Predictive Pipelined Decoding:
A compute-Latency Trade-off for Exact LLM Decoding

Gibbeum Lee* Jaewoong Cho Dimitris Papailiopoulos Kangwook Lee

TTTTTTTTTTTT it
tmilr KRAFTON (1) wisconsin

Motivation

 To improve inference-time efficiency of transformer, many methods are proposed.
* Model pruning techniques [1-8]
 Knowledge distillation [9-10]
e Quantization procedure [11-18]
* Early-exiting algorithm [19-20]

Motivation

 To improve inference-time efficiency of transformer, many methods are proposed.
* Model pruning techniques [1-8]
 Knowledge distillation [9-10]
e Quantization procedure [11-18]
* Early-exiting algorithm [19-20]

However, It does not ensure the exact same output as the original decoding.

Motivation

 To improve inference-time efficiency of transformer, many methods are proposed.
* Model pruning techniques [1-8]
 Knowledge distillation [9-10]
e Quantization procedure [11-18]
* Early-exiting algorithm [19-20]

However, It does not ensure the exact same output as the original decoding.

We propose Predictive Pipelined Decoding (PPD) to reduce latency while
preserving decoding results.

Early-exiting algorithm

* Inspired by early-exiting algorithm [19]
* Decide when to stop computing based on the confidence of predictions

8 Guaranteed §, € textual or risk
ﬂE I? hit consistency of the full sequence
_wiEarly Exit" .
/ i 4 Example of “state propagation”
! (Dashed arrows show the hidden- Yeun OF Ziest
User-defined 6, e global states of previous steps‘L.Jsed to w
tolerance constraints guide Compute Iayer5atposmon6) put \
the local exiting decisions e Y P
_____________ ; | Layer4 | || Layer4 | !
— o — L 7y
Grant— | T E ”'. » 5 S"/ | Layer3 | || Layer3 | N
10T / A L)
‘/’ '/ [Lay$r2 | 11 Lav$r2 J "X [Lay$r2 |11 Lay$r2 | +ee > Yearly
Llaver1 | [LayerT J || Layer1 | [Layer1 | |l Layer1 J | [Layer1 | || Layer1 |
! ¢ | 1 1 |1 |

<S>

Predictive Pipelined Decoding

Predict future top-k tokens based on specific transformer layer outputs

I : Transformer layers for main process

~
1st

She —

Predictive Pipelined Decoding

Predict future top-k tokens based on specific transformer layer outputs
* with additional compute resources
* by parallelizing token decoding process

loves

?

I : Transformer layers for main process

(B)

|| : Transformer layers for sub-process

- Attention

%
?
t s t hates
She — loves

went

Predictive Pipelined Decoding

Predict future top-k tokens based on specific transformer layer outputs
* with additional compute resources
* by parallelizing token decoding process

Io;es her I : Transformer layers for main process
(8) || : Transformer layers for sub-process
: Attention
. T
% 4
t ' f hates ' f her
She — loves N cat

went short

Predictive Pipelined Decoding

* |nitiate three sub-processes, predict next tokens at intermediate layer d/2
* |atency reduction (:=1d) compared to conventional decoding

Q ~ O:.5d® d o 1..5d Q:d 2.:5d 3:d . Unit time

PPD >he - dog B : main process
Top-3 4 | z
predictions : sub-processes

loves —# T : sending the result

hate —i to the main process

. [short —>
w4 cat —

her — ! _

Conventional Decoding

She

Theoretical Analysis

Assumption: i.i.d. matching events w/ the probability that
the early prediction matches the final ouptut, denoted by Pcorrect

When PPD makes an early prediction at the d-th layer out of d
for generating ¢ tokens :

Total latency: d/ — (d — d)(£ — 1)pcorrect
saving

Total compute units: d/ — (d — d) (¢ — 1)Peorrect + k(d — d)£

Simulations

The result of match rate Pcorrect

Layers

dataset k trained 10 20 30 35 37
1 N 5.88% | 38.90% | 62.90% 79.77% 88.01%
Y 15.45% | 52.81% | 72.34% 87.68% 91.67%
SQUAD 3 N 9.25% | 54.04% | 77.92% 92.64% 97.67%
Y 23.48% | 68.37% | 87.49% 97.33% 98.91%
5 N 11.04% | 60.15% | 83.84% 95.85% 99.08%
Y 27.90% | 74.15% | 92.29% 98.81% 99.62%
1 N 2.40% | 21.63% | 39.69% 68.64% 78.15%
Y 11.06% | 29.17% | 48.20% 74.84% 82.69%
WMT 3 N 4.38% | 31.69% | 61.71% 85.03% 93.53%
Y 14.83% | 41.14% | 68.50% 89.84% 95.48%
5 N 5.57% | 37.13% | 68.84% 89.54% 96.41%
Y 16.82% | 47.84% | 75.46% 93.36% 97.67%
1 N 7.23% | 32.08% | 53.07% 68.90% 78.82%
Y 19.02% | 43.65% | 61.45% 78.46% 84.42%
N 12.84% | 46.36% | 68.14% 85.07% 93.81%
CNN/DM | 3 Y 27.57% | 60.60% | 78.55% 93.07% 96.62%
5 N 15.21% | 52.51% | 74.22% 90.04% 96.88%
Y 31.33% | 67.33% | 84.83% 96.06% 98.40%

Model: Vicuna-13B

Simulations

Trade-off curve of compute resources per token and latency

1.00 ¢ @ Conventional decoding |
_ k=1 k=3 =5 SQUAD
>O'95 A SQUAD + trained
0 0.90; * (1.561, 0.892) wMT
C ® WMT + trained
% 0.85- 0 i CNN/DM |
© : 1 B CNN/DM + trained
0.80 :
3 m °
S 0.75- ‘-
)
nqL_) 0.70- m
0.65- 1 | ..
34% latency reduction A (4.973,0.629)
0.60 : 3.2x compute resources e
1 2 3 4 5 6

Average compute resources per time unit

Implementation

PPD can operate faster compared to the original greedy decoding.

CNN/DM SQUAD 1.1
Method k| Deorrect Latency | Throughput T | Peorrect Latency | Throughput 7
greedy - 18.171 7.044 - 14.994 8.537
greedy (w/ PPD) 1 | 25.72 % 17.019 7.921 30.97 % 13.711 9.336
greedy (w/ PPD) 3 | 41.99 % 16.685 7.671 47.24 % 13.712 9.335

Model: LLaMA2-13B

Summary

» We propose PPD aimed at reducing decoding latency, without compromising the
original decoding outcomes

» We identify the efficacy of PPD by theoretical analysis and implementation.

» However, we acknowledge increased computational requirements despite the
potential for latency improvements.

Reference

[1] Angela Fan et al. Reducing transformer depth on demand with structured dropout. In International Conference on
Learning Representations, 2019.

[2] Trevor Gale et al. The state of sparsity in deep neural networks. arXiv preprint arXiv:1902.09574, 2019.

[3] Paul Michel et al. Are sixteen heads really better than one? Advances in neural information processing systems, 32,
20109.

[4] Elena Voita et al. Analyzing multi-head selfattention: Specialized heads do the heavy lifting, the rest can be pruned.
arXiv preprint arXiv:1905.09418, 2019.

[5] Victor Sanh et al. Movement pruning: Adaptive sparsity by fine-tuning. Advances in Neural Information Processing
Systems, 33:20378-20389, 2020.

[6] Eldar Kurtic et al. The optimal bert surgeon: Scalable and accurate second-order pruning for large language models. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 4163-4181, 2022.

[7] Woosuk Kwon et al. A fast post-training pruning framework for transformers. Advances in Neural Information
Processing Systems, 35:24101-24116, 2022.

[8] Daniel Campos et al. To asymmetry and beyond: Structured pruning of sequence to sequence models for improved
inference efficiency. Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing
(SustaiNLP), pp. 91-109, Toronto, Canada (Hybrid), July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.sustainlp-1.6. URL https://aclanthology.org/2023.sustainlp-1.6.

Reference

[9] Xiaoqi Jiao et al. TinyBERT: Distilling BERT for natural language understanding. In Trevor Cohn, Yulan He, and Yang Liu
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 4163—4174, Online, November 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.372. URL
https://aclanthology.org/2020.findings-emnlp.372.

[10] Victor SANH et al. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter.

[11] Ofir Zafrir et al. Q8bert: Quantized 8bit bert. In 2019 Fifth Workshop on Energy Efficient Machine Learning and
Cognitive Computing-NeurlPS Edition (EMC2- NIPS), pp. 36—39. IEEE, 20109.

[12] Sheng Shen et al. Q-bert: Hessian based ultra low precision quantization of bert. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 8815-8821, 2020.

[13] Ali Hadi Zadeh et al. Gobo: Quantizing attention-based nlp models for low latency and energy efficient inference. In
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 811-824. IEEE, 2020.

[14] Sehoon Kim et al. I-bert: Integer-only bert quantization. In International conference on machine learning, pp. 5506—
5518. PMLR, 2021.

[15] Tim Dettmers et al. Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale. Advances in Neural Information
Processing Systems, 35:30318-30332, 2022.

https://aclanthology.org/2020.findings-emnlp.372

Reference

[16] Xiaoxia Wu et al. Xtc: Extreme compression for pre-trained transformers made simple and efficient. Advances in
Neural Information Processing Systems, 35:3217-3231, 2022.

[17] Zhewei Yao et al. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168-27183, 2022.

[18] Elias Frantar et al. OPTQ: Accurate quantization for generative pre-trained transformers. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=tcbBPnfwxS.

[19] Tal Schuster et al. Confident adaptive language modeling. Advances in Neural Information Processing Systems, 35:
17456-17472, 2022.

[20] Shengkun Tang et al. You need multiple exiting: Dynamic early exiting for accelerating unified vision language model.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781-10791, 2023.

Thank you for listening!

TTTTTTTTTTTT @i@
tmir KRAFTON (1) wisconsin

