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A compute-Latency Trade-off for Exact LLM Decoding
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Motivation

 To improve inference-time efficiency of transformer, many methods are proposed.
* Model pruning techniques [1-8]
 Knowledge distillation [9-10]
e Quantization procedure [11-18]
* Early-exiting algorithm [19-20]

However, It does not ensure the exact same output as the original decoding.

We propose Predictive Pipelined Decoding (PPD) to reduce latency while
preserving decoding results.



Early-exiting algorithm

* Inspired by early-exiting algorithm [19]
* Decide when to stop computing based on the confidence of predictions
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Predictive Pipelined Decoding

Predict future top-k tokens based on specific transformer layer outputs
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Predict future top-k tokens based on specific transformer layer outputs
* with additional compute resources
* by parallelizing token decoding process
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Predictive Pipelined Decoding

Predict future top-k tokens based on specific transformer layer outputs
* with additional compute resources
* by parallelizing token decoding process
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Predictive Pipelined Decoding

* |nitiate three sub-processes, predict next tokens at intermediate layer d/2
* |atency reduction (:=1d) compared to conventional decoding
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Theoretical Analysis

Assumption: i.i.d. matching events w/ the probability that
the early prediction matches the final ouptut, denoted by Pcorrect

When PPD makes an early prediction at the d-th layer out of d
for generating ¢ tokens :

Total latency: d/ — (d — d)(£ — 1)pcorrect
saving

Total compute units: d/ — (d — d) (¢ — 1)Peorrect + k(d — d)£



Simulations

The result of match rate Pcorrect

Layers

dataset k trained 10 20 30 35 37
1 N 5.88% | 38.90% | 62.90% 79.77% 88.01%
Y 15.45% | 52.81% | 72.34% 87.68% 91.67%
SQUAD 3 N 9.25% | 54.04% | 77.92% 92.64% 97.67%
Y 23.48% | 68.37% | 87.49% 97.33% 98.91%
5 N 11.04% | 60.15% | 83.84% 95.85% 99.08%
Y 27.90% | 74.15% | 92.29% 98.81% 99.62%
1 N 2.40% | 21.63% | 39.69% 68.64% 78.15%
Y 11.06% | 29.17% | 48.20% 74.84% 82.69%
WMT 3 N 4.38% | 31.69% | 61.71% 85.03% 93.53%
Y 14.83% | 41.14% | 68.50% 89.84% 95.48%
5 N 5.57% | 37.13% | 68.84% 89.54% 96.41%
Y 16.82% | 47.84% | 75.46% 93.36% 97.67%
1 N 7.23% | 32.08% | 53.07% 68.90% 78.82%
Y 19.02% | 43.65% | 61.45% 78.46% 84.42%
N 12.84% | 46.36% | 68.14% 85.07% 93.81%
CNN/DM | 3 Y 27.57% | 60.60% | 78.55% 93.07% 96.62%
5 N 15.21% | 52.51% | 74.22% 90.04% 96.88%
Y 31.33% | 67.33% | 84.83% 96.06% 98.40%

Model: Vicuna-13B



Simulations

Trade-off curve of compute resources per token and latency
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Implementation

PPD can operate faster compared to the original greedy decoding.

CNN/DM SQUAD 1.1
Method k| Deorrect Latency | Throughput T | Peorrect Latency | Throughput 7
greedy - 18.171 7.044 - 14.994 8.537
greedy (w/ PPD) 1 | 25.72 % 17.019 7.921 30.97 % 13.711 9.336
greedy (w/ PPD) 3 | 41.99 % 16.685 7.671 47.24 % 13.712 9.335

Model: LLaMA2-13B



Summary

» We propose PPD aimed at reducing decoding latency, without compromising the
original decoding outcomes

» We identify the efficacy of PPD by theoretical analysis and implementation.

» However, we acknowledge increased computational requirements despite the
potential for latency improvements.
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