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A compute-Latency Trade-off for Exact LLM Decoding
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• Model pruning techniques [1-8]
• Knowledge distillation [9-10]
• Quantization procedure [11-18]
• Early-exiting algorithm [19-20]

However, It does not ensure the exact same output as the original decoding.

We propose Predictive Pipelined Decoding (PPD) to reduce latency while 
preserving decoding results.



Early-exiting algorithm
• Inspired by early-exiting algorithm [19]
• Decide when to stop computing based on the confidence of predictions
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Predictive Pipelined Decoding

Conventional Decoding
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• Initiate three sub-processes, predict next tokens at intermediate layer 
• latency reduction (:=     ) compared to conventional decoding
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Theoretical Analysis
Assumption: i.i.d. matching events w/ the probability that 
the early prediction matches the final ouptut, denoted by pcorrect

When PPD makes an early prediction at the   -th layer out of 𝑑 
for generating    tokens : 

Total latency:

Total compute units:

saving
dℓ− (d− d̄)(ℓ− 1)pcorrect

dℓ− (d− d̄)(ℓ− 1)pcorrect + k(d− d̄)ℓ

ℓ

d̄



Simulations
The result of match rate p̂correct

Model: Vicuna-13B



Simulations
Trade-off curve of compute resources per token and latency



Implementation

PPD can operate faster compared to the original greedy decoding.

Model: LLaMA2-13B



Summary
Ø We propose PPD aimed at reducing decoding latency, without compromising the 

original decoding outcomes
Ø We identify the efficacy of PPD by theoretical analysis and implementation.
Ø However, we acknowledge increased computational requirements despite the 

potential for latency improvements.
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