
Published as a conference paper at ICLR 2023

A APPENDIX

A.1 QUANTIZATIONS FORMATS

In this paper, we aim to reduce the General matrix multiplication (GEMM) to 4 bit. The activation
and weights are quantized to standard INT4, while the neural gradients to FP4 with LUQ. In the
forward path (Eq. (1)), we use standard INT quantization (Equation 3 in Nagel et al. (2021)):

zl =
∑

QINT4(Wl)QINT4(al) =
∑

αWl
W INT4
l αala

INT4
l = αWl

αal
∑

W INT4
l aINT4

l ,

where α is the INT scale factor and defined as: α = ∆
2b−1

where ∆ is the quantized range and b is the
quantization bitwidth. In this standard INT quantization all MAC operations are in low precision and
only the final multiplication with the scale requires high precision. For the backward (Eq. (2)) and
update (Eq. (3)) GEMMs we use exactly the same scheme: again the scale (α) is in high precision
but since it is the same for all the tensor, all MAC operation can be done in low precision. The
only difference is that we require a MAC unit that performs INT4-FP4 operations. This requirement
is the same as required in Ultra-low (Sun et al. (2020)) and as they showed, the support of such
INT4-FP4 MAC unit is simple and requires 55% of the area of standard FP16 Floating-point-unit,
while providing a 4x throughput. In Fig. 3 we show all these details.

𝑾𝑙
𝐼𝑁𝑇4𝛼𝑊𝑙

𝐹𝑃32

𝛼𝑊𝑙

𝐹𝑃32𝛼𝑎𝑙−1
𝐹𝑃32෍

𝑚

𝑾𝒍𝒎,𝒏
𝐼𝑁𝑇4𝒂𝒍−𝟏𝒎,𝒏

𝐼𝑁𝑇4

𝒂𝑙
𝐼𝑁𝑇4𝛼𝐴𝑙

𝐹𝑃32

Act.
function

𝒂𝑙−1
𝐼𝑁𝑇4𝛼𝑎𝑙−1

𝐹𝑃32

𝜹𝑙
𝐹𝑃4𝛼𝛿𝑙

𝐹𝑃32

𝛼𝛿𝑙
𝐹𝑃32𝛼

𝑎𝑙−1
𝑇
𝐹𝑃32෍

𝑚

𝜹𝑙𝑚,𝑛
𝐹𝑃4𝑨𝑙−1𝑚,𝑛

𝐼𝑁𝑇4

𝑨𝑙−1
𝐼𝑁𝑇4𝛼

𝑎𝑙−1
𝑇
𝐹𝑃32

𝛼
𝑊𝑙
𝑇

𝐹𝑃32𝛼𝛿𝑙
𝐹𝑃32෍

𝑚

𝑾𝒍𝒎,𝒏
𝐼𝑁𝑇4𝜹𝑙𝑚,𝑛

𝐹𝑃4

Act. Function
backward

𝜹𝑙𝑚,𝑛
𝐹𝑃4𝛼𝛿𝑙

𝐹𝑃32

𝑾𝑙
𝐼𝑁𝑇4𝛼

𝑊𝑙
𝑇

𝐹𝑃32

Weight update𝜹𝑙−1𝑚,𝑛
𝐹𝑃4𝛼𝛿𝑙−1

𝐹𝑃32

Backward Update Forward

FP32

FP4 Quantization INT4 Quantization

FP32FP32

Figure 3: Summary of the different formats used in each of the three GEMM in our 4 training regime.
Boldface represent matrix and vectors. Different colors represent different elements of each layer
(activations, weights, neural gradients, etc.)

A.2 COMPARISON OF MEAN-SQUARE-ERROR - FULL DERIVATIVES

Given that we want to quantize x in a bin with a lower limit l(x) and an upper limit u(x), stochastic
rounding can be stated as follows:

SR(x) =

{
l(x), w.p. p(x) = 1− x−l(x)

u(x)−l(x)

u(x), w.p. 1− p(x) = x−l(x)
u(x)−l(x)

. (19)

The expected rounding value is given by

E[SR(x)] = l(x) · p(x) + u(x) · (1− p(x)) = x , (20)

where here and below the expectation is over the randomness of SR (i.e., x is a deterministic constant).

12

Published as a conference paper at ICLR 2023

Stochastic rounding is an unbiased approximation of x, since it has zero bias:
Bias[SR(x)] = E[SR(x)− x] = E[SR(x)]− x = 0 . (21)

However, stochastic rounding has a variance, given by
Var[SR(x)] = (l(x)− E[SR(x)])2 · p(x) + (u(x)− E[SR(x)])2 · (1− p(x))

= (x− l(x)) · (u(x)− x) ,
(22)

where the last transition follows from substituting the terms E[SR(x)]), and p(x) into Eq. (22).

We turn to consider the round-to-nearest method (RDN). The bias of RDN is given by
Bias[RDN(x)] = min (x− l(x), u(x)− x) . (23)

Since RDN is a deterministic method, it is evident that the variance is 0 i.e.,
Var[RDN(x)] = 0 . (24)

Finally, for every value x and a rounding method R(x), the mean-square-error (MSE) can be written
as the sum of the rounding variance and the squared rounding bias,

MSE[R(x)] = E[R(x)− x]2 = Var[R(x)] + Bias2[R(x)] . (25)
Therefore, we have the following MSE distortion when using round-to-nearest and stochastic round-
ing:

MSE =

{
[min (x− l(x), u(x)− x)]

2
RDN(x)

(x− l(x)) · (u(x)− x) SR(x)
. (26)

A.3 WHEN IS IT IMPORTANT TO USE UNBIASED QUANTIZATION - FULL DERIVATIVES

Denote Wl as the weights between layer l − 1 and l, C as the cost function, and fl as the activation
function at layer l. Given an input–output pair (x, y), the loss is:

C (y, fL (WLfL−1 (WL−1 · · · f2 (W2f1 (W1x)) · · ·))) . (27)

Backward pass. Let zl be the weighted input (pre-activation) of layer l and denote the output
(activation) of layer l by al. The derivative of the loss in terms of the inputs is given by the chain rule:

δl ,
dC

dzl
=
dal
dzl
· · · dzL−1

daL−2
· daL−1

dzL−1
· dzL
daL−1

· daL
dzL
· dC
daL

. (28)

Therefore, δL , daL
dzL
· dCdaL , and we can write recursively the backprop rule ∀l < L:

δl ,
dal
dzl

dzl+1

dal
· δl+1 . (29)

In its quantized version, δqL = Q (δL), and Eq. (29) has the following form (with ReLU activations):

δql , Q

(
dal
dzl

dzl+1

dal
δql+1

)
. (30)

Assuming Q(x) is an unbiased stochastic quantizer with E[Q(x)] = x, we next show the quantized
backprop δql is an unbiased approximation of backprop:

Eδql = EQ

(
dal
dzl

dzl+1

dal
δql+1

)
(1)
= E

[
E

[
Q

(
dal
dzl

dzl+1

dal
δql+1

)
|δql+1

]]
(2)
= E

[
dal
dzl

dzl+1

dal
δql+1

]
(3)
=
dal
dzl

dzl+1

dal
Eδql+1

(4)
=
dal
dzl

dzl+1

dal
δl ,

(31)

where in (1) we used the law of total expectation, in (2) we used E[Q(x)] = x, in (3) we used the
linearity of back-propagation, and in (4) we assumed by induction that E [δl+1] = δql+1, which holds
initially: EδqL = EQ (δL) = δL.

Finally, the gradient of the weights in layer l is∇Wl
C = δla

>
l−1 and its quantized form is∇Wl

Cq =

δql a
>
l−1. Therefore, the update∇Wl

Cq is an unbiased estimator of∇Wl
C:

E [∇Wl
Cq] = E

[
δql a
>
l−1

]
= E [δql] a

>
l−1 = δla

>
l−1 = ∇Wl

C . (32)

13

Published as a conference paper at ICLR 2023

A.4 EXPERIMENTAL DETAILS

In all our experiments we use the most common approach (Banner et al., 2018; Choi et al., 2018b)
for quantization where a high precision of the weights is kept and quantized on-the-fly. The updates
are done in full precision. In all our experiments we use 8 GPU GeForce Titan Xp or GeForce RTX
2080 Ti or Ampere A40.

ResNet / ResNext We run the models ResNet-18, ResNet-50 and ResNext-50 from torchvision.
We use the standard pre-processing of ImageNet ILSVRC2012 dataset. We train for 90 epochs,
use an initial learning rate of 0.1 with a 0.1 decay at epochs 30,60,80. We use standard SGD with
momentum of 0.9 and weight decay of 1e-4. The minibatch size used is 256. Following the DNNs
quantization conventions (Banner et al., 2018; Nahshan et al., 2019; Choi et al., 2018b) we kept the
first and last layer (FC) at higher precision. Additionally, similar to Sun et al. (2020) we adopt the
full precision at the shortcut which constitutes only a small amount of the computations (∼ 1%). We
totally The ”underflow threshold” in LUQ is updated in every bwd pass as part of the quantization of
the neural gradients. In all experiments, the BN and pooling are calculated in high-precision. The
hindsight momentum is η = 0.1 and in the FNT experiments we use lrbase = 1e− 3.

MobileNet V2 We run Mobilenet V2 model from torchvision. We use the standard pre-processing
of ImageNet ILSVRC2012 dataset. We train for 150 epochs, use an initial learning rate of 0.05 with
a cosine learning scheduler. We use standard SGD with momentum of 0.9 and weight decay of 4e-5.
The minibatch size used is 256. Following the DNNs quantization conventions (Banner et al., 2018;
Nahshan et al., 2019; Choi et al., 2018b) we kept the first and last layer (FC) at higher precision.
Additionally, similar to Sun et al. (2020) we adopt the full precision at the depthwise layer which
constitutes only a small amount of the computations (∼ 3%). The ”underflow threshold” in LUQ is
updated in every bwd pass as part of the quantization of the neural gradients. In all experiments, the
BN and pooling are calculated in high-precision.

Transformer We run the Transformer-base model based on the Fairseq implementation on the
WMT 14 En-De translation task. We use the standard hyperparameters of Fairseq including Adam
optimizer. We implement LUQ over all attention and feed forward layers.

A.5 ADDITIONAL EXPERIMENTS

A.5.1 STOCHASTIC ROUNDING OVERHEAD

Efficient HW implementation of SR can be found in many accelerators that were built specifically
for deep learning (Habana-Intel Hab, Graphcore Gra, Tesla Tes). In order to show the throughput
overhead of stochastic rounding, when it is not supported in HW as in GPU, we measured the time of
our stochastic quantizer in comparison to a deterministic quantizer (round-to-nearest) for different
sizes of random tensor. The quantizer was implemented as a CUDA kernel and the experiment run on
1 A40 GPU. For each tensor size, we repeat the experiment 100 times and average the results. We see
that the implementation of SR in software with our non-optimized kernel has a small overhead. This
can be an option when it is not supported in HW.

Tensor size Stochastic rounding [micro sec] Round-to-nearest [micro sec]

103 2.64 2.55
104 2.64 2.6
105 3.94 3.89
106 4.07 4.01
107 6.89 6.78
108 9.83 9.77

A.5.2 STOCHASTIC ROUNDING AMORTIZATION

As explained in Appendix A.5.1, usually the overhead of the stochastic rounding is typically negligible
in comparison to other operations in neural network training. However, to reduce even more this

14

Published as a conference paper at ICLR 2023

overhead, is it possible to re-use the random samples. In Fig. 4 we show the effect of such re-using
does not change the network accuracy.

0 20 40 60 80 100 120 140

40

50

60

70

80

90

Baseline
Amortization 10
Amortization 100
Amortization 1000

Figure 4: ResNet18 top-1 validation in Cifar10 dataset, with 4-bit quantization of the neural gradients
using stochastic-rounding. The amortization is the numbers of iteration that we re-use the random
samples.

A.5.3 SMP EXPERIMENT

In Fig. 5 we show the effect of the different number of samples (SMP) on 2-bit quantization
of ResNet18 Cifar100 dataset. There, we achieve with 16 samples accuracy similar to a full-
precision network. This demonstrates that the variance is the only remaining issue in neural gradient
quantization using LUQ, and that the proposed averaging method can erase this variance gap, with
some overhead.

A.5.4 SMP OVERHEAD

The SMP method (Section 5.1) has a power overhead of ∼ 1
3 of the number of additional samples

since it influences only the update GEMM. In Fig. 6 we compare LUQ with one additional sample
which has ∼ 33% power overhead with regular LUQ with additional ∼ 33% epochs. The learning
rate scheduler was expanded respectively. We can notice that, even though both methods have a
similar overhead, the variance reduction achieved with SMP is more important for network accuracy
than increasing the training time.

A.5.5 DATA MOVEMENT REDUCTION EFFECT

LUQ requires the measurement of the maximum to choose the underflow threshold α (Section 4).
This measurement can create a data movement bottleneck. In order to avoid it, we combine in LUQ
the proposed maximum estimation of Hindsight Fournarakis & Nagel (2021), which uses previous
iterations statistics. In Fig. 7 we compare the measured maximum and the Hindsight estimation,
showing they can have similar values. Moreover in Table 4 we show that the effect of the Hindsight
estimation on the network accuracy is negligible while completely eliminating the data movement
bottleneck. In Table 5 we extend Table 3 and show the effect of applying the proposed FNT method
(Section 5.2) on the combination of LUQ with Hindisght.

A.6 COMPARISON TO SUN ET AL. (2020)

Floating point radix conversion requires an explicit multiplication and may require additional non-
standard hardware support (Kupriianova et al., 2013). Specifically, Sun et al. (2020) requires a
conversion from the radix-2 FP32 to a radix-4 FP4 of the neural gradients. They show this conversion
requires multiplication by the constant 1.6.

15

Published as a conference paper at ICLR 2023

0 25 50 75 100 125 150 175 200
Epochs

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Baseline
LUQ 2 bits
LUQ 2 bits with 2 samples
LUQ 2 bits with 4 samples
LUQ 2 bits with 8 samples
LUQ 2 bits with 16 samples

Figure 5: ResNet18 top-1 validation accuracy in CIFAR100 with quantization of the neural gradients
to 2-bit (FP2 - [1,1,0] format) using different samples numbers to reduce the variance. Notice that 16
samples completely close the gap to the baseline.

0 50 100 150 200
Epochs

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Baseline
LUQ 3 bits - 2 samples
LUQ 3 bits - longer training

Figure 6: Comparison of ResNet-18 3 bit training on Cifar100 dataset of LUQ with 2 samples with
longer training of regular LUQ. Both methods have similar overhead, but the SMP method leads to
better accuracy.

Notice that it is not possible to convert between radix floating point formats by a fixed shift. For
example, suppose we first convert the radix-2 FP32 to radix-2 FP4 and then shift the exponent (where
the shift is equivalent to multiplication by 2). This would lead to an incorrect result, as we show with
a simple example: let us assume radix-2 quantization with bins 1,2,4,8 and radix-4 quantizations with
bins 1,4,16,64. For the number 4.5, if we quantize it first to radix-2 we get the quantized number 4,
then we multiply it by 2 we get 8. In contrast, radix-4 quantization should give the result 4.

In contrast, our proposed method, LUQ, uses the standard radix-2 format and does not require non-
standard conversions. The use of standard hardware increases the benefit of the low bits quantization.

16

Published as a conference paper at ICLR 2023

0 200 400 600 800
Iterations

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

layer1.1.conv2
Hind
Max

(a)

0 200 400 600 800
Iterations

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

layer4.0.conv1
Hind
Max

(b)
Figure 7: Measured maximum and hindsight Fournarakis & Nagel (2021) maximum estimation in
two different layers of ResNet18 ImageNet dataset. As you can notice, the hindsight estimation is
close to the measured maximum and reduce completely the data movement bottleneck

Table 4: Effect of applying Hindsight Fournarakis & Nagel (2021) maximum estimation on the
network accuracy. SMP refers to doing two samples of the SR quantization of neural gradient in
order to reduce the variance as explained in Section 5.1 similar to Table 2

Model LUQ LUQ + SMP LUQ + Hindsight LUQ + Hindsight + SMP

ResNet18 69.09 69.24 69.12 69.25
ResNet50 75.42 75.63 75.4 75.6
MobileNet-V2 69.55 69.7 69.59 69.68
ResNext50 76.02 76.12 75.91 76.2
Transformer-base 27.17 27.25 27.17 27.23
BERT fine-tune 85.75 85.9 85.77 85.89

Table 5: Effect of the proposed FNT method (Section 5.2) on LUQ and on LUQ + Hindisght
(Fournarakis & Nagel, 2021) similar to Table 3. FNT 1/2/3 refers to the number of finetuning epochs,
while ”No FNT” refers to the basic method + SMP as presented in Table 4

Model Baseline No FNT +FNT 1 +FNT 2 +FNT 3

ResNet-18 LUQ 69.7 % 69.24 % 69.7 % - -
ResNet-18 LUQ+Hind 69.7 % 69.25 % 69.7 % - -
ResNet-50 LUQ 76.5 % 75. 63% 75.89 % 76 % 76.18 %
ResNet-50 LUQ + Hind 76.5 % 75. 6% 75.84 % 76.03 % 76.25 %
MobileNet-V2 LUQ 71.9 % 69.7 % 70.1 % 70.3 % 70.3 %
MobileNet-V2 LUQ + Hind 71.9 % 69.68 % 70.1 % 70.3 % 70.3 %
ResNext-50 LUQ 77.6 % 76.12% 76.25 % 76.33 % 76.7 %
ResNext-50 LUQ + Hind 77.6 % 76.2% 76.3 % 76.43 % 76.65 %

Table 6: ResNet-50 accuracy with ImageNet dataset while using quantization on different parts of the
network. The forward phase is quantized to INT4 format with SAWB (Choi et al., 2018a) while the
backward phase is quantized with the proposed LUQ. As expected, the quantization of the backward
phase makes more degradation to the network accuracy.

Forward Backward Accuracy

FP32 FP32 76.5 %
INT4 FP32 76.35 %
FP32 FP4 75.6 %
INT4 FP4 75.4 %

17

Published as a conference paper at ICLR 2023

A.7 POWER-OF-TWO LUQ

Recall the quantization bins in LUQ are 2nα (n ∈ {0, 1, .., b− 1}), where α is a real number defined
as (with b = 3 for FP4):

α =
max(|x|)

22b−1 .

In order to reduce the computational resources in the quantization, we can use only power-of-two
values for α. This allows us to convert all bins to power-to-two values. This enables using a cheap
shift operation instead of the more expensive multiplication with α we do during the quantization
process (Eq. (12)).

Specifically, we suggest power-of-two LUQ (LUQPW2), which uses the ceiling power-of-two value of
the maximum in the α calculation, i.e.:

αPW2 =
2dlog2 max(|x|)e

22b−1 .

The choice of the ceiling (instead of round-to-nearest) is to avoid clipping of the maximum value
which will create a bias and affect the accuracy.

Standard FP quantization, with E exponent bits and M mantissa has a dynamic range of
[21−q, 22E−2−q(2 − 2−M)] where q is the exponent bias. Usually, the exponent bias is fixed as
q = 2E−1 − 1. However, in modern deep learning accelerator Tes the FP quantizers have the ability
to change the exponent bias. With this ability, during the use of LUQPW2, we can define the exponent
bias for a tensor x to be q = 23 − 2− dlog2(max(|x|))e (for E = 3 and M = 0). This bias allows
us to completely avoid any shifting operations, since it is defined as part of the quantizer. Thus we
obtain an even more significant reduction in the computational resources required to use LUQ.

In Table 7 we show results of the proposed LUQPW2 achieving a small degradation in comparison to
standard LUQ and reducing or completely avoiding (depends on the accelerator) the computational
cost of the scaling operator. Moreover in Table 8 we combine LUQPW2 with Hindsight Fournarakis &
Nagel (2021) to additionally reduce the data movement, showing better results than Sun et al. (2020)
with their non hardware friendly method.

Table 7: Comparison of Ultra-low (Sun et al., 2020), LUQ and LUQPW2 on various models and
datasets. As can be seen, the proposed LUQPW2 avoids the scaling operations and achieved a small
degradation in comparison to standard LUQ.

Model Baseline Ultra-low LUQ LUQPW2

ResNet-18 69.7 % 68.27 % 69.09% 69 %
ResNet-50 76.5% 74.01 % 75.42 % 75.15 %
MobileNet-V2 71.9 % 68.85 % 69.55 % 69.2 %
ResNext50 77.6 % N/A 76.02 % 75.3 %
Transformer-base 27.5 (BLEU) 25.4 27.17 26.86
BERT fine-tune 87.03 (F1) N/A 85.75 85.29

Table 8: Combination of the proposed LUQPW2 and Hindsight Fournarakis & Nagel (2021) on
ResNet18 and ResNet50 ImageNet dataset. As can be seen, the Hindsight method has a small effect
on the accuracy and allow to reduce the data movement, which can be critical in some cases.

Model Baseline Ultra-low LUQPW2 LUQPW2 + Hindsight

ResNet-18 69.7 % 68.27 % 68.7 % 68.88 %
ResNet-50 76.5 % 74.01% 75.15 % 74.83 %

A.8 MF-BPROP: MULTIPLICATION FREE BACKPROPAGATION

The main problem of using different datatypes for the weights, activations and neural gradients is
the need to cast them to a common data type before the multiplication during the backward (Eq. (2))

18

Published as a conference paper at ICLR 2023

and update(Eq. (3)) phases. During the backward and update phases, in each layer l there are two
GEMMs between different datatypes:
Regularly, to calculate these GEMMs there is a need to cast both data types to a common data type
(in our case, FP7 [1,4,2]), then do the GEMM and finally, the results are usually accumulated in a
wide accumulator (Fig. 8a). This casting cost is not negligible. For example, casting INT4 to FP7
consumes ∼ 15% of the area of an FP7 multiplier.

In our case, we are dealing with a special case where we do a GEMM between a number without
mantissa (neural gradient) and a number without exponent (weights and activations), since INT4 is
almost equivalent to FP4 with format [1,0,3]. We suggest transforming the standard GEMM block
(Fig. 8a) to Multiplication Free BackPROP (MF-BPROP) block which contains only a transformation
to standard FP7 format (see Fig. 8b) and a simple XOR operation. More details on this transformation
appear in Appendix A.8.1. In our analysis (Appendix A.8.2) we show the MF-BPROP block reduces
the area of the standard GEMM block by 5×. Since the FP32 accumulator is still the most expensive
block when training with a few bits, we reduce the total area in our experiments by ∼ 8%. However,
as previously showen (Wang et al., 2018) 16-bits accumulators work well with 8-bit training, so it is
reasonable to think, it should work also with 4-bit training. In this case, the analysis (Appendix A.8.2)
shows that the suggested MF-BPROP block reduces the total area by ∼ 22%.

Casting to
FP7 (1-4-2)

Casting to
FP7 (1-4-2)

INT4

FP4

FP7 (1-4-2)
multiplier

FP32
Accumulator

Casting to
FP32

Standard GEMM block Summation block

(a)

INT4

FP4

Transform to
standard

FP7 (1-4-2)

FP32
Accumulator

Casting to
FP32

MF-BPROP block Summation block

(b)
Figure 8: (a): Standard MAC block illustration containing the two main blocks - one for GEMM and
second for accumulator. The GEMM block for hybrid datatype as in our case (FP4 and INT4) requires
casting to a common datatype before being inserted into the multiplier. (b): The suggested MAC
block, which replaces the multiplier with the proposed MF-BPROP. Instead of doing an expensive
casting followed by multiplication, we propose to make only a simple XOR and a transformation
(Appendix A.8.1) reducing the GEMM area by 5x (Appendix A.8.2).

A.8.1 TRANSFORM TO STANDARD FP7

We suggest a method to avoid the use of an expensive GEMM block between the INT4 (activation or
weights) and FP4 (neural gradient). It includes 2 main elements: The first is a simple xor operation
between the sign of the two numbers and the second is a transform block to standard FP7 format. In
Fig. 9 we present an illustration of the proposed method. The transformation can be explained with
a simple example: for simplicity, we avoid the sign which requires only xor operation. The input
arguments are 3 (011 bits representation in INT4 format) and 4 (011 bits representation in FP4 1-3-0
format). The concatenation brings to the bits 011 011. Then looking at the table in the input column
where the M=3 (since the INT4 argument = 3) and get the results in FP7 format of 0100 10 (= E+1
2) which is 12 in FP7 (1-4-2) as the expected multiplication result.

In the next section, we analyze the area of the suggested block in comparison to the standard GEMM
block, showing a 5× area reduction.

19

Published as a conference paper at ICLR 2023

Transform to
standard FP7 (1-4-2)

INT4

FP4

Input Output

FP4 INT4 Exp Mant

0 M 0 0

E 0 0 0

E 1 E 0

E 2 E+1 0

E 3 E+1 2

E 4 E+2 0

E 5 E+2 1

E 6 E+2 2

E 7 E+2 3

MF-BPROP block

Exp Mant

Figure 9: Illustration of MF-BPROP block which replaces a standard multiplication. It includes: (1)
a simple xor operation between the sign. (2) A transform to standard FP7 format. We present the
table to make this transform - E and M represent the bits of the FP4 and INT4 respectively without
the sign. Exp and Mant are the bits of the output exponent (4-bit) and mantissa (2-bit) of the output
in FP7 format.

A.8.2 BACKPROPAGATION WITHOUT MULTIPLCATION ANALYSIS

In this section, we show a rough estimation of the logical area of the proposed MF-BPROP block
which avoids multiplication and compares it with the standard multiplier. In hardware design, the
logical area can be a good proxy for power consumption (Iman & Pedram, 1997). Our estimation
doesn’t include synthesis optimization. In Table 9 we show the estimation of the number of gates of a
standard multiplier, getting 264 logical gates while the proposed MF-BPROP block has an estimation
of 49 gates (Table 10) achieving a ∼ 5× area reduction. For fair comparison we remark that in the
proposed scheme the FP32 accumulator is the most expensive block with an estimation of 2453 gates,
however we believe it can be reduced to a narrow accumulator such as FP16 (As previously shown in
Wang et al. (2018) which have an estimated area of 731 gates. In that case, we reduce the total are by
∼ 22%.

Table 9: Rough estimation of the number of logical gates for a standard GEMM block which contains
two blocks: a casting to FP7 and a FP7 multiplier.

Block Operation # Gates

Casting to FP7 Exponent 3:1 mux 12
Mantissa 4:1 mux 18

FP7 [1,4,2] multiplier

Mantissa multiplier 99
Exponent adder 37
Sign xor 1
Mantissa normalization 48
Rounding adder 12
Fix exponent 37

Total 264

Table 10: Rough estimation of the number of logical gates for the proposed MF-BPROP block.

Block Operation # Gates

MF-BPROP
Exponent adder 30
Mantissa 4:1 mux 18
Sign xor 1

Total 49

20

	Appendix
	Quantizations formats
	Comparison of mean-square-error - full derivatives
	When is it important to use unbiased quantization - full derivatives
	Experimental details
	Additional experiments
	Stochastic rounding overhead
	Stochastic rounding amortization
	SMP experiment
	SMP overhead
	Data movement reduction effect

	Comparison to UltraLowP4
	Power-of-two LUQ
	MF-BPROP: multiplication free backpropagation
	Transform to standard fp7
	Backpropagation without multiplcation analysis

