, but alter the seed for initialization
between experiments.
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where α ≤ 0.4 generally overregularize the solution, and performance drops with distillation steps.
For α > 0.4 the performance generally improves with distillation, but for α close to one, the gains
reduce, and a suitably balanced α for this experiment would be in [0.5, 0.7]. This aligns well with the
optimal α̂(τ) estimated at approx. 0.6 for each step of self-distillation.

C Illustrative Example
In Figure 7 we show the training and validation loss associated with the illustrative example in Section
4.5. Although subtly, we observe a performance improvement in the first few distillation steps across
all three choices of α. However, for α = 0 the solutions progressively underfit the data as τ increases
further.

1 2 3 4 5 6 ∞
τ
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Training; α?(τ)

Validation; α?(τ)

Figure 7: Training (dashed lines) and validation (solid lines) loss associated with α = 0, α = 0.25,
and α?(τ). Both losses associated with α = 0 for τ →∞ are huge compared to finite τ and the plot
is bounded accordingly.

D Connection to Neural Networks
This paper theoretically investigates self-distillation of kernel ridge regression models, but distillation
procedures are more commonly used in a deep learning setting. However, recent research in the
over-parameterized regime has shown great progress and connected wide neural networks with kernel
ridge regression using the Neural Tangent Kernel (NTK) (Lee et al., 2019, 2020; Hu et al., 2019).
The following is a brief and informal connection between kernel ridge regression and wide17 neural
networks, motivating our problem setup and approach to estimate α̂(τ) in Section 5.

Consider a neural network with scalar output fnn(x,θ) ∈ R, where θ(t) ∈ RD is the vector of all
network parameters at training iteration t ≥ 0, and x ∈ Rd some input. We consider the case where
we use gradient descent on the MSE objective, L(θ) = 1

2

∑n
i=1(fnn(xi,θ)−yi)2 over some training

dataset Dtrain ⊆ Rd × R. Consider the first-order Taylor-expansion of fnn(x,θ) w.r.t its parameters
at initialization, θ(0),

fnn(x,θ) ≈ fnn(x,θ(0)) + 〈∇θfnn(x,θ(0)),θ − θ(0)〉 (19)

where fnn(x,θ(0)) and∇θfnn(x,θ(0)) are constants w.r.t. θ. For sufficiently wide networks, (19)
holds, and we say that we are in the (NTK) regime (Arora et al., 2019; Lee et al., 2019). Now, let
ϕ(x)

def
= ∇θfnn(x,θ(0)) for any x ∈ Rd, and denote the random kernel κ(xi,xj)

def
= 〈ϕ(xi), ϕ(xj)〉

for any xi,xj ∈ Rd (Jacot et al., 2018). For sufficiently wide networks, the random kernel converges
to a deterministic kernel, and since the r.h.s. of (19) is linear, one can show that minimizing
L with gradient descent leads to the solution of the kernel regression problem, with the NTK;
x 7→ κ(x,X)ᵀκ(X,X)−1y, where X ∈ Rn×d is the matrix of training inputs, and y ∈ Rn the
vector of training targets (Arora et al., 2019; Lee et al., 2019). It has been shown that when minimizing
the `2-regularized MSE loss, the solution becomes the kernel ridge regression solution (Lee et al.,
2020).

17Note, we refer to width as the number of hidden nodes in a fully connected neural network or channels in a
convolutional neural network.
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The connections between neural networks and kernel ridge regressions in knowledge distillation
settings have, to the best of our knowledge, not been explicitly investigated yet, but we hope that the
results of this paper will improve the understanding of self-distillation of neural networks once such
a connection is made rigorously.

E Connections to Constrained Optimization Problem
The setup investigated in this paper is the unconstrained optimization problem presented in (2), but
some of the results can easily be extended to a constrained optimization problem, with a general
regularization functional in Hilbert spaces, namely the natural extension of the setup proposed by
Mobahi et al. (2020). For the rest of this section we assume α(2) = · · · = α(τ) = α. Mobahi et al.
(2020) propose to solve the problem

f (τ)
def
= argmin

f∈F

∫
X

∫
X
u(x,x′)f(x)f(x′)dxdx′ s.t.

1

N

N∑
n=1

(f(xn)− yn)2 ≤ ε, (20)

where ε > 0 is a desired loss tolerance, τ ≥ 1, f (0)(xn) = yn for n = 1, . . . , N , and u being
symmetric and such that ∀f ∈ F18 the double integral is greater than or equal to 0 with equality only
when f(x) = 0. See Mobahi et al. (2020) for details.

The natural extension of this problem is to include ground-truth labels, and solve the weighted
problem

f (τ) = argmin
f∈F

∫
X

∫
X
u(x,x′)f(x)f(x′)dxdx′ (21)

s.t.
α

N

N∑
n=1

(f(xn)− yn)2 +
1− α
N

N∑
n=1

(
f(xn)− f (τ−1)(xn)

)2
≤ ε, (22)

for τ ≥ 1, where α ∈ [0, 1] and f (0)(xn) = yn for n = 1, . . . , N . In Mobahi et al. (2020), α = 0,
and this problem completely ignores the ground truth data after the first model fit, and it is easy to
see that consecutive self-fits will be penalized increasingly stronger, and eventually collapse to zero,
whenever 1

N

∑N
n=1 (f(xn)− yn)

2 ≤ ε. The case α = 1, corresponds to fitting to the ground-truth
at each iteration, and do not benefit from distillation, and thus is without interest here.

E.1 Collapsing and converging conditions
The regularization functional of (21), is clearly minimized by ft(x) = 0, but in order for this to be a
solution for some τ ≥ 1, it must hold that

α

N
‖y‖22 +

1− α
N

∥∥∥y(τ−1)
∥∥∥2
2
≤ ε,

where we use the notation that y(τ) = (f (τ)(x1), . . . , f
(τ)(xN ))T and y = (y1, . . . , yN ). For

τ = 1, this amounts to 1
N ‖y‖

2
2 ≤ ε, and for τ > 1

1− α
N

∥∥∥y(τ−1)
∥∥∥2
2
≤ ε− α

N
‖y‖22 . (23)

But since the l.h.s. is non-negative, it is required that α
N ‖y‖

2
2 ≤ ε in order for f (τ)(x) = 0 to be a

solution. Hence, we can construct the following settings, that determine the behavior of the solutions:

1. 1
N ‖y‖

2
2 ∈ [0, ε] =⇒

∥∥y(τ)
∥∥
2
= 0 ∀τ ≥ 1, (Collapsed solution)

2. 1
N ‖y‖

2
2 ∈

(
ε, εα

]
=⇒ ∃τ ≥ 1 such that

{∥∥y(τ)
∥∥
2
> 0 ∀τ < τ,∥∥y(τ)

∥∥
2
= 0 ∀τ ≥ τ , (Converging to

collapsed solution)

3. 1
N ‖y‖

2
2 ∈

(
ε
α ,∞

)
=⇒

∥∥y(τ)
∥∥
2
> 0 ∀τ ≥ 1. (Converging to non-collapsed solution)

18For a given u the function space F is the space of functions f for which the double integral in (20) is
bounded.
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If we let α→ 0 the interval
(
ε, εα

]
effectively becomes (ε,∞), and any solution will collapse at some

point (Mobahi et al., 2020). Analogously, if we let α → 1, the interval (ε, εα ] effectively becomes
empty, and all non-collapsed solutions will converge to a non-zero solution. Hence, if α > 0, one
can obtain non-collapsing convergence with infinite iterations. Furthermore, if we let ε→ 0, then
[0, ε] and (ε, εα ] will practically collapse to empty intervals, and we will always obtain convergence
to non-collapsing solutions, which will correspond to an interpolating solution. For the remainder
we assume α ∈ (0, 1), since the boundary cases are covered in Mobahi et al. (2020) (α = 0) or is
without interest (α = 1). Furthermore, we assume that ‖y‖2 >

√
Nε to avoid a collapsed solution

from the beginning. Utilizing the Karush-Kuhn-Tucker (KKT) conditions for this problem, we can
rephrase our optimization problem as

f (τ) = argmin
f∈F

α

N

N∑
n=1

(f(xn)− yn)2 +
1− α
N

N∑
n=1

(
f(xn)− f (τ−1)(xn)

)2
+ λτ

∫
X

∫
X
u(x,x′)f(x)f(x′)dxdx′, (24)

where λτ ≥ 0. For suitably chosen λτ , one can show that f (τ) is an optimal solution to our problem19.

E.2 Extending our results
By direct calculations similar to those of Mobahi et al. (2020) one can obtain the closed form
solution of (24), but first we will repeat some definitions from Mobahi et al. (2020). Let the Green’s
Function g(x, t) be such that

∫
X u(x, x

′)g(x′, t)dx′ = δ(x− t), where δ is the Dirac delta, and let
[G]j,k = 1

N g(xj ,xk) and [g(x)]k = 1
N g(x,xk), where G is a matrix and g(x) a vector dependent

on x. Now we can present the proposition.

Proposition E.1. For any τ ≥ 1, the problem (24) has a solution of the form

y(τ) = g(x)ᵀ (G+ λτ I)
−1

(αy + (1− α)y(τ−1)),

where y(0) def
= y.

Since G is positive semi-definite, we can decompose it as G = VDVᵀ. Define B(0) def
= I, then for

τ ≥ 1, we have that y(τ) = VB(τ)Vᵀy, where we set

B(τ) def
=

α

1− α
τ−1∑
i=1

(1− α)τ−i
τ−1∏
j=i

A(j+1) + (1− α)τ−1
τ∏
j=1

A(j),

A(τ) def
= D(D+ λτ I)

−1.

By equivalent calculations as those of Lemma 4.2, we have that

B(τ) = A(τ)((1− α)B(τ−1) + αIN ) ∀τ ≥ 1,

and we can now formulate the following theorem, similar to Theorem 4.3.

Theorem E.2. For any pair of diagonals of D, i.e. dk and dj , where dk > dj , we have that for all
τ ≥ 1 and for α ∈ (0, 1), then

sign

(
[B(τ)]k,k
[B(τ)]j,j

− [B(τ−1)]k,k
[B(τ−1)]j,j

)
(25)

= sign

(((
[B(τ−1)]k,k
[B(τ−1)]j,j

− [A(τ)]k,k
[A(τ)]j,j

)
[A(τ)]j,j

[B(τ−1)]k,k([A(τ)]k,k − [A(τ)]j,j)
+ 1

)−1
− α

)
.

(26)

Proof. The proof follows by analogous calculations to the proof of Theorem 4.3.

19See Mobahi et al. (2020) for a detailed argument.
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For the case α = 1, the results is identical to Theorem 4.3, since no distillation is actually performed.
However, the case α = 0 is more involved and we refer the reader to Mobahi et al. (2020) for the
treatment of this case, since our setup is identical to that of Mobahi et al. (2020) when α = 0.

Finally, due to the dependency of λτ on the solution from the previous step of distillation in this
constrained optimization problem, we are unable to obtain a simple recurrent expression as (6) and a
limiting solution as in Theorem 4.5. However, by the results in Section E.1, we can determine, from
the norm of the targets, whether the solution collapses or not.
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