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Addressing Imbalance for Class Incremental Learning in Medical
Image Classification

Anonymous Authors

ABSTRACT
Deep convolutional neural networks have made significant break-
throughs in medical image classification, under the assumption
that training samples from all classes are simultaneously available.
However, in real-world medical scenarios, there’s a common need
to continuously learn about new diseases, leading to the emerging
field of class incremental learning (CIL) in the medical domain.
Typically, CIL suffers from catastrophic forgetting when trained on
new classes. This phenomenon is mainly caused by the imbalance
between old and new classes, and it becomes even more challeng-
ing with imbalanced medical datasets. In this work, we introduce
two simple yet effective plug-in methods to mitigate the adverse
effects of the imbalance. First, we propose a CIL-balanced classifi-
cation loss to mitigate the classifier bias toward majority classes
via logit adjustment. Second, we propose a distribution margin loss
that not only alleviates the inter-class overlap in embedding space
but also enforces the intra-class compactness. We evaluate the ef-
fectiveness of our method with extensive experiments on three
benchmark datasets (CCH5000, HAM10000, and EyePACS). The
results demonstrate that our approach outperforms state-of-the-art
methods.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Class incremental learning, medical image classification, class im-
balance

1 INTRODUCTION
Nowadays, deep learning has emerged as a powerful tool across
various fields, including the medical domain [2, 29, 32]. However,
traditional deep learning methods often make assumptions about
stationary and independent data distributions, which may be im-
practical in real-world scenarios. Most trained diagnosis models
would be fixed once developed, while in real clinical practice, the
distribution of medical data frequently undergoes shifts over time,
primarily due to the continuous emergence of new diseases, treat-
ment protocols, and patient data [6, 37]. Under such circumstances,
the model needs to incorporate new class knowledge incrementally
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Figure 1: Overview of the class incremental learning setting
in medical image classification. During the incremental pro-
cess, the training data is only provided for the current classes,
while the data from previous steps is not accessible. At each
step, the model is required to perform classification for all
the classes seen so far.

instead of retraining the model with all data available [24]. There-
fore, in this work, we focus on class incremental learning in the
medical domain.

Fig. 1 illustrates the setting of class incremental learning in med-
ical Image classification. Taking the EyePACS dataset [7] as an
example, the model is initially trained to classify three classes (i.e.,
No DR, Mild, and Moderate). Subsequently, incremental classes (e.g.,
Severe, and Proliferative DR) arrive in sequential steps to update
the model. The classes introduced in different steps are disjoint, and
the model must be able to predict all classes seen over time. How-
ever, when updating the model with only new classes, new data
tends to erase previous knowledge. This phenomenon is known as
catastrophic forgetting [15, 22].

For class incremental learning, imbalanced data between old and
new classes is one of the primary reasons for catastrophic forget-
ting [23, 48]. To this end, numerous approaches have been proposed
to store a small proportion of previous training data in memory and
rehearse them when learning new classes [1, 18, 45]. However, the
limited size of memory can also lead to an imbalance between old
and new classes [28, 34]. Under this circumstance, the class imbal-
ance will lead to (i) a classifier biased towards the new and majority
classes; and (ii) the embeddings of new classes inevitably overlap

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

with the old ones in the feature space (i.e. the ambiguities problem).
In addition to the class incremental learning imbalance, many real-
life medical datasets exhibit significant class imbalance [32], with
some classes having notably higher instances in training samples
than others, e.g., HAM10000 [38], and EyePACS [7], which further
aggravate the catastrophic forgetting. Therefore, addressing data
imbalance is crucial for class incremental learning in medical image
classification.

In this paper, we propose two simple yet effective plug-in loss
objectives to tackle two challenges caused by imbalance in class
incremental learning. First, we propose a CIL-balanced classifica-
tion loss instead of the traditional cross-entropy (CE) loss to avoid
the issue of classifier bias. Specifically, we first adjust the logits
based on the category frequency to place more emphasis on rare
classes and then introduce a scale factor to further achieve a balance
between old and new classes. Second, to alleviate the overlap of
classes in the feature space, we propose a distribution margin loss,
a novel improved margin loss, which not only facilitates to push
away the distributions of old and new classes but also obtains the
compact intra-class clustering. Extensive experiments on bench-
mark datasets under various settings verify the superiority of our
method.

To summarize, the main contributions of this paper are:
• To reduce the classifier bias towards new andmajority classes,
we propose a CIL-balanced classification loss that empha-
sizes rare ones via logit adjustment.
• We introduce a novel distribution margin loss that can ef-
fectively separate the distributions of old and new classes to
avoid ambiguities and realize the optimization of the intra-
class compactness.
• Extensive experiments demonstrate that our method can ef-
fectively address the issue of data imbalancewith the state-of-
the-art performance achieved on three benchmark datasets:
CCH5000, HAM10000, and EyePACS.

2 RELATEDWORK
2.1 Class Incremental Learning
Class incremental learning aims to train a model from a sequence
of classes, ensuring its performance across all the classes. Existing
class incremental learning methods can be roughly divided into
three groups: regularization-based, structure-based, and memory-
based.

Regularization-based methods [10, 13, 18, 36] apply additional
constraints to prevent the existing model from forgetting previous
knowledge. LUCIR [18] constrains the orientation of the features to
preserve the geometric configuration of old classes. PODNet [13]
introduces a novel spatial distillation not only for the outputs of
the final layer but also for the intermediate features to mitigate
representation forgetting. However, regularization-based methods
still suffer from feature degradation of old knowledge due to the
limited access to old data [46].

Structure-based methods [14, 19, 27, 40, 46] aim to preserve the
learned parameters associated with old classes while incremen-
tally creating modules to enhance the model’s capacity to acquire
new knowledge. Recently, DER [46] adds a new feature extrac-
tor at each step and then concatenates the extracted features for

classification. DyTox [14] applies transformer [11] to incremental
learning and dynamically expands task tokens when learning new
classes. Nevertheless, dynamically adding new modules will lead
to an explosion in the number of parameters and an increase in the
independence between each feature extractor to harm performance
in new classes [40].

Memory-based methods [3, 4, 34, 42, 45] address the challenge
of forgetting by storing a limited number of representative samples
from old classes in a memory buffer. iCaRL [34] learns the exemplar-
based data representation and makes predictions using a nearest-
mean-of-exemplars classifier. GEM [4] uses exemplars for gradient
projection to overcome forgetting. Additionally, some approaches
employ generative models to synthesize old class samples for data
rehearsal [31, 35, 41] while other works consider saving feature
embeddings instead of raw images [20]. In our work, we follow the
memory-based approach to directly store a small subset of old class
data for rehearsal.

2.2 Class Imbalance
Class imbalance is a key challenge for class incremental learn-
ing [18]. Due to the only access to the classes of the current step,
the classifier is severely biased, and there is an inevitable overlap
and confusion between the feature space representations of old
and new classes [23]. Even with the limited size of the memory
buffer, the biased optimization by imbalanced data between old
and new classes is still a crucial problem that causes catastrophic
forgetting [28, 34]. To cope with it, SS-IL [1] isolates the compu-
tation of the softmax probabilities on old and new classes for bias
compensation. BiC [45] introduces a bias correction layer to address
the bias in the last fully connected layer.

In real-world medical scenarios, most existing datasets contain
highly imbalanced numbers of samples [32], which leads to a more
severe forgetting. To the best of our knowledge, LO2LN [6] is the
first attempt to address the problem of class incremental learning in
medical image classification. First, they utilize the class-balanced fo-
cal loss [8] to avoid the classifier bias. However, the class-balanced
focal loss is not specialized and efficient for incremental learning.
Second, they introduce the margin ranking loss [18] to separate
old and new classes. We argue that this constraint may not be suffi-
ciently robust, resulting in large clusters within classes (intra-class)
and potential overlaps between classes (inter-class). By contrast, in
this paper, we propose two simple yet effective plug-in loss objec-
tives: (i) a CIL-balanced classification loss to alleviate prediction
bias by adjusting the logits, and (ii) a distribution margin loss that
can push the distributions of old and new classes away and provide
more compact intra-class clustering simultaneously.

3 METHOD
In this section, we first outline the setting of class incremental
learning in medical image classification (Sec. 3.1). Then, we provide
a detailed description of the two proposed loss objectives: CIL-
balanced classification loss (Sec. 3.2) and distribution margin loss
(Sec. 3.3).
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3.1 Setting and Notation
Class incremental learning aims to train a model from a sequence of
data incrementally. Specifically, we denote the sequence of tasks as
D = {D1,D2,D3, ...,D𝑇 }, where D𝑡 = (X𝑡 ,Y𝑡 ) =

{
(𝑥𝑡

𝑖
, 𝑦𝑡

𝑖
)
}𝑛𝑡
𝑖=1

represents the training set from step 𝑡 with 𝑛𝑡 instances. Here,
𝑥𝑡
𝑖
∈ X𝑡 is a sample and 𝑦𝑡

𝑖
∈ Y𝑡 is the corresponding label. The la-

bel space of the model is all seen classes Y𝑖:𝑡 =
⋃𝑡

𝑖=1Y𝑖 , where
Y𝑡 ∩ Y𝑡 ′ = ∅ for all 𝑡 ≠ 𝑡 ′. Inspired by memory-based meth-
ods [3, 34, 45], our method consistently samples𝑚 representative
instances from each old class and store them in amemory bufferM𝑡 ,
which is updated after the training step 𝑡 is completed. It should be
mentioned that only data from D̂𝑡 = D𝑡 ∪M𝑡−1 is available for
training during the 𝑡-th step.

Classically, the model at step t can be written as the composition
of two functions: 𝑓 𝑡 = 𝑓 𝑡

𝜃
◦ 𝑓 𝑡

𝜙
(·), where 𝑓 𝑡

𝜙
represents a feature

extractor, and 𝑓 𝑡
𝜃
represents a classifier. For an input sample 𝑥𝑖 , its

feature representation is denoted as ℎ𝑡
𝑖
= 𝑓 𝑡

𝜙
(𝑥𝑖 ). We employ cosine

normalization [18] as the classifier 𝑓 𝑡
𝜃
. Consequently, the predicted

logit 𝑝𝑡
𝑖,𝑐

for class 𝑐 at step 𝑡 can be calculated from ℎ𝑡
𝑖
as:

𝑝𝑡𝑖,𝑐 = 𝜂
〈
ℎ𝑡𝑖 ,𝑤𝑐

〉
, (1)

where 𝑤𝑐 are the weights for class 𝑐 in the classifier layer, 𝜂 is a
learnable scalar, and ⟨·, ·⟩ denotes the cosine similarity between
two vectors.

3.2 CIL-Balanced Classification Loss
As claimed in previous works [28, 32], the inherent imbalance in
medical datasets and the imbalance in class incremental learning
can lead to a biased classifier. Inspired by [30], we aim to mitigate
this issue by adjusting the logits according to category frequency.
However, for a memory-based method in class incremental learning,
only the data from D̂𝑡 is available at step 𝑡 , which consists of the
memory bufferM𝑡−1 and the training set D𝑡 . Hence, we define
the category frequency as follows:

𝑟𝑐 =


𝑚���D̂𝑡

��� , if 𝑐 ∈ Y1:𝑡−1,

𝑞𝑐���D̂𝑡

��� , if 𝑐 ∈ Y𝑡 ,
(2)

where 𝑞𝑐 is the number of training samples for class 𝑐 , and |·| is the
cardinality of a given set. After that, we add 𝑙𝑜𝑔 𝑟𝑐 to the output
logits during training. Thus, the logit-balanced classification loss
can be formulated as:

L𝑙𝑏𝑐 = − 1���D̂𝑡

��� ∑︁
𝑖∈D̂𝑡

𝑙𝑜𝑔

𝑒𝑥𝑝

(
𝑝𝑡
𝑖,𝑦𝑖
+ 𝑙𝑜𝑔 𝑟𝑦𝑖

)
∑

𝑗∈Y1:𝑡 𝑒𝑥𝑝
(
𝑝𝑡
𝑖, 𝑗
+ 𝑙𝑜𝑔 𝑟 𝑗

) . (3)

To explain how our method works, we reformulate Eq. 3 into
Eq. 4 by introducing 𝑣𝑦𝑖 , 𝑗 := 𝑙𝑜𝑔 𝑟 𝑗 − 𝑙𝑜𝑔 𝑟𝑦𝑖 , which are defined as
follows:

L𝑙𝑏𝑐 = − 1���D̂𝑡

��� ∑︁
𝑖∈D̂𝑡

𝑙𝑜𝑔

𝑒𝑥𝑝

(
𝑝𝑡
𝑖,𝑦𝑖

)
∑

𝑗∈Y1:𝑡 𝑒𝑥𝑝
(
𝑝𝑡
𝑖, 𝑗
+ 𝑣𝑦𝑖 , 𝑗

) , (4)

where:

𝑣𝑦𝑖 , 𝑗 =


𝑙𝑜𝑔

𝑞 𝑗

𝑚 [> 0] , if 𝑦𝑖 ∈ Y1:𝑡−1, 𝑗 ∈ Y𝑡 ,
𝑙𝑜𝑔 𝑚

𝑚 [= 0] , if 𝑦𝑖 ∈ Y1:𝑡−1, 𝑗 ∈ Y1:𝑡−1,
𝑙𝑜𝑔 𝑚

𝑞𝑦𝑖
[< 0] , if 𝑦𝑖 ∈ Y𝑡 , 𝑗 ∈ Y1:𝑡−1,

𝑙𝑜𝑔
𝑞 𝑗

𝑞𝑦𝑖
, if 𝑦𝑖 ∈ Y𝑡 , 𝑗 ∈ Y𝑡 .

(5)

It is known that traditional softmax loss necessitates 𝑝𝑡
𝑖,𝑦𝑖

> 𝑝𝑡
𝑖, 𝑗

for the accurate classification of sample 𝑥𝑖 . In order to prioritize
the learning of old and rare classes, we employ the following logit
adjustment strategy. Specifically, when 𝑦𝑖 ∈ Y1:𝑡−1 and 𝑗 ∈ Y𝑡 (the
first line in Eq. 5), we instead require 𝑝𝑡

𝑖,𝑦𝑖
> 𝑝𝑡

𝑖, 𝑗
+ log

(
𝑞 𝑗/𝑚

)
[> 0].

Hence, it is clear that we require a larger 𝑝𝑡
𝑖,𝑦𝑖

, which makes the
training process placemore emphasis on old class𝑦𝑖 than previously.
However, if both𝑦𝑖 and 𝑗 are withinY1:𝑡−1 (the second line in Eq. 5),
the logit remains unchanged, since they are both old classes with
the same memory size.

For the other two cases when𝑦𝑖 ∈ Y𝑡 . If 𝑗 ∈ Y1:𝑡−1 (the third line
in Eq. 5), the term log

(
𝑚/𝑞𝑦𝑖

)
< 0 suggests that old class 𝑗 receives

more emphasis. If 𝑗 ∈ Y𝑡 (the fourth line in Eq. 5), more emphasis is
placed on the class 𝑦𝑖 when it has fewer instances, and conversely,
the focus is on class 𝑗 when the size 𝑞 𝑗 is smaller. Therefore, the
logit-balanced classification loss can effectively reduce the bias
towards new and frequent classes.

To further control the balance between the old and new classes,
we introduce a scale factor 𝛾 :

𝛾𝑐 =

{
𝛼, if 𝑐 ∈ Y1:𝑡−1,
1, if 𝑐 ∈ Y𝑡 ,

(6)

where 𝛼 ∈ [0, 1] is a trade-off coefficient for each dataset. With the
help of this scale factor, the CIL-balanced classification loss can be
written as:

L𝑐𝑏𝑐 = − 1���D̂𝑡

��� ∑︁
𝑖∈D̂𝑡

𝑙𝑜𝑔

𝛾𝑦𝑖 · 𝑒𝑥𝑝
(
𝑝𝑡
𝑖,𝑦𝑖

)
∑

𝑗∈Y1:𝑡𝛾 𝑗 · 𝑒𝑥𝑝
(
𝑝𝑡
𝑖, 𝑗
+ 𝑣𝑦𝑖 , 𝑗

) , (7)

which reduces the output values for the old classes while maintain-
ing the outputs for the new classes unchanged, thereby encouraging
the model to produce larger logits for these old ones. Consequently,
this scaling strategy further mitigates the issue of imbalance in
class incremental learning. In this context, although a decrease in
𝛼 improves the significance of old classes, it may affect the model’s
learning of new ones. Thus, determining the optimal 𝛼 becomes
crucial for achieving a better trade-off (see Sec. 4.4). Notably, when
𝛼 is assigned a value of 1, the current CIL-balanced classification
loss degrades to the logit-balanced classification loss (Eq. 4).

3.3 Distribution Margin Loss
In class incremental learning, the representations of the old and new
classes would be easily overlapped in the deep feature space [47].
To address this issue, margin loss [5] is introduced to avoid the
ambiguities between old and new classes. In detail, the vanilla
margin loss aims to ensure that the distance from the anchor to the
positive (embedding of the ground-truth old class) is less than the
distance of the anchor from the negative (embedding of the new
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Figure 2: (a) The vanilla margin loss forces the cosine sim-
ilarity between ℎ𝑎 and 𝑤𝑝 to be larger than that between
ℎ𝑎 and 𝑤𝑛 without considering the distribution separation.
(b) Our distribution margin loss aims to push ℎ𝑎 away from
the distribution of the negative class instead of just𝑤𝑛 , thus
mitigating feature space overlap. (c) The vanilla margin loss
fails to minimize the intra-class distance adequately, which
may result in ℎ𝑎 being distant from the center of its ground-
truth class. (d) The distribution margin loss ensures that ℎ𝑎
remains within its corresponding class distribution, enhanc-
ing intra-class compactness.

class) to meet a predefined margin𝑚, which can be computed as:

L𝑚 =
∑︁

𝑖∈M𝑡−1

∑︁
𝑐∈Y𝑡

𝑚𝑎𝑥
{
0,
〈
ℎ𝑡𝑖 ,𝑤𝑐

〉
−
〈
ℎ𝑡𝑖 ,𝑤𝑦𝑖

〉
+𝑚

}
, (8)

where ⟨·, ·⟩ denotes the cosine similarity and the margin𝑚 is set to
0.4 for all experiments.

However, the vanilla margin loss exhibits two limitations. First,
it only focuses on the triplet: anchor, positive, and negative embed-
dings. Even if the distance from the anchor to the negative exceeds
that to the positive by a margin𝑚, their distributions may remain
close or even overlap, thereby introducing potential ambiguities in
classification (shown in Fig. 2a). Second, while the vanilla margin
loss aims to separate the ground-truth old class from new classes
(maximizing inter-class distance), it fails to adequately address the
minimization of intra-class distance, often leading to large intra-
class clustering (shown in Fig. 2c).

To address the above limitations, we try to restore the class dis-
tribution and design a novel distribution margin loss that contains
two loss terms. The first term optimizes the triples by ensuring
that the distance from the anchor to the positive embedding is less
than its distance to the negative class distributions by the margin

Algorithm 1 Class incremental learning with our method.
Input: Incremental task data D𝑡 , Memory exemplars:M𝑡−1
Output: Updated current model
1: // Training process in incremental steps (𝑡 ≥ 2)
2: D̂𝑡 = D𝑡 ∪M𝑡−1; ⊲ Rehearsal
3: repeat
4: L𝑐𝑏𝑐 ← Eq. 7; ⊲ CIL-Balanced Classification Loss
5: L𝑑𝑚 ← Eq. 9; ⊲ Distribution Margin Loss
6: L𝑘𝑑 ← Eq. 11; ⊲ Knowledge Distillation Loss
7: // Update the current model via optimizing L𝑎𝑙𝑙
8: L𝑎𝑙𝑙 ← Eq. 12; ⊲ Overall Loss
9: until reaches predefined epoch

𝑚, rather than merely to the negative embeddings. By optimizing
this term, the distribution margin loss can push the samples of old
classes away from the new class distributions to facilitate the inter-
class separation (shown in Fig. 2b). The second term attempts to
maintain the anchor embedding within the distribution range of its
corresponding class, thus obtaining compact intra-class clustering
(shown in Fig. 2d). Accordingly, the distribution margin loss can be
formulated as:

L𝑑𝑚 =
∑︁

𝑖∈M𝑡−1

∑︁
𝑐∈Y𝑡

𝑚𝑎𝑥
{
0,
〈
ℎ𝑡𝑖 , �̂�𝑐

〉
−
〈
ℎ𝑡𝑖 ,𝑤𝑦𝑖

〉
+𝑚

}
+

∑︁
𝑖∈M𝑡−1

𝑚𝑎𝑥
{
0,
〈
�̂�𝑦𝑖 ,𝑤𝑦𝑖

〉
−
〈
ℎ𝑡𝑖 ,𝑤𝑦𝑖

〉}
,

(9)

where �̂�𝑐 represents the distribution range of class 𝑐 . Specifically,
we model the data distribution of each class in the feature space by
applying a Gaussian distribution around their centroids. However,
due to the imbalanced number of samples across different classes,
the features of classes with limited instances may get squeezed into
a narrow area in the feature space [43]. As a result, we assign a larger
distribution range to the majority classes and a more restricted
range to the minority classes:

�̂�𝑐 = 𝑤𝑐 + 𝜂 ∗ 𝑟𝑐 , 𝑟𝑐 =
𝑞𝑐∑

𝑖∈Y1:𝑡 𝑞𝑖
, (10)

where 𝑟𝑐 represents the inherent ratio of class 𝑐 among all seen
classes, and 𝜂 ∼ N (0, 1) is a Gaussian noise which has the same
dimension as the classifier weight.

To prevent forgetting and maintain the discrimination ability,
we also apply knowledge distillation loss [17] to build a mapping
between the old and the current model:

L𝑘𝑑 =
1���D̂𝑡

��� ∑︁
𝑖∈D̂𝑡

∑︁
𝑐∈Y1:𝑡−1




𝑝𝑡𝑖,𝑐 − 𝑝𝑡−1𝑖,𝑐




 . (11)

Therefore, the overall loss is defined as:

L𝑎𝑙𝑙 = L𝑐𝑏𝑐 + 𝜆𝑑L𝑑𝑚 + 𝜆𝑘L𝑘𝑑 , (12)

where 𝜆𝑑 and 𝜆𝑘 are the hyper-parameters for balancing the im-
portance of each loss. We show the guideline of our method at
incremental step t in Alg. 1.
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4 EXPERIMENTS
4.1 Experimental Setups
Datasets. Following the benchmark setting [6], we evaluate the
performance on CCH5000 [21], HAM10000 [38], and EyePACS [7].
• CCH5000: consists of histological images in human colorec-
tal cancer. This dataset contains 8 different classes with 625
images per class: tumor, stroma, complex, lympho, debris,
mucosa, adipose, and empty.
• HAM10000: consists of 10,015 skin cancer images, including
seven types of skin lesions: melanoma, melanocytic nevus,
basal cell carcinoma, actinic keratosis, benign keratosis, der-
matofibroma, and vascular lesions. The distribution ratios for
each type are as follows: 3.27%, 5.13%, 10.97%, 1.15%, 11.11%,
66.95%, and 1.42%, which indicates a severe class imbalance.
• EyePACS: is commonly used for the task of diabetic retinopa-
thy (DR) classification. EyePACS dataset contains 35,126
retina images for training, which are categorized into five
stages of DR. Specifically, there are 25,810 images labeled
as no DR, 2,443 as mild DR, 5,292 as moderate DR, 873 as
severe DR, and 708 as proliferative DR images. It is worth
noting that this dataset is also highly imbalanced.

Evaluation protocols. Following the experimental protocols in [6],
we evaluate our method for different scenarios, such as 4-1, 4-2,
3-1, and 3-2. In each scenario, the numbers indicate the number of
base and new classes, respectively. For example, considering the
HAM10000 dataset with 7 classes, the scenario of 3-2 corresponds
to learning 3 classes at the initial step and subsequently adding 2
new classes at each incremental step, requiring a total of 3 training
steps.
Metrics. Following previous work [6], we evaluate our method
based on two standardmetrics: AverageAccuracy (Acc) andAverage
Forgetting (Fgt). Let 𝑎𝑡,𝑖 be the accuracy of the model evaluated on
the test set of classes in Y𝑖 after training on the first 𝑡 steps. The
Average Accuracy is defined as:

Acc =
1
𝑇

∑𝑇
𝑡=1

(
1
𝑡

∑𝑡
𝑖=1 𝑎𝑡,𝑖

)
, (13)

which measures the average classification accuracy of the model
until step 𝑇 . The Average Forgetting is defined as:

Fgt =
1
𝑇

∑𝑇
𝑡=1

[
1

𝑡 − 1
∑𝑡−1
𝑖=1 max

𝑗∈[1,𝑡−1]

(
𝑎 𝑗,𝑖 − 𝑎𝑡,𝑖

) ]
, (14)

which measures an estimate of how much the model forgets by
averaging the decline in accuracy from the peak performance to its
current performance.
Comparedmethods.To demonstrate the superiority of ourmethod,
we first compare it to classical incremental learning approaches:
iCaRL [34], UCIR [18], PODNet [13], and DER [46]. Besides, we
also compare to the current state-of-the-art method: LO2LN [6].
Implementation details. As in [6], we adopt a cosine normaliza-
tion classifier with a ResNet-18 [16] backbone pre-trained on the
ImageNet [9]. Our method is implemented in PyTorch [33], and we
employ SGD with a momentum value of 0.9 and weight decay of
0.0005 for optimization. During training, the batch size is set to 32
for the CCH5000 and HAM10000 datasets and 128 for the EyePACS
dataset in each learning step. Note that, for a fair comparison, we

Method
4-2 (3 steps) 4-1 (5 steps)
Acc Fgt Acc Fgt

iCaRL [34] 93.0±0.2 6.8±1.0 91.1±1.8 9.0±3.3
UCIR [18] 93.9±0.3 4.4±0.9 92.0±1.0 5.5±2.6
PODNET [13] 92.0±0.3 5.2±0.4 89.2±0.5 6.0±1.2
DER [46] 93.0±0.5 6.4±1.4 91.0±1.7 5.6±1.9
LO2LN [6] 94.6±0.4 4.0±0.8 94.5±0.8 3.9±2.0
Ours 95.5±0.2 2.3±0.7 95.2±0.2 2.1±1.5

Table 1: Experimental results on CCH5000 under three dif-
ferent class orders. Numbers in bold denote the best results.

Method
3-2 (3 steps) 3-1 (5 steps)

Acc Fgt Acc Fgt

iCaRL [34] 76.3±3.1 20.1±12.6 68.3±2.8 25.3±4.5
UCIR [18] 79.1±1.4 16.8±9.5 74.1±3.1 16.3±9.1
PODNET [13] 75.6±2.2 20.5±2.1 66.3±2.3 17.3±4.8
DER [46] 76.2±2.8 24.8±10.9 66.9±4.5 24.7±4.8
LO2LN [6] 82.0±1.3 12.8±3.3 78.1±3.4 10.1±3.9
Ours 85.0±3.1 8.0±3.5 80.9±2.9 5.2±2.5

Table 2: Experimental results on HAM10000 under three dif-
ferent class orders. Numbers in bold denote the best results.

Method
3-1 (3 steps)

Acc Fgt

iCaRL [34] 64.4±3.3 17.8±4.6
UCIR [18] 70.2±7.6 15.4±11.4
PODNET [13] 63.3±5.4 22.8±4.9
DER [46] 58.7±9.4 30.2±6.9
LO2LN [6] 81.9±2.5 -0.2±0.8
Ours 82.8±2.8 -0.5±0.7

Table 3: Experimental results on EyePACS under three dif-
ferent class orders. Numbers in bold denote the best results.

use the same memory setting for every compared method, i.e., a
fixed number of 20 training examples per class are selected via the
herding selection strategy [44] and stored in memoryM. Further-
more, we conduct all experiments on three different class orders
and report the means ± standard deviations over three runs.

4.2 Performance Comparison
As shown in Tab. 1, 2, and 3, we report the experimental results
on three benchmark datasets: CCH5000, HAM10000, and EyePACS,
respectively.
CCH5000.We can see that our method achieves state-of-the-art
performance in terms of Acc and Fgt on both settings. Specifically,
our method surpasses LO2LN by 1.7% on the 4-2 setting and 1.8%
on the 4-1 setting in terms of Fgt, indicating the effectiveness of
our method in overcoming forgetting.
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Figure 3: Accuracy at each step on CCH5000, HAM10000, and EyePACS.
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Figure 4: Forgetting at each step on CCH5000, HAM10000, and EyePACS.

HAM10000. Different from the CCH5000 dataset, the HAM10000
dataset is a highly imbalanced dermoscopy dataset. Experimental
results demonstrate that our method significantly improves the
performance on the HAM10000 dataset, benefiting from the strong
ability to address class imbalance. To be more specific, compared
with the SOTA method, we improve the accuracy from 82.0% to
85.0% on the 3-2 setting. On the 3-1 setting, we achieve an overall
performance of 80.9%, which is 2.8% higher than LO2LN’s 78.1%.
Moreover, the average forgetting is also reduced by 4.8% (3-2 setting)
and 4.9% (3-1 setting).
EyePACS. Furthermore, we present a comparison of different meth-
ods on the challenging EyePACS dataset. Our proposed method
not only demonstrates significantly higher average accuracy but
also achieves lower average forgetting than the other baselines.
Notably, it surpasses LO2LN by 0.9% in terms of Acc and outper-
forms PODNet and DER by substantial margins of 19.5% and 24.1%,
respectively.

4.3 Analysis of Incremental Performance
Accuracy. As shown in Fig. 3, we display the average incremental
performance of each step for three datasets. According to these
curves, it is evident that the performances of all methods are similar
in the first step, but the baselines suffer from a significant drop as
the learning steps increase. In contrast, ourmethod effectively slows
down the drop, leading to an increasing gap between the baselines

L𝑐𝑏𝑐 L𝑑𝑚 Acc Fgt

% % 67.6±1.6 30.4±11.9
% ! 80.2±2.8 8.6±4.0
! % 83.6±2.9 13.1±6.0
! ! 85.0±3.1 8.0±3.5

Table 4: Performance contribution of each component on the
HAM10000 3-2 setting.

and our method over time. This demonstrates that our method
benefits class incremental learning in medical image classification
and outperforms prior works.
Forgetting. Fig. 4 depicts the average forgetting across each incre-
mental step for three datasets. The forgetting of most methods in-
creases rapidly as new classes arrive, while our method consistently
outperforms the SOTA methods, indicating improved resilience to
catastrophic forgetting.

4.4 Ablation Study
Impact of each component. In Tab. 4, we present an ablation

analysis on the HAM10000 3-2 setting to evaluate the effect of each
proposed component. The first row refers to the baseline, which is
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Figure 5: The t-SNE visualization of feature distributions of w/o margin loss (left), margin ranking loss (middle), and our
distribution margin loss (right) on the CCH5000 dataset.

Classification loss Acc Fgt

CE 80.2±2.8 8.6±4.0
Focal [25] 81.5±2.4 12.6±5.2
CB Focal [8] 82.9±3.1 14.5±6.3
logit-balanced (Eq. 4) 83.1±3.0 14.2±6.0
CIL-balanced (Eq. 7) 85.0±3.1 8.0±3.5

Table 5: Performance of different classification losses on the
HAM10000 3-2 setting.

Margin loss Acc Fgt

w/o margin loss 83.6±2.9 13.1±6.0
Margin ranking loss [18] 83.9±2.4 12.6±5.1
Distribution margin loss (Eq. 9) 85.0±3.1 8.0±3.5

Table 6: Performance of different margin losses on the
HAM10000 3-2 setting.

trained with the cross-entropy loss (CE) and the knowledge distilla-
tion loss L𝑘𝑑 . Firstly, we observe that the distribution margin loss
L𝑑𝑚 brings a significant contribution when applied alone, improv-
ing the performance by 12.6% in terms of Acc. Secondly, when we
replace CE with the CIL-balanced classification loss L𝑐𝑏𝑐 , the aver-
age accuracy is improved from 67.6% to a notable 83.6%. Finally, the
combination of L𝑑𝑚 and L𝑐𝑏𝑐 further improves the performance,
demonstrating the effect of both proposed components.
Effect of CIL-Balanced Classification Loss. We investigate the
impact of different classification losses on the HAM10000 3-2 setting
when combined with the knowledge distillation loss L𝑘𝑑 and our
distribution margin loss L𝑑𝑚 . As shown in Tab. 5, we present
results of using cross-entropy loss (CE), focal loss (Focal) [25], class-
balanced focal loss (CB Focal) [8], and our proposed methods (logit-
balanced and CIL-balanced). It can be observed that both of our

Method Acc Fgt

iCARL 68.3±2.8 25.3±4.5
+ L𝑑𝑚 69.2±3.1 +0.9 23.7±8.1 +1.6
+ L𝑐𝑏𝑐 70.8±2.8 +2.5 21.9±6.5 +3.4
+ L𝑐𝑏𝑐 + L𝑑𝑚 71.6±2.4 +3.3 19.6±7.3 +5.7

UCIR 74.1±3.1 16.3±9.1
+ L𝑑𝑚 75.7±4.6 +1.6 13.9±8.2 +2.4
+ L𝑐𝑏𝑐 76.4±3.4 +2.3 2.1±4.0 +14.2
+ L𝑐𝑏𝑐 + L𝑑𝑚 77.1±4.6 +3.0 1.5±6.0 +14.8

Table 7: Impact of integrating the CIL-balanced classification
loss L𝑐𝑏𝑐 and the distribution margin loss L𝑑𝑚 with existing
methods on the HAM1000 3-1 setting. The red highlights the
relative improvement.

proposed methods consistently outperform the other classification
loss objectives, indicating the effectiveness of them to address the
imbalance issue. Furthermore, the CIL-balanced classification loss
(Eq. 7) achieves an additional 1.9% improvement compared to the
logit-balanced classification loss (Eq. 4), benefiting from the scale
factor 𝛾 to strengthen the learning of old classes.
Effect of Distribution Margin Loss. To verify the effectiveness
of our distribution margin loss objectives, we conduct experiments
on the HAM10000 3-2 setting combined with the knowledge dis-
tillation loss L𝑘𝑑 and our CIL-balanced classification loss L𝑐𝑏𝑐 .
The results presented in Tab. 6 demonstrate that our distribution
margin loss brings significant improvements compared to cases
without the margin loss and with the margin ranking loss [18].
To further illustrate the advantages of our method, we present
t-SNE [39] visualizations of feature distributions with different mar-
gin loss objectives for the CCH5000 dataset, as shown in Fig. 5. In
the absence of margin loss, we observe large intra-class clusters
(blue rectangle) and significant inter-class overlap in feature space
(red circle). When employing the margin ranking loss, the issue of
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Figure 6: Sensitivity study of hyper-parameters. (a) 𝜆𝑑 and 𝜆𝑘
on the HAM10000 3-2 setting. (b) 𝛼 on three datasets.

overlap is mitigated to some extent (red circle) compared to the
method without margin loss. Finally, by optimizing our distribution
margin loss, we achieve a more pronounced separation between
the distributions of old and new classes (red circle), while simul-
taneously ensuring that the representations of old classes become
more compact (blue rectangle).
Ability to integrate with other existingmethods.Our proposed
methods can be easily integrated with other existing CIL methods.
To demonstrate this, we conduct experiments utilizing iCaRL [34]
and UCIR [18] on the HAM10000 3-1 setting. Specifically, we re-
place the classification loss in each baseline with our CIL-balanced
classification loss and incorporate our distribution margin loss. As
shown in Tab. 7, the accuracy (Acc) for both baselines can be im-
proved by about 3% with the integration of our methods. More
notably, our approaches effectively reduce forgetting (Fgt) by 5.7%
and 14.8% for iCaRL and UCIR, respectively.
Sensitivity study of hyper-parameters. In this paper, there are
three hyper-parameters during training: the weight of the distribu-
tion margin loss 𝜆𝑑 , the weight of the knowledge distillation loss
𝜆𝑘 , and the trade-off coefficient 𝛼 . We first conduct experiments
to explore the impacts of different 𝜆𝑑 and 𝜆𝑘 on the HAM10000
3-2 setting. As shown in Fig. 6a, we vary 𝜆𝑑 within the range of
{0.1, 0.2, 0.3, 0.4, 0.5}, and 𝜆𝑘 within the range of {0.1, 0.25, 0.5, 0.75,
1.0}, resulting in a total of 25 compared results. From the results,
we consistently observe satisfactory performance from our model,
demonstrating its robustness to the selection of 𝜆𝑑 and 𝜆𝑘 .

To investigate the impact of different values of 𝛼 on addressing
the imbalance between the old and new classes, we evaluate the
accuracy by varying 𝛼 from {0.1, 0.3, 0.5, 0.7, 0.9} on three bench-
mark datasets. As shown in Fig. 6b, the results indicate that the
accuracy gradually improves as 𝛼 grows larger initially, while it
starts to decline when 𝛼 is close to 1. Since the data distribution dif-
fers across datasets, the selection of the trade-off coefficient 𝛼 also
varies. Specifically, the optimal values of 𝛼 for the three datasets
are 0.7, 0.5, and 0.3, respectively.
Longer incremental learning. In class incremental learning, a
key challenge is catastrophic forgetting, which becomes more pro-
nounced as the number of learning classes increases [12, 18, 34].
To quantify the robustness of our method in overcoming cata-
strophic forgetting, we evaluate it on two longer-step protocols:
50-10 (6 steps) and 50-5 (11 steps), employing the more challenging
CIFAR100 dataset. Following the experimental protocol outlined

Method
50-10 (6 steps) 50-5 (11 steps)
Conv LT Conv LT

UCIR [18] 61.2 42.7 58.7 42.2
PODNET [13] 63.2 44.1 61.2 44.0
LWS [26] 64.6 44.4 62.6 44.4
Ours 65.8 48.2 63.9 47.5

Table 8: Average accuracy on CIFAR100 in the conventional
(Conv) and long-tailed (LT) scenarios. Numbers in bold de-
note the best results.
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Figure 7: Incremental accuracy on CIFAR100 50-5 setting for
both conventional (Conv) and long-tailed (LT) scenarios.

in [26], we conduct experiments under both conventional (Conv)
and long-tail (LT) scenarios. In the conventional scenario, each
class has 500 training samples for training. Conversely, the long-
tailed scenario follows an exponential decay in sample sizes across
classes, where the ratio between the least and the most frequent
class is 0.01. As illustrated in Tab. 8, our method achieves superior
results in all settings. Specifically, we observe a more significant
improvement in the long-tail scenario, further validating the effec-
tiveness of our method in addressing the class imbalance problem
in class incremental learning. Furthermore, we present the dynamic
performance changes during the incremental learning process in
Fig. 7. It is evident that with more learning steps, the gap between
the baselines and our method widens, and our method’s perfor-
mance remains superior across different scenarios (conventional
and long-tailed) throughout most of the learning steps.

5 CONCLUSION
In this paper, we propose two simple yet effective plug-in loss func-
tions for class incremental learning in medical image classification.
First, to address the challenge of classifier bias caused by class im-
balance, we introduce a CIL-balanced classification loss via logit
adjustment. Second, we propose a novel distribution margin loss
that aims to enforce inter-class discrepancy and intra-class com-
pactness simultaneously. Our extensive experimental evaluation
demonstrates the state-of-the-art performance of our method across
various scenarios on medical image datasets: CCH5000, HAM10000,
and EyePACS.
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