
Published as a conference paper at ICLR 2025

ROBUST FUNCTION-CALLING FOR ON-DEVICE
LANGUAGE MODELS VIA FUNCTION MASKING

Qiqiang Lin1∗ Muning Wen2∗ Qiuying Peng1∗† Guanyu Nie3‡ Junwei Liao2

Jun Wang1 Xiaoyun Mo1 Jiamu Zhou1 Cheng Cheng1 Yin Zhao1 Jun Wang1†

Weinan Zhang2†

1OPPO Research Institute 2Shanghai Jiao Tong University 3Iowa State University
{pengqiuying,wangjun7}@oppo.com
wnzhang@sjtu.edu.cn

ABSTRACT

Large language models have demonstrated impressive value in performing as au-
tonomous agents when equipped with external tools and API calls. Nonethe-
less, effectively harnessing their potential for executing complex tasks crucially
relies on enhancements in their function-calling capabilities. This paper identi-
fies a critical gap in existing function-calling models, where performance varies
significantly across benchmarks, often due to being misled by specific naming
conventions. To address such an issue, we introduce Hammer, a novel family of
foundation models specifically engineered for on-device function calling. Ham-
mer employs an augmented dataset that enhances models’ sensitivity to irrelevant
functions and incorporates function masking techniques to minimize misleading.
Our empirical evaluations reveal that Hammer not only outperforms larger models
but also demonstrates robust generalization across diverse benchmarks, achiev-
ing state-of-the-art results. Our open-source contributions include a specialized
dataset for irrelevance detection, a tuning framework for enhanced generalization,
and the Hammer models, establishing a new standard for function-calling perfor-
mance.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable proficiency in addressing a wide
range of natural language processing tasks (Chowdhary & Chowdhary, 2020), as well as in handling
long-context reasoning and complex planning (Wen et al., 2024). The use of LLMs as autonomous
agents to assist humans in completing intricate tasks is increasingly in demand and is now more
feasible from a technical standpoint than ever before (Gunter et al., 2024). To fully capitalize on
the potential of LLMs as autonomous agents, it is crucial for these models to accurately identify
and utilize external tools or application programming interfaces (APIs), thereby enabling them to
effectively execute complex tasks (Abdelaziz et al., 2024; Patil et al., 2023). Central to this capability
is the model’s ability to select appropriate functions from a given set of options, provide accurate
input arguments, and ultimately fulfill the user’s intent. Furthermore, in scenarios where no suitable
function exists within the available options, the model must have the ability to decline the task,
rather than making incorrect attempts (Patil et al., 2023). Recent advancements have introduced
a variety of relevant datasets and benchmarks (Li et al., 2023; Wu et al., 2024), along with the
release of powerful models specifically designed for function-calling tasks (Zhang et al., 2024; Patil
et al., 2023; Abdelaziz et al., 2024). Some models even simulate real-world scenarios, such as

∗Equal Contribution.
†Corresponding Author.
‡Work conducted during an internship at OPPO Research Institute.

1

Published as a conference paper at ICLR 2025

Table 1: Inconsistent performance of existing function-calling models across different benchmarks.
For example, although xLAM-7B-fc achieved the best performance on most of the benchmarks, its
performance significantly declined on the other two, resulting in the lowest average score overall.

Models BFCL API-Bank SealTool Tool-Alpaca Nexus Raven Avg.

Gorilla-OpenFunctions-v2-7B (FC) 79.1 62.5 91.1 51.3 68.4 70.48
Granite-20B-FunctionCalling (FC) 76.63 68.5 92.7 58.0 75.1 74.186

xLAM-7B-fc (FC) 79.41 72.45 76.9 59.0 57.5 69.052

ticketing systems, to mimic more realistic use cases (Yao et al., 2024; Chen et al., 2024a). Despite
these significant strides in the development of function-calling models, our investigation reveals a
critical gap: many existing models demonstrate considerable performance variations across different
benchmarks. As illustrated in Table 1, this inconsistency underscores the need for further research
into the robustness and generalization of function-calling models across diverse and practical task
environments.

Achieving such stability across diverse benchmarks is crucial, as it indicates the model’s capability
to generalize effectively to real-world applications (Yao et al., 2022; Zhang et al., 2025). Driven
by this objective, we conduct a thorough analysis of the instability observed in existing models
when executing function-calling tasks. Our findings highlight that one of the primary factors influ-
encing generalization performance across benchmarks is the misleading nature of specific naming
conventions for functions and parameters. Consequently, existing models tend to perform well on
benchmarks that closely align with the naming conventions in the training data but suffer notable
performance declines when encountering benchmarks with differing naming styles. This problem is
examined in detail in Section 3, which motivates us to propose the function-masking technique.

In this paper, we present the Hammer, a family of lightweight models specifically fine-tuned for
on-device function-calling tasks. This work is underpinned by a carefully designed irrelevance-
augmented dataset and the use of function masking techniques, both aimed at enhancing the gener-
alization capabilities of the models. To improve the models’ ability to determine whether the user’s
intent aligns with the available function calls, we augment the xLAM-function-calling-60k dataset
(Liu et al., 2024b) with an additional 7,500 instances specifically tailored for irrelevance detection.
Furthermore, we introduce a function masking technique, which shifts the models’ focus from func-
tion and parameter names to their descriptions, effectively reducing potential misinterpretations.

Following these advancements, Hammer demonstrates robust function-calling performance and
strong generalization across a variety of benchmarks. Despite containing only 7 billion param-
eters, Hammer outperforms many larger open-source models and competes with top-tier closed-
source models, such as GPT-4 (Achiam et al., 2023) and GPT-4o (Islam & Moushi, 2024), on the
Berkeley Function Calling Leaderboard (BFCL) v2 (Yan et al., 2024). We benchmark Hammer
and other models, including Salesforce’s xLAM series (Zhang et al., 2024) and IBM’s Granite-20B-
FunctionCalling (Abdelaziz et al., 2024), across a range of representative datasets, such as API-Bank
(Li et al., 2023), Tool-Alpaca (Tang et al., 2023), Seal-Tools (Wu et al., 2024), and Nexus Raven
API Evaluation (Srinivasan et al., 2023). The results consistently highlight Hammer’s exceptional
generalization capabilities. The key contributions of our work could be summarized as follows:

• Tuning Framework: A straightforward yet effective framework evolving function mask-
ing to tune function-calling models toward robust generalization capabilities.

• Augmented Dataset: A specialized dataset with 7,500 instances designed to enhance lan-
guage models’ awareness of irrelevance between candidate functions and user intent.

• Consistent SOTA Models: Hammer, a family of well-trained function-calling models that
demonstrate state-of-the-art performance across multiple benchmarks.1

2 RELATED WORKS

LLMs as Agents for Function-Calling. Recent research has shown significant interest in leveraging
LLMs as autonomous agents to perform complex tasks through function calling and tool usage
(Erdogan et al., 2024a; Chen et al., 2024b). IBM Granite-20B-FunctionCalling model (Abdelaziz
et al., 2024) proposes a multi-task learning framework trained on seven core function-calling tasks,
demonstrating superior performance over other open models on the BFCL v2 benchmark. APIGen

2

Published as a conference paper at ICLR 2025

Table 2: Performance of different models on Berkeley Function-Calling Leaderboard (as of date
09/20/2024). The rank is based on the overall accuracy, which is a weighted average of different
evaluation categories. “FC” stands for function-calling mode in contrast to using a customized
“Prompt” to extract the function calls. For the complete list, refer to Table 10 in Appendix E.

Rank Model Overall Acc AST Summary Exec. Summary Irrelevance Relevance

1 GPT-4-0125-Preview (Prompt) 85.79 85.50 89.25 61.35 97.56
2 GPT-4-1106-Preview (Prompt) 85.00 86.31 87.38 64.98 90.24
3 GPT-4-0613 (Prompt) 84.74 84.66 87.57 75.57 82.93

Hammer-7B (FC) 83.92 78.70 89.72 72.87 92.68
4 GPT-4-turbo-2024-04-09 (Prompt) 83.89 85.41 88.13 61.82 82.93
5 GPT-4o-mini-2024-07-18 (Prompt) 83.35 80.52 87.95 79.20 80.49
7 Functionary-Medium-v3.1-70B (FC) 82.55 81.06 89.32 73.23 70.73

13 Functionary-Small-v3.1-8B (FC) 80.21 78.64 83.45 68.36 85.37
16 xLAM-7B-fc (FC) 79.41 72.77 85.68 79.76 80.49
19 Gorilla-OpenFunctions-v2-7B (FC) 79.10 73.18 84.97 73.13 85.37
21 Functionary-Small-v3.2-8B (FC) 78.96 76.16 83.04 72.32 80.49
25 FireFunction-v2-70B (FC) 77.45 74.20 84.23 52.94 87.80
26 Granite-20B-FunctionCalling (FC) 76.63 66.73 82.97 72.43 95.12

Hammer-4B (FC) 76.05 69.59 80.82 68.66 90.24
31 xLAM-1.3B-fc (FC) 74.90 67.37 80.80 61.21 95.12
32 Hermes-2-Pro-Llama-3-70B (FC) 74.78 72.09 81.29 53.80 80.49

Hammer-1.5B (FC) 73.04 65.53 75.86 72.18 92.68
40 Command-R-Plus (FC) 72.04 66.32 77.41 52.75 92.68
45 Hermes-2-Pro-Llama-3-8B (FC) 66.18 64.18 74.05 55.16 53.66
46 Hermes-2-Pro-Mistral-7B (FC) 65.44 60.82 74.25 38.55 75.61
47 Hermes-2-Theta-Llama-3-8B (FC) 64.83 61.08 72.54 62.66 51.22
57 FireFunction-v1-46B (FC) 48.11 38.16 41.20 68.55 95.12

Table 3: Performance comparison of different models on several academic benchmarks. The rank
is based on the average F1 score on “Func. + Args”, which indicates both function selection and
parameter filling are accurate. For intermediate details see Table 11 in Appendix E.

Academic Benchmarks (F1 Func. + Args)

Model API-Bank
L-1

API-Bank
L-2 Tool-Alpaca Seal-Tools

(Single-Tool)
Nexus
Raven

F1
Average

GPT-4-0613 (Prompt) 84.78 56.98 66.67 93.95 91.60 78.79
GPT-4o-mini (Prompt) 89.28 67.52 54.69 86.00 84.59 76.42

Hammer-7B (FC) 85.79 66.40 59.86 91.66 77.35 76.21
Granite-20B-FunctionCalling (FC) 77.82 59.15 58.00 92.70 75.14 72.56

Hammer-4B (FC) 81.46 61.01 56.96 92.45 64.89 71.35
xLAM-7B-fc (FC) 80.69 64.24 58.96 76.87 57.50 67.65

Gorilla-OpenFunctions-v2-7B (FC) 70.34 54.69 51.26 91.11 68.41 67.16
xLAM-1.3B-fc (FC) 83.70 64.32 50.58 80.43 54.80 66.77
Hammer-1.5B (FC) 72.30 59.71 53.48 88.65 56.88 66.20

Qwen2-7B-Instruct (Prompt) 60.62 49.50 48.11 77.51 63.47 59.84
Qwen2-1.5B-Instruct (Prompt) 63.55 33.62 45.25 75.49 45.46 52.67

Qwen1.5-4B-Chat (Prompt) 59.78 38.48 16.98 62.32 33.70 42.25

adopts an automated pipeline for generating high-quality, diverse function-calling datasets, building
a 7B-parameter model to surpass GPT-4’s performance (Liu et al., 2024b). Similarly, ToolACE
(Liu et al., 2024a) generates diverse tool-learning datasets, allowing its 8B-parameter ToolACE-
8B model to achieve state-of-the-art results on the BFCL v2, rivaling the latest GPT-4 models.
Further studies explore various dimensions of function calling, such as improving efficiency through
parallel function calls (Zhang et al., 2016), identifying vulnerabilities in function calling processes
(Srinivasan et al., 2023), and developing benchmarks to evaluate LLMs’ ability to handle diverse
function calls (Kim et al., 2024). Collectively, this body of work emphasizes the role of function
calling in enabling LLMs to act autonomously and integrate external tools and resources effectively.

Datasets and Benchmarks for Function-Calling Evaluation. Substantial advancements have been
made in developing datasets and benchmarks to assess the function-calling capabilities of LLMs.
API-BLEND (Basu et al., 2024) introduces a large corpus for training and systematically testing
tool-augmented LLMs. It includes real-world scenarios involving API-related tasks such as API/tool
detection, slot filling, and sequencing of detected APIs. API-Bank (Li et al., 2023) provides a com-
prehensive dataset featuring 2,138 distinct APIs and 1,888 dialogues with 4,149 API calls. This

1The source code is available at https://github.com/MadeAgents/Hammer, while the aug-
mented dataset and models can be accessed at https://huggingface.co/MadeAgents. The latest
release, the Hammer 2.1 models, significantly improves multi-turn and multi-step function calling capabilities.

3

https://github.com/MadeAgents/Hammer
https://huggingface.co/MadeAgents

Published as a conference paper at ICLR 2025

Figure 1: Demonstration of a simple function-calling process.

dataset is designed to evaluate LLMs’ tool-utilization capabilities, including planning, retrieval, and
API-calling proficiency. APIGen (Liu et al., 2024b) employs an automated and rigorous data gener-
ation process to create a diverse dataset that includes various query styles, such as parallel function
calling, and undergoes a multi-stage verification process to ensure data accuracy and relevance.
Seal-Tools (Wu et al., 2024) introduces a large-scale, self-instruct API-like tool-learning dataset that
incorporates practical application scenarios and nested tool calls.

Tuning Techniques for Function-Calling Models. IBM’s Granite-20B-FunctionCalling model is
trained using a multi-task learning approach, which enables language models to develop function-
calling capabilities by mastering a range of granular tasks (Abdelaziz et al., 2024). TinyAgent
focuses on equipping small language models (SLMs) with complex reasoning and function-calling
abilities, allowing for secure and private deployment at the edge. It employs LoRA fine-tuning,
incorporates negative samples, and uses in-context examples selected via retrieval-augmented gen-
eration (RAG) (Gao et al., 2023) to enhance function selection and orchestration accuracy through
directed acyclic graph (DAG) comparison (Erdogan et al., 2024b). The xLAM series utilizes a super-
vised fine-tuning (SFT) approach with direct preference optimization (DPO) (Rafailov et al., 2024)
alignment, integrating data parallelism, LoRA, and a cosine learning rate scheduler to optimize per-
formance across various categories of function-calling agents (Zhang et al., 2024).

3 PROBLEM STATEMENT AND ANALYSIS

This section aims to introduce and analyze the common challenges that function-calling models
encounter in practical applications. Through this analysis, we seek to identify methods to enhance
models’ stability and generalization capabilities in real-world scenarios.

Before delving into the specific issues, we present a typical function-calling process, illustrated in
Figure 1. In this process, each candidate encompasses several components, including the function
name, parameter names, default values, and descriptions. The objective of the model is to output
complete and accurate function-calling code that can accomplish users’ intent or, alternatively, out-
put an empty list to indicate that none of the given candidates can satisfy the user’s requirements
(Yan et al., 2024). Achieving this goal hinges on the model’s ability to accurately align the user’s
intent with the functionality of the candidate functions, i.e., selecting the appropriate function, and
its capacity to comprehend the usage of each parameter, i.e., populating the function with the correct
arguments. However, certain recurring issues have been observed in practice.

3.1 MISLEADINGNESS BY FUNCTION NAME AND PARAMETER NAME

As illustrated in Figure 1, the definition of a function typically comprises the function name, param-
eter names, and descriptions. The format of function and parameter names is often quite compact,
e.g., cal sum or max value, and influenced by the designer’s personal style and preferences. When
a model attempts to infer the function’s purpose solely from the function name, this compactness
can lead to ambiguities, misguiding the model’s selection, particularly in the presence of complex
functionalities (Gunter, 1992). For instance, a function named parse data might be intended for
parsing JSON data, but the same name could refer to parsing CSV files in a different context, lead-
ing to potential misinterpretations. Similarly, when deducing the usage of parameters based on their
names, models may be misled by the historical usage of similarly named parameters in the training
dataset. More specifically, these misleading scenarios can be categorized into several cases.

Misled by Function Names. When a user intent aligns closely with a function name present in
the training labels, the model may incorrectly prioritize that function from the candidate list during

4

Published as a conference paper at ICLR 2025

testing, even if its functionality diverges significantly from the intended operation. For example,
if a function named fetch data is included in the training pairs for retrieving user data from a
database, but in the testing set, a function with the same name retrieves data from an external API,
the model may erroneously select it based solely on the name.

Misled by Parameter Names. When the functionality and descriptions of parameters change within
the testing environment, the model frequently clings to its original patterns of parameter usage,
resulting in incorrect function calls. For instance, if a function’s parameter timeout is expected to
be an integer representing seconds in one context, but in another context, it is defined as a string in
the format “10s”, the model’s reliance on the original integer format may lead to erroneous calls.

Disturbed by Naming Preferences. The model’s robustness can diminish when the naming con-
ventions of functions or parameters in the testing environment diverge from those in the training
dataset. Variations, such as discrepancies between CamelCase and snake case may adversely
lower the model’s confidence, as an on-device lightweight model may struggle to generalize across
different naming styles.

3.2 THE IMPACT OF EXCESSIVE FOCUS ON THE NAMING

To investigate the extent to which existing models rely on function and parameter names and cor-
responding impact, we conducted a case study using the xLAM-1B-fc model on the Seal-Tools
benchmark. Specifically, we masked the function and parameter names in the test set, i.e., replaced
them with random strings, and observed how the model’s performance changed. As shown in Fig-
ure 2, after masking the function and parameter names, even though the descriptions contained
all necessary information about the function’s purpose and usage, the performance of xLAM-1B-
fc dropped significantly. This result confirms the model’s overreliance on function and parameter
names, highlighting the potential risks this behavior may pose in real-world applications.

xLAM-1.3B-fc Hammer-1.5B
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

F1
 S

co
re

Func. Name

no mask
func name mask
arg name mask
all mask

xLAM-1.3B-fc Hammer-1.5B
0.60

0.65

0.70

0.75

0.80

0.85

0.90

F1
 S

co
re

Func. Name + Args

no mask
func name mask
arg name mask
all mask

Figure 2: Case studies examining the performance degradation when function names and parameter
names are obfuscated during test time. For a detailed analysis of the error cases, see Appendix B.
In contrast, Figure 2 also presents the performance of our Hammer model under the same setting.
Hammer exhibited a much smaller performance drop, demonstrating its robustness when faced with
arbitrary function and parameter naming patterns. This resilience suggests that Hammer relies more
heavily on the function descriptions rather than compact, potentially ambiguous names. In Section 4,
we will provide a detailed explanation of Hammer’s training methodology.

4 METHODOLOGY

In this section, we describe our detailed approach and augmented dataset to fine-tune the Hammers,
a series of robust language models designed for function-calling.

4.1 FUNCTION MASKING

In light of the analysis in Section 3, a direct approach to mitigate these issues involves minimizing
the interference from function names and parameter names, while enforcing the model to compre-
hend the functionality and usage of candidates based on their descriptions. In contrast, the descrip-
tions provide a more flexible natural language explanation, often encapsulating the information that
function and parameter names aim to convey. While descriptions can also reflect the designer’s
personal style to some extent, they tend to be more accurate and detailed, thus reducing the likeli-
hood of ambiguity or misguidance. Consequently, when training function-calling models, we face

5

Published as a conference paper at ICLR 2025

Figure 3: Step-by-step building workflow of Hammer series with function masking. Considering the
complexities of real-world scenarios, the masking operation does not apply to all samples. Instead,
Hammer enjoys a masking ratio of 0.33 before each training epoch, which yields the best overall
performance across all benchmarks.

the challenge of not knowing the preferences or naming styles of function designers in real-world
applications. Thus, it is reasonable to expect that the trained model should understand the func-
tion’s purpose and usage through its description rather than attempting to infer functionality based
on potentially ambiguous, compact components such as function and parameter names.

To this end, we propose a tuning framework for function-calling models based on a masking mech-
anism, with a full pipeline shown in Figure 3. As for the randomization process, we first randomly
determine the length L ∈ (5, 15) of the random string, and then randomly select L characters from a
set comprising 52 uppercase and lowercase letters and 10 digits to replace the corresponding names.
This framework aims to guide the model’s attention toward the description, and thus enhance the
model’s generalization capabilities in practice. Specifically, in our proposed framework:

• Function names in candidates are masked by replacing them with randomly generated
strings during training. This technique minimizes the model’s reliance on memorizing
function names, prompting it to understand the function’s purpose solely through its de-
scription. By doing so, the model becomes more adaptable across various coding practices,
as it is less influenced by common naming conventions.

• Parameter names in candidates are substituted with random strings as well, ensuring the
model focuses on the parameter descriptions rather than the specific names, which often
vary between implementations.

• Default parameter values in candidates are randomized and appended to the parameter
descriptions. This also guides models to pay more attention to the parameter descriptions.

• Labels in batch are updated according to the masked candidate list, i.e. replacing the
function name and parameter name with corresponding masked strings in candidates.

By focusing on the description, the model can more accurately grasp the function’s intent and ex-
pected behavior, ensuring robust performance across diverse naming conventions and avoiding pit-
falls introduced by overfitting to specific naming patterns in the training data. It also promotes better
generalization, as the description typically offers a more comprehensive view of the function’s role,
beyond what can be conveyed by concise names.

4.2 IRRELEVANCE-AUGMENTED DATASET

During the fine-tuning process using the xlam-function-calling-60k dataset, we identified a con-
cerning inverse relationship between the model’s ability to accurately execute function calls and its
capacity for irrelevance detection—specifically, the ability to assess whether there exists no func-
tion call in the candidate set aligns with the user’s intent. This observation is analyzed further in
Section 5.6 and Appendix G. It indicates that, while fine-tuning lightweight language models on

6

Published as a conference paper at ICLR 2025

datasets specialized in function selection can improve their accuracy in choosing appropriate func-
tions from a predefined set, it may unintentionally impair their ability to detect irrelevance. As a
result, models might generate inappropriate function calls, even in the absence of valid options.

To address this issue, we propose an irrelevance-augmented dataset. This augmentation, applied
to the original xlam-function-calling-60k dataset, incorporates 7,500 examples sampled from the
original training set. In constructing this dataset, we removed the correct function from the candidate
list for each sampled example and replaced the labels with empty lists, indicating that all candidates
are irrelevant. This approach ensures that any potential data contamination is limited to what already
exists within the xlam-function-calling-60k dataset, as the process does not introduce additional data
beyond the original dataset. More details about the data contamination analysis refer to Appendix C.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

In this section, we show the superiority of our Hammers in performance and robustness across
various benchmarks as well as in-depth analysis to verify the effectiveness of our augmented dataset
and approach. Besides, potential limitations of function-masking could be found in Appendix D.

Benchmarks. To assess the generalizability of Hammers, we conducted evaluations using a vari-
ety of function-calling benchmarks, all of which represent out-of-domain challenges for our model.
The Berkeley Function-Calling Leaderboard (BFCL) (Yan et al., 2024) provides a comprehensive
dataset comprising over 1,700 instances. It covers tasks such as Simple Function, Multiple Function,
Parallel Function, and Parallel Multiple Function for Python, as well as function relevance detec-
tion, REST API, JavaScript, and Java for non-Python environments. API-Bank (Li et al., 2023),
consisting of 314 tool-use dialogues and 753 API calls, evaluates models’ ability to correctly in-
voke a known API (L-1) based on a query, and to retrieve and call APIs from a candidate list (L-2).
Similarly, Nexus Raven API Evaluation (Srinivasan et al., 2023) offers 318 test examples across
65 distinct APIs, contributing further to the evaluation of function-calling capabilities. Tool-Alpaca
(Tang et al., 2023) employs a synthetic data generation method, featuring 271 tool-use instances in
50 categories. For evaluation, we utilized 100 simulated test examples from this dataset, similar to
Nexus Raven. Lastly, Seal-Tools (Wu et al., 2024) represents one of the most extensive and recent
benchmarks, with 4,076 automatically generated APIs across various life domains. As one of the
newest benchmarks, Seal-Tools presents a relatively lower risk of data leakage. As for the Tool-
Bench (Qin et al., 2023), we chose not to utilize it because of potential data contamination risks.
Specifically, the xlam-function-calling-60k dataset which serves as our training set, was generated
using ToolBench (Liu et al., 2024b). This poses a significant risk of data contamination if ToolBench
is used as a benchmark, potentially leading to unfair advantages compared with certain baselines.

Evaluation Metrics. BFCL assesses function-calling models through two primary evaluation meth-
ods: Abstract Syntax Tree (AST) Evaluation and Executable Function Evaluation (Yan et al., 2024).
The AST evaluation emphasizes the syntactic precision of the generated function calls, ensuring that
the model’s output adheres to a predefined function documentation in terms of structure and parame-
ters. This includes verifying the correctness of function names, required parameters, and appropriate
data types. In contrast, Executable Function Evaluation takes this further by executing the generated
function calls to assess their functional accuracy. This evaluation ensures that the functions not only
compile but also run correctly, producing the intended outputs, which is vital for real-world applica-
tions. In addition to BFCL, we incorporated F1 scores to measure exact matches of API names and
parameters in order to evaluate the models on alternative benchmarks (Abdelaziz et al., 2024). In
these scenarios, APIs are highly specific, and execution is only feasible if all aspects, such as names,
parameters, and input/output formats, strictly conform to the API specifications.

5.2 OVERALL PERFORMANCE ON VARIOUS BENCHMARKS

We first evaluate Hammer series on BFCL. Table 2 indicates that within the BFCL framework, our
Hammer series consistently achieves corresponding sota performance at comparable scales, par-
ticularly Hammer-7B, whose overall performance ranks second only to the proprietary GPT-4. In
addition, we evaluated our Hammer series (1.5b, 4b, 7b) on other academic benchmarks to further
show our model’s generalization ability. Upon observing Hammer’s performance across various

7

Published as a conference paper at ICLR 2025

Table 4: Detailed performance comparison of different models using Abstract Syntax Tree (AST)
evaluation with regard to four function-calling styles on BFCL (as of date 09/20/2024).

Model AST Summary Simple Multiple Parallel Parallel Multiple

GPT-4-0125-Preview (Prompt) 85.50 78.82 88.44 91.00 83.75
GPT-4-1106-Preview (Prompt) 86.31 78.75 89.12 94.12 83.25

GPT-4-0613 (Prompt) 84.66 78.76 85.46 91.75 82.67
Hammer-7B (FC) 78.70 69.31 82.52 78.88 84.08

GPT-4-turbo-2024-04-09 (Prompt) 85.41 80.47 88.81 88.12 84.25
GPT-4o-mini-2024-07-18 (Prompt) 80.52 75.88 81.64 85.12 79.42

Functionary-Medium-v3.1-70B (FC) 81.06 74.34 87.59 81.62 80.67
Functionary-Small-v3.1-8B (FC) 78.64 72.70 83.31 85.62 72.92

xLAM-7B-fc (FC) 72.77 70.28 78.18 74.12 68.50
Gorilla-OpenFunctions-v2-7B (FC) 73.18 70.81 79.47 75.75 66.67

Functionary-Small-v3.2-8B (FC) 76.16 69.50 81.50 80.12 73.50
FireFunction-v2-70B (FC) 74.20 74.11 81.49 73.62 67.58

Granite-20B-FunctionCalling (FC) 66.73 65.27 73.05 60.75 67.83
Hammer-4B (FC) 69.59 62.58 77.72 69.12 68.92

xLAM-1.3B-fc (FC) 67.37 64.49 73.06 64.00 67.92
Hermes-2-Pro-Llama-3-70B (FC) 72.09 66.29 73.49 70.25 78.33

Hammer-1.5B (FC) 65.53 62.34 72.84 58.75 68.17
Command-R-Plus (FC) 66.32 64.25 72.45 66.25 62.33

Hermes-2-Pro-Llama-3-8B (FC) 64.18 62.32 74.96 61.62 57.83
Hermes-2-Pro-Mistral-7B (FC) 60.82 60.98 71.49 60.38 50.42

Hermes-2-Theta-Llama-3-8B (FC) 61.08 58.53 67.82 59.62 58.33

benchmarks unrelated to the xlam-function-calling-60k Datasets, as shown in Table 3, we find that
Hammer demonstrates remarkably stable performance, which indicates the robustness of Hammers.
Considering that the demand for on-device applications is the primary motivation behind our re-
search, Appendix H further illustrates the non-functional metrics and hardware configurations of
our Hammer-7B model when deployed on mobile devices.

5.3 DETAILED PERFORMANCE ON DIFFERENT TYPES OF FUNCTION CALLING

In this section, we closely examine the performance of Hammer across different types of function-
calling tasks, as exampled in Figure 4, and detailed in Appendix F.

Figure 4: Demonstration of different function-calling tasks.
As shown in Table 4 and Table 5, we found that Hammer-7B demonstrates exceptional overall
performance across these various tasks. Its AST Summary is second only to the GPT-4 series and
Functionary-Medium-v3.1-70B. Notably, Hammer-7B even outperformed GPT-4 in the practically
relevant Executable Function Evaluation, highlighting the potential of Hammer and the function-
masking technique in real-world scenarios. Moreover, we observed that Hammer-7B achieved state-
of-the-art results in both tables for the most complex Parallel Multiple task. This suggests that the
function-masking training approach becomes increasingly advantageous as task complexity rises.
This aligns with our insight that more complex tasks typically demand a deeper understanding of
functions, necessitating models to focus more on function descriptions.

5.4 ABLATION ON DIFFERENT BASE MODELS

To further validate the effectiveness of our augmented data and tuning technique, we applied our
approach to two different sizes of the deepseek-coder models, in addition to the Qwen series. The
results are illustrated in Table 6. Upon examining the results presented in the table, we first note that
the fine-tuned Hammer model exhibits a notable performance improvement compared to the vanilla
Qwen models (Bai et al., 2023; Yang et al., 2024) as well as Qwen variants trained with the original
xlam-function-calling-60k dataset, thereby confirming the efficacy of our data and methodology on
the Qwen architecture. Subsequently, we compared the deepseek-coder model (Guo et al., 2024)

8

Published as a conference paper at ICLR 2025

Table 5: Detailed performance comparison of different models using Executable Function (Exec.)
evaluation with regard to four function-calling styles on BFCL (as of date 09/20/2024).

Model Exec. Summary Simple Multiple Parallel Parallel Multiple

GPT-4-0125-Preview (Prompt) 89.25 99.00 96.00 82.00 80.00
GPT-4-1106-Preview (Prompt) 87.38 99.00 96.00 82.00 72.50

GPT-4-0613 (Prompt) 87.57 98.29 96.00 86.00 70.00
Hammer-7B (FC) 89.72 91.86 94.00 88.00 85.00

GPT-4-turbo-2024-04-09 (Prompt) 88.13 99.00 96.00 80.00 77.50
GPT-4o-mini-2024-07-18 (Prompt) 87.95 98.29 94.00 82.00 77.50

Functionary-Medium-v3.1-70B (FC) 89.32 98.29 94.00 90.00 75.00
Functionary-Small-v3.1-8B (FC) 83.45 87.79 90.00 86.00 70.00

xLAM-7B-fc (FC) 85.68 94.21 88.00 88.00 72.50
Gorilla-OpenFunctions-v2-7B (FC) 84.97 95.86 96.00 78.00 70.00

Functionary-Small-v3.2-8B (FC) 83.04 90.64 88.00 86.00 67.50
FireFunction-v2-70B (FC) 84.23 94.43 88.00 82.00 72.50

Granite-20B-FunctionCalling (FC) 82.97 85.36 90.00 84.00 72.50
Hammer-4B (FC) 80.82 67.79 92.00 86.00 77.50

xLAM-1.3B-fc (FC) 80.80 79.21 88.00 86.00 70.00
Hermes-2-Pro-Llama-3-70B (FC) 81.29 80.64 88.00 84.00 72.50

Hammer-1.5B (FC) 75.86 49.93 92.00 84.00 77.50
Command-R-Plus (FC) 77.41 89.14 86.00 82.00 52.50

Hermes-2-Pro-Llama-3-8B (FC) 74.05 68.71 90.00 80.00 57.50
Hermes-2-Pro-Mistral-7B (FC) 74.25 60.50 90.00 84.00 62.50

Hermes-2-Theta-Llama-3-8B (FC) 72.54 69.14 88.00 78.00 55.00

before and after fine-tuning; the fine-tuned variant, referred to as deepseek-coder-Hammer, demon-
strates significant enhancements over the vanilla model, despite the poor performance of deepseek-
coder prior to fine-tuning. This suggests that our methodology is not exclusively applicable to the
Qwen model. Furthermore, it is noteworthy that the performance of the deepseek-coder-Hammer,
fine-tuned using our approach, significantly surpasses that of the xLAM model, which was also
based on deepseek-coder-instruct and obtained through SFT with the xlam-function-calling-60k
dataset. This further underscores the superiority of our proposed method.

Table 6: Ablation on different base models and benchmarks. We apply the masking tuning process
to Deepseek-Coder models. Besides, the Qwen-xLAM series are trained with the original xlam-
function-calling-60k without masking. For more details see Table 12 and Table 13 in Appendix E.

Model API-Bank
L-1

API-Bank
L-2 Tool-Alpaca Seal-Tools

(Single-Tool)
Nexus
Raven

F1
Average

Qwen2-7B-Instruct 60.62 49.50 48.11 77.51 63.47 59.84
Qwen2-7B-xLAM 83.38 66.14 58.18 90.98 72.74 74.48

Hammer-7B 85.79 66.40 59.86 91.66 77.35 76.21
Qwen1.5-4B-Chat 59.78 38.48 16.98 62.32 33.70 42.25

Qwen1.5-4B-xLAM 78.64 58.32 55.48 88.28 64.10 68.96
Hammer-4B 81.46 61.01 56.96 92.45 64.89 71.35

Qwen2-1.5B-Instruct 63.55 33.62 45.25 75.49 45.46 52.67
Qwen2-1.5B-xLAM 70.93 59.84 53.83 84.10 54.90 64.72

Hammer-1.5B 72.30 59.71 53.48 88.65 56.88 66.20

xLAM-7B-fc (FC) 80.69 64.24 58.96 76.87 57.50 67.65
Deepseek-Coder-7B-Instruct 56.70 39.64 20.08 65.47 46.47 45.67
Deepseek-Coder-7B-Hammer 75.18 60.04 62.95 93.20 83.35 74.94

xLAM-1.3B-fc (FC) 83.70 64.32 50.58 80.43 54.80 66.77
Deepseek-Coder-1.3B-Instruct 38.42 24.75 06.06 21.52 8.15 19.78
Deepseek-Coder-1.3B-Hammer 77.22 65.97 57.68 88.98 64.68 70.91

5.5 ABLATION ON DIFFERENT MASKING RATIO

To further investigate the impact of various function masking ratios on model performance, we de-
signed an ablation study focused on the masking ratio. We systematically applied different masking
ratios while fine-tuning the Qwen2-1.5B model on the Seal-Tools training dataset for one epoch.
Subsequently, we evaluated the performance of the models trained with different masking ratios on
the test sets of both Seal-Tools and API-Bank. This allowed us to observe and analyze the perfor-
mance across both same-task and cross-task scenarios.

Based on the results presented in Figure 5, we observe that an excessively large mask ratio can
impede the model’s learning speed within the same task scenario, i.e. the test on Seal-Tools. Con-
versely, the testing results on API-Bank indicate that a larger mask ratio facilitates better general-
ization of the model across different scenarios. This observation aligns with our previous insights,
suggesting that, in the absence of masking, the model may overfit to the training data during fine-
tuning, negatively impacting its performance in novel task environments. By enforcing a focus on

9

Published as a conference paper at ICLR 2025

Figure 5: An ablation to evaluate the impact of different masking ratios. For instance, “mask 0.33”
denotes that 33% of the instances in the training batch are masked, while others remain unaltered.
more flexible description content, function masking can mitigate this overfitting to some extent,
thereby enhancing cross-scenario generalization performance.

5.6 ABLATION ON DIFFERENT PROPORTIONS OF IRRELEVANCE-AUGMENTED DATA

To further explore the relationship between these two aspects, we conducted an ablation study on
the ratio of irrelevance-augmented data used during training. In this ablation, we sampled a total of
10,000 instances with varying data proportions from the augmented dataset to fine-tune the Qwen2-
1.5B-Instruct model and then exam on the BFCL benchmark, observing the changes in the model’s
irrelevance detection and function-calling capabilities across different ratios.

Figure 6: Ablation on different proportions of irrelevance-augmented data applied, e.g. ratio=30%
means 30 percent of the training data is sampled from the irrelevance-augmented dataset with other
70 percent sampled from the xlam-function-calling-60k dataset.

As illustrated in the first two panels of Figure 6, the variation in the proportion of irrelevance-
augmented data reveals an inverse relationship between the model’s performance in irrelevance de-
tection and its function-calling capabilities. This finding underscores the importance of balancing
the trade-off between these two aspects. Furthermore, the final panel of Figure 6 indicates that,
within our experimental settings, the Hammer model achieves optimal overall performance when
the proportion of irrelevance-augmented data is approximately 10%. This insight guides us in estab-
lishing the target size for the irrelevance-augmented dataset, i.e., 7.5k. It is essential to note that this
proportion may require adjustment depending on the underlying model and training dataset; thus,
the ratios presented herein are intended as a reference only.

6 CONCLUSION

In conclusion, our exploration of function-calling models reveals significant challenges related to
performance inconsistency across different benchmarks, primarily driven by misleading from spe-
cific naming conventions. By introducing the Hammer family of models, we provide a robust so-
lution that enhances generalization capabilities through a carefully constructed augmented dataset
and innovative function masking techniques. The superior performance of Hammer on a variety of
benchmarks demonstrates its potential for practical application in real-world scenarios.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

The SJTU team is partially supported by the National Key R&D Program of
China (2022ZD0114804), Shanghai Municipal Science and Technology Major Project
(2021SHZDZX0102) and National Natural Science Foundation of China (62322603). Muning Wen
is supported by the Wu Wen Jun Honorary Scholarship, AI Institute, Shanghai Jiao Tong University.

REFERENCES

Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal, Sadhana Kumaravel, Matthew Stallone,
Rameswar Panda, Yara Rizk, GP Bhargav, Maxwell Crouse, Chulaka Gunasekara, et al. Granite-
function calling model: Introducing function calling abilities via multi-task learning of granular
tasks. arXiv preprint arXiv:2407.00121, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Kinjal Basu, Ibrahim Abdelaziz, Subhajit Chaudhury, Soham Dan, Maxwell Crouse, Asim Mu-
nawar, Sadhana Kumaravel, Vinod Muthusamy, Pavan Kapanipathi, and Luis A. Lastras. Api-
blend: A comprehensive corpora for training and benchmarking api llms, 2024. URL https:
//arxiv.org/abs/2402.15491.

Aili Chen, Xuyang Ge, Ziquan Fu, Yanghua Xiao, and Jiangjie Chen. Travelagent: An ai assistant
for personalized travel planning, 2024a. URL https://arxiv.org/abs/2409.08069.

Wei Chen, Zhiyuan Li, and Mingyuan Ma. Octopus: On-device language model for function calling
of software apis. arXiv preprint arXiv:2404.01549, 2024b.

KR1442 Chowdhary and KR Chowdhary. Natural language processing. Fundamentals of artificial
intelligence, pp. 603–649, 2020.

Lutfi Eren Erdogan, Nicholas Lee, Siddharth Jha, Sehoon Kim, Ryan Tabrizi, Suhong Moon, Cole-
man Hooper, Gopala Anumanchipalli, Kurt Keutzer, and Amir Gholami. Tinyagent: Function
calling at the edge. arXiv preprint arXiv:2409.00608, 2024a.

Lutfi Eren Erdogan, Nicholas Lee, Siddharth Jha, Sehoon Kim, Ryan Tabrizi, Suhong Moon,
Coleman Hooper, Gopala Anumanchipalli, Kurt Keutzer, and Amir Gholami. Tinyagent:
Function calling at the edge. https://bair.berkeley.edu/blog/2024/05/29/
tiny-agent/, 2024b.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Carl A Gunter. Semantics of programming languages: structures and techniques. MIT press, 1992.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan Zhang, Bowen
Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, Deepak Gopinath, Dian Ang Yap, Dong
Yin, Feng Nan, Floris Weers, Guoli Yin, Haoshuo Huang, Jianyu Wang, Jiarui Lu, John Pee-
bles, Ke Ye, Mark Lee, Nan Du, Qibin Chen, Quentin Keunebroek, Sam Wiseman, Syd Evans,
Tao Lei, Vivek Rathod, Xiang Kong, Xianzhi Du, Yanghao Li, Yongqiang Wang, Yuan Gao,
Zaid Ahmed, Zhaoyang Xu, Zhiyun Lu, Al Rashid, Albin Madappally Jose, Alec Doane, Alfredo
Bencomo, Allison Vanderby, Andrew Hansen, Ankur Jain, Anupama Mann Anupama, Areeba
Kamal, Bugu Wu, Carolina Brum, Charlie Maalouf, Chinguun Erdenebileg, Chris Dulhanty, Do-
minik Moritz, Doug Kang, Eduardo Jimenez, Evan Ladd, Fangping Shi, Felix Bai, Frank Chu,
Fred Hohman, Hadas Kotek, Hannah Gillis Coleman, Jane Li, Jeffrey Bigham, Jeffery Cao, Jeff
Lai, Jessica Cheung, Jiulong Shan, Joe Zhou, John Li, Jun Qin, Karanjeet Singh, Karla Vega,
Kelvin Zou, Laura Heckman, Lauren Gardiner, Margit Bowler, Maria Cordell, Meng Cao, Nicole

11

https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2409.08069
https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/
https://bair.berkeley.edu/blog/2024/05/29/tiny-agent/

Published as a conference paper at ICLR 2025

Hay, Nilesh Shahdadpuri, Otto Godwin, Pranay Dighe, Pushyami Rachapudi, Ramsey Tantawi,
Roman Frigg, Sam Davarnia, Sanskruti Shah, Saptarshi Guha, Sasha Sirovica, Shen Ma, Shuang
Ma, Simon Wang, Sulgi Kim, Suma Jayaram, Vaishaal Shankar, Varsha Paidi, Vivek Kumar,
Xin Wang, Xin Zheng, Walker Cheng, Yael Shrager, Yang Ye, Yasu Tanaka, Yihao Guo, Yun-
song Meng, Zhao Tang Luo, Zhi Ouyang, Alp Aygar, Alvin Wan, Andrew Walkingshaw, Andy
Narayanan, Antonie Lin, Arsalan Farooq, Brent Ramerth, Colorado Reed, Chris Bartels, Chris
Chaney, David Riazati, Eric Liang Yang, Erin Feldman, Gabriel Hochstrasser, Guillaume Seguin,
Irina Belousova, Joris Pelemans, Karen Yang, Keivan Alizadeh Vahid, Liangliang Cao, Mah-
yar Najibi, Marco Zuliani, Max Horton, Minsik Cho, Nikhil Bhendawade, Patrick Dong, Piotr
Maj, Pulkit Agrawal, Qi Shan, Qichen Fu, Regan Poston, Sam Xu, Shuangning Liu, Sushma
Rao, Tashweena Heeramun, Thomas Merth, Uday Rayala, Victor Cui, Vivek Rangarajan Sridhar,
Wencong Zhang, Wenqi Zhang, Wentao Wu, Xingyu Zhou, Xinwen Liu, Yang Zhao, Yin Xia,
Zhile Ren, and Zhongzheng Ren. Apple intelligence foundation language models, 2024. URL
https://arxiv.org/abs/2407.21075.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Raisa Islam and Owana Marzia Moushi. Gpt-4o: The cutting-edge advancement in multimodal llm.
Authorea Preprints, 2024.

Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W. Mahoney, Kurt Keutzer, and
Amir Gholami. An LLM compiler for parallel function calling. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 24370–24391. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/kim24y.html.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms, 2023.
URL https://arxiv.org/abs/2304.08244.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin
Wang, Chuhan Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. Toolace: Winning the
points of llm function calling, 2024a. URL https://arxiv.org/abs/2409.00920.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei Yang, Silvio Savarese, Juan Carlos
Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. Apigen: Automated pipeline for
generating verifiable and diverse function-calling datasets, 2024b. URL https://arxiv.
org/abs/2406.18518.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Venkat Krishna Srinivasan, Zhen Dong, Banghua Zhu, Brian Yu, Hanzi Mao, Damon Mosk-
Aoyama, Kurt Keutzer, Jiantao Jiao, and Jian Zhang. Nexusraven: A commercially-permissive
language model for function calling. In NeurIPS 2023 Foundation Models for Decision Making
Workshop, 2023. URL https://openreview.net/forum?id=5lcPe6DqfI.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. Toolalpaca: Gen-
eralized tool learning for language models with 3000 simulated cases, 2023.

12

https://arxiv.org/abs/2407.21075
https://proceedings.mlr.press/v235/kim24y.html
https://arxiv.org/abs/2304.08244
https://arxiv.org/abs/2409.00920
https://arxiv.org/abs/2406.18518
https://arxiv.org/abs/2406.18518
https://openreview.net/forum?id=5lcPe6DqfI

Published as a conference paper at ICLR 2025

Muning Wen, Ziyu Wan, Weinan Zhang, Jun Wang, and Ying Wen. Reinforcing language agents
via policy optimization with action decomposition. arXiv preprint arXiv:2405.15821, 2024.

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan, Xiang Zhang, and Wenliang Chen. Seal-
tools: Self-instruct tool learning dataset for agent tuning and detailed benchmark, 2024. URL
https://arxiv.org/abs/2405.08355.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica,
and Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.
berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html,
2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng, Tulika Awalgaonkar, Rithesh
Murthy, Eric Hu, Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby Heinecke, Huan Wang,
Silvio Savarese, and Caiming Xiong. xlam: A family of large action models to empower ai agent
systems, 2024. URL https://arxiv.org/abs/2409.03215.

Nan Zhang, Zhenhua Duan, and Cong Tian. A mechanism of function calls in msvl. Theoretical
Computer Science, 654, 03 2016. doi: 10.1016/j.tcs.2016.02.037.

Zhaowei Zhang, Fengshuo Bai, Qizhi Chen, Chengdong Ma, Mingzhi Wang, Haoran Sun, Zilong
Zheng, and Yaodong Yang. Amulet: Realignment during test time for personalized preference
adaptation of LLMs. In International Conference on Learning Representations (ICLR), 2025.
URL https://openreview.net/forum?id=f9w89OY2cp.

13

https://arxiv.org/abs/2405.08355
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2409.03215
https://openreview.net/forum?id=f9w89OY2cp

Published as a conference paper at ICLR 2025

A ANALYSIS OF XLAM MODEL PERFORMANCE ON SEAL-TOOLS AND
NEXUS RAVEN BENCHMARKS

This section provides a comprehensive analysis of the factors contributing to the performance degra-
dation of the xLAM model on the Seal-Tools and Nexus Raven benchmarks. Through a detailed
examination of failure cases, specific areas where the model encountered difficulties have been iden-
tified.

Errors were categorized into three primary types: function selection errors, parameter filling errors,
and rejection errors. Table 7 compares the number of cases for each error type, contrasting the
Hammer-7b with the xLAM-7b-fc-r.

Table 7: Error type analysis for Seal-Tools and Nexus Raven benchmarks (Hammer-7b | xLAM-7b-
fc-r).

Benchmarks Function Error Parameter Error Rejection Error Correct Total

Seal-Tools 14 | 7 49 | 63 3 | 37 228 | 187 294 | 294
Nexus Raven 24 | 13 65 | 21 14 | 186 215 | 98 318 | 318

The data reveal that the xLAM model exhibited a notably high rate of rejection errors, particularly
in the Nexus Raven benchmark. This indicates that xLAM may be overly conservative in rejecting
candidate functions, resulting in a significant number of missed correct predictions.

Considering the diverse range of parameters in the Nexus Raven benchmark, we further analyzed
how the number of parameters in function labels influenced the model’s performance.

Table 8: Impact of parameter numbers on performance in the Nexus Raven benchmark (Hammer-
7b|xLAM-7b-fc-r).

Parameter Number Function Error Parameter Error Rejection Error Correct Total

0 0 | 0 0 | 0 0 | 1 6 | 5 6 | 6
1 0 | 0 7 | 0 9 | 15 23 | 24 39 | 39
2 1 | 3 7 | 7 0 | 16 61 | 43 69 | 69
3 0 | 0 10 | 3 1 | 23 26 | 11 37 | 37
4 0 | 0 4 | 4 0 | 14 22 | 8 26 | 26
5 22 | 10 8 | 7 0 | 39 33 | 7 63 | 63
10 1 | 0 18 | 0 2 | 35 14 | 0 35 | 35
27 0 | 0 11 | 0 2 | 43 30 | 0 43 | 43
All 24 | 13 65 | 21 14 | 186 215 | 98 318 | 318

Table 8 indicates that the xLAM model’s performance deteriorates significantly when dealing with
functions that have five or more parameters. Nearly all such cases experienced incorrect rejections,
suggesting that the model struggles with complex functions requiring the management of multiple
parameters.

B ERROR TYPE ANALYSIS

We have conducted categorical statistics for the various failed cases presented in Figure 2 to provide
readers with a more detailed and comprehensive understanding. The specific results are shown as
Table 9.

In Table 9, ”Correct” refers to cases where the prediction is entirely correct; ”Func. Error” indicates
cases where the function itself was incorrectly selected; ”Param. Error” represents cases where the
function was correctly chosen, but parameter filling was erroneous; and ”Reject Error” denotes cases
where the model incorrectly deemed all candidates irrelevant. The table confirms xLAM’s overre-
liance on function and parameter names, as the frequency of various errors increases significantly
when function and parameter names are masked.

14

Published as a conference paper at ICLR 2025

Table 9: Categorical statistics of number of various failed cases, with “cases with Hammer|cases
with xLAM” in each grid.

Types No Mask Fn Mask Arg Mask All Mask

Correct 228 | 187 213 | 174 213 | 148 212 | 133
Func. Error 14 | 7 20 | 14 20 | 13 23 | 21
Param. Error 49 | 63 60 | 66 57 | 72 51 | 70
Reject Error 3 | 37 1 | 38 4 | 61 8 | 70
Total 294 | 294 294 | 294 294 | 294 294 | 294

C DATA CONTAMINATION CLARIFICATION

All queries/examples in the irrelevance-augmented dataset are sampled from the original xlam-
function-calling-60k training set. For each sampled example, we simply remove the correct function
from its candidate list and replace its label with an empty list, which indicates that all candidates are
irrelevant. Therefore, the construction process of the irrelevance-augmented dataset should not intro-
duce any additional data contamination beyond what already exists in the xlam-function-calling-60k
dataset. Besides, xlam-function-calling-60k was released in January 2024, while the BFCL-V2 and
Seal-Tools benchmarks used in our experiments were released in August and May 2024, respec-
tively, both after the release of the training set. Therefore, Hammer’s performance on these two
benchmarks should, to some extent, address these concerns.

D POTENTIAL FAILURE OF FUNCTION-MASKING

To give readers a better understanding of the limitations of function-masking, in this section, we have
to point out that function-masking might perform worse than traditional approaches in the following
two cases.

The first case is shown in the ablation study in Section 5.5: “A large mask ratio can impede the
model’s learning speed within the same task scenario but facilitate better generalization of the
model across different scenarios.” This suggests that when the training and testing sets are from
the same source or have similar distributions, function masking might perform worse than tradi-
tional approaches.

Another situation arises in cases where there is little description available. In such cases, due to
the incomplete information in the descriptions, directly masking all names might be too aggres-
sive, leading to a decline in performance. The comparison on the Tool-Alpaca benchmark suggests
this possibility since it contains function candidates in the test set with very limited descriptions
and Hammers achieve performance very close to baselines. If the description is further simplified,
function masking might perform worse than traditional approaches as well.

15

Published as a conference paper at ICLR 2025

E EXTRA EXPERIMENTAL RESULTS

Table 10: Full evaluation of the BFCL leaderboard (Yan et al., 2024). (as of date 09/20/2024.)

AST Category Exec Category
Rank Model Overall Acc simple Multiple Parallel Parallel

Multiple Simple Multiple Parallel Parallel
Multiple

Irrelevance Relevance

1 GPT-4-0125-Preview (Prompt) 85.79 78.82 88.44 91.00 83.75 99.00 96.00 82.00 80.00 61.35 97.56
2 GPT-4-1106-Preview (Prompt) 85.00 78.75 89.12 94.12 83.25 99.00 96.00 82.00 72.50 64.98 90.24
3 GPT-4-0613 (Prompt) 84.74 78.76 85.46 91.75 82.67 98.29 96.00 86.00 70.00 75.57 82.93

Hammer-7b (FC) 83.92 69.31 82.52 78.88 84.08 91.86 94.00 88.00 85.00 72.87 92.68
4 GPT-4-turbo-2024-04-09 (Prompt) 83.89 80.47 88.81 88.12 84.25 99.00 96.00 80.00 77.50 61.82 82.93
5 GPT-4o-mini-2024-07-18 (Prompt) 83.35 75.88 81.64 85.12 79.42 98.29 94.00 82.00 77.50 79.20 80.49
6 GPT-4o-2024-05-13 (Prompt) 83.13 76.18 86.01 92.12 81.00 98.00 94.00 76.00 72.50 77.44 78.05
7 Functionary-Medium-v3.1 (FC) 82.55 74.34 87.59 81.62 80.67 98.29 94.00 90.00 75.00 73.23 70.73
8 GPT-4-1106-Preview (FC) 81.78 69.32 84.19 86.38 71.92 95.43 94.00 86.00 75.00 72.70 82.93
9 Meta-Llama-3-70B-Instruct (Prompt) 81.59 72.87 85.91 84.00 77.83 94.14 94.00 84.00 80.00 50.47 92.68
10 Claude-3-Opus-20240229 (Prompt) 80.88 76.65 87.47 78.38 75.17 98.57 94.00 82.00 75.00 56.15 85.37
11 GPT-4-0125-Preview (FC) 80.87 68.76 84.95 80.38 74.00 84.21 94.00 88.00 75.00 74.03 85.37
12 Nemotron-4-340b-instruct (Prompt) 80.23 68.51 80.38 78.62 79.17 86.00 90.00 80.00 77.50 84.10 78.05
13 Functionary-Small-v3.1 (FC) 80.21 72.70 83.31 85.62 72.92 87.79 90.00 86.00 70.00 68.36 85.37
14 mistral-large-2407 (FC Any) 79.66 81.01 87.42 90.50 83.50 98.29 92.00 86.00 77.50 0.34 100.00
15 GPT-4o-2024-05-13 (FC) 79.55 70.40 82.33 89.00 76.08 88.93 84.00 88.00 72.50 73.50 70.73
16 xLAM-7b-fc-r (FC) 79.41 70.28 78.18 74.12 68.50 94.21 88.00 88.00 72.50 79.76 80.49
17 GPT-4o-mini-2024-07-18 (FC) 79.25 67.83 80.16 85.38 77.17 83.21 92.00 82.00 70.00 71.83 82.93
18 Open-Mixtral-8x22b (Prompt) 79.14 73.47 76.14 79.12 73.67 91.86 96.00 84.00 75.00 71.42 70.73
19 Gorilla-OpenFunctions-v2 (FC) 79.10 70.81 79.47 75.75 66.67 95.86 96.00 78.00 70.00 73.13 85.37
20 GPT-4-turbo-2024-04-09 (FC) 79.09 64.21 82.72 82.50 75.75 88.71 88.00 86.00 72.50 79.79 70.73
21 Functionary-Small-v3.2 (FC) 78.96 69.50 81.50 80.12 73.50 90.64 88.00 86.00 67.50 72.32 80.49
22 GPT-4o-2024-08-06 (FC) 78.87 70.71 80.97 83.25 75.58 85.36 90.00 84.00 72.50 82.91 63.41
23 mistral-large-2407 (FC Auto) 78.78 68.28 86.44 90.25 83.50 76.86 92.00 86.00 77.50 48.93 78.05
24 Claude-3-Sonnet-20240229 (Prompt) 77.92 71.80 85.26 82.75 73.92 96.14 90.00 84.00 77.50 30.01 87.80
25 FireFunction-v2 (FC) 77.45 74.11 81.49 73.62 67.58 94.43 88.00 82.00 72.50 52.94 87.80
26 Granite-20b-FunctionCalling (FC) 76.63 65.27 73.05 60.75 67.83 85.36 90.00 84.00 72.50 72.43 95.12
27 Open-Mistral-Nemo-2407 (Prompt) 76.31 72.89 81.37 81.50 73.75 92.50 94.00 86.00 80.00 13.25 87.80
28 Claude-3.5-Sonnet-20240620 (Prompt) 76.29 76.98 80.27 72.62 65.33 98.50 92.00 70.00 72.50 83.46 51.22

Hammer-4b (FC) 76.05 62.58 77.72 69.12 68.92 67.79 92.00 86.00 77.50 68.66 90.24
29 GPT-3.5-Turbo-0125 (FC) 75.41 69.79 83.58 71.88 68.83 95.14 88.00 86.00 57.50 35.83 97.56
30 Open-Mistral-Nemo-2407 (FC Auto) 74.97 64.57 79.99 80.25 74.00 91.36 86.00 86.00 62.50 59.14 65.85
31 xLAM-1b-fc-r (FC) 74.90 64.49 73.06 64.00 67.92 79.21 88.00 86.00 70.00 61.21 95.12
32 Hermes-2-Pro-Llama-3-70B (FC) 74.78 66.29 73.49 70.25 78.33 80.64 88.00 84.00 72.50 53.80 80.49
33 Gemini-1.5-Pro-Preview-0514 (FC) 74.75 56.15 78.89 82.38 65.50 75.71 88.00 84.00 75.00 83.31 58.54
34 Claude-2.1 (Prompt) 74.57 68.21 78.08 74.12 66.17 94.64 88.00 64.00 62.50 74.36 75.61
35 Gemini-1.5-Pro-Preview-0409 (FC) 74.56 55.08 79.43 83.12 64.75 76.00 88.00 80.00 72.50 83.27 63.41
36 GPT-4o-2024-08-06 (Prompt) 74.12 65.76 76.86 72.12 71.67 70.57 88.00 78.00 75.00 89.56 53.66
37 Command-R-Plus (Prompt) (Original) 74.11 68.14 78.13 77.50 62.17 91.29 86.00 78.00 55.00 69.31 75.61
38 Open-Mistral-Nemo-2407 (FC Any) 73.12 67.98 82.46 77.38 76.08 92.07 86.00 86.00 62.50 0.72 100.00

Hammer-1.5b (FC) 73.04 62.34 72.84 58.75 68.17 49.93 92.00 84.00 77.50 72.18 92.68
39 Mistral-Medium-2312 (Prompt) 72.19 63.77 80.22 69.12 59.25 93.43 88.00 70.00 57.50 84.54 56.10
40 Command-R-Plus (FC) (Original) 72.04 64.25 72.45 66.25 62.33 89.14 86.00 82.00 52.50 52.75 92.68
41 Gemini-1.5-Flash-Preview-0514 (FC) 70.75 65.80 83.26 63.87 63.50 57.93 86.00 74.00 75.00 74.69 63.41
42 DBRX-Instruct (Prompt) 69.55 69.97 80.35 66.88 51.50 90.50 86.00 60.00 62.50 44.86 82.93
43 Claude-3.5-Sonnet-20240620 (FC) 68.88 73.95 82.09 65.38 62.75 95.36 86.00 44.00 40.00 75.91 63.41
44 GPT-3.5-Turbo-0125 (Prompting) 66.19 59.01 67.74 65.25 48.58 44.50 86.00 78.00 55.00 69.97 87.80
45 Hermes-2-Pro-Llama-3-8B (FC) 66.18 62.32 74.96 61.62 57.83 68.71 90.00 80.00 57.50 55.16 53.66
46 Hermes-2-Pro-Mistral-7B (FC) 65.44 60.98 71.49 60.38 50.42 60.50 90.00 84.00 62.50 38.55 75.61
47 Hermes-2-Theta-Llama-3-8B (FC) 64.83 58.53 67.82 59.62 58.33 69.14 88.00 78.00 55.00 62.66 51.22
48 Meta-Llama-3-8B-Instruct (Prompt) 62.70 58.53 70.26 53.50 53.25 84.50 88.00 68.00 50.00 22.88 78.05
49 Claude-3-Opus-20240229 (FC tools-2024-04-04) 61.89 69.41 79.95 39.38 27.92 84.64 86.00 52.00 30.00 76.40 73.17
50 Open-Mixtral-8x7b (Prompt) 60.82 61.49 70.70 47.12 36.83 71.86 74.00 56.00 52.50 71.84 65.85
51 Claude-3-Haiku-20240307 (Prompt) 60.34 74.64 84.49 51.88 45.17 89.43 94.00 32.00 27.50 18.90 85.37
52 Open-Mixtral-8x22b (FC Any) 58.89 73.23 85.42 10.75 63.08 92.57 92.00 24.00 47.50 0.34 100.00
53 Open-Mixtral-8x22b (FC Auto) 58.37 59.75 82.75 10.50 62.33 77.79 92.00 24.00 45.00 44.20 85.37
54 Gemini-1.0-Pro-001 (FC) 57.81 64.90 79.40 38.12 22.25 86.14 84.00 58.00 5.00 67.13 73.17
55 Mistral-small-2402 (FC Auto) 55.36 51.90 82.00 15.62 34.33 87.57 90.00 14.00 20.00 77.67 80.49
56 Mistral-small-2402 (FC Any) 52.45 65.89 84.78 15.88 36.42 94.71 90.00 14.00 22.50 0.34 100.00
57 FireFunction-v1 (FC) 48.11 72.25 80.37 0.00 0.00 84.79 80.00 0.00 0.00 68.55 95.12
58 Claude-3-Sonnet-20240229 (FC tools-2024-04-04) 47.97 63.79 78.37 8.25 3.33 78.50 90.00 0.00 0.00 59.89 97.56
59 Claude-instant-1.2 (Prompt) 47.95 54.50 55.81 37.75 32.42 57.50 72.00 38.00 15.00 70.21 46.34
60 Claude-3-Haiku-20240307 (FC tools-2024-04-04) 47.03 72.74 78.95 1.00 2.33 90.64 92.00 6.00 0.00 29.08 97.56
61 GPT-4-0613 (FC) 45.61 56.33 86.36 0.00 0.00 69.21 90.00 0.00 0.00 80.99 73.17
62 Snowflake/snowflake-arctic-instruct (Prompt) 42.46 34.97 31.79 42.00 38.33 33.29 28.00 60.00 40.00 65.01 51.22
63 mistral-large-2407 (Prompt) 27.87 18.08 43.11 33.38 23.17 8.71 30.00 18.00 5.00 40.70 58.54
64 Mistral-Small-2402 (Prompt) 24.44 7.83 38.97 17.25 8.92 8.14 12.00 12.00 0.00 83.22 56.10
65 Mistral-tiny-2312 (Prompt) 21.17 21.11 25.92 9.75 3.50 19.64 8.00 12.00 0.00 92.23 19.51
66 Deepseek-v1.5 (Prompt) 11.18 4.07 0.00 1.00 2.83 0.00 0.00 4.00 0.00 99.89 0.00
67 Gemma-7b-it (Prompt) 10.30 2.40 0.99 0.50 0.50 1.71 0.00 0.00 0.00 96.95 0.00
68 Hermes-2-Theta-Llama-3-70B (FC) 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00

16

Published as a conference paper at ICLR 2025

Table 11: Full evaluation of different models on several academic benchmarks. The rank is based
on the average F1 score on “Func. + Args”.

F1 Func-Name | F1 Func. + Args F1 Average

Model API-Bank
L-1

API-Bank
L-2 Tool-Alpaca Seal-Tools

(Single-Tool)
Nexus
Raven

Func
Name

Func.+
Args

GPT-4-0613 (Prompt) 92.93 | 84.78 69.60 | 56.98 88.64 | 66.67 94.56 | 93.95 95.73 | 91.60 88.29 78.79
GPT-4o-mini (Prompt) 95.08 | 89.28 84.35 | 67.52 64.34 | 54.69 87.94 | 86.00 91.72 | 84.59 84.69 76.42

Hammer-7B (FC) 93.48 | 85.79 82.91 | 66.40 82.31 | 59.86 97.44 | 91.66 92.46 | 77.35 89.72 76.21
Granite-20B-FunctionCalling (FC) 90.41 | 77.82 78.95 | 59.15 77.27 | 58.00 94.86 | 92.70 94.47 | 75.14 87.19 72.56

Hammer-4B (FC) 91.65 | 81.46 77.59 | 61.01 85.09 | 56.96 96.42 | 92.45 81.73 | 64.89 86.50 71.35
xLAM-7B-fc (FC) 90.05 | 80.69 72.49 | 64.24 67.26 | 58.96 78.97 | 76.87 54.09 | 57.50 72.57 67.65

Gorilla-OpenFunctions-v2-7B (FC) 69.21 | 70.34 48.82 | 54.69 72.93 | 51.26 93.20 | 91.11 72.84 | 68.41 71.40 67.16
xLAM-1.3B-fc (FC) 94.86 | 83.70 91.80 | 64.32 64.86 | 50.58 90.74 | 80.43 64.43 | 54.80 81.34 66.77
Hammer-1.5B (FC) 82.13 | 72.30 79.82 | 59.71 80.90 | 53.48 95.59 | 88.65 79.87 | 56.88 83.66 66.20

Qwen2-7B-Instruct (Prompt) 81.55 | 60.62 95.65 | 49.50 71.59 | 48.11 93.88 | 77.51 87.05 | 63.47 85.94 59.84
Qwen2-1.5B-Instruct (Prompt) 74.63 | 63.55 57.69 | 33.62 65.76 | 45.25 82.08 | 75.49 70.62 | 45.46 70.16 52.67

Qwen1.5-4B-Chat (Prompt) 55.33 | 59.78 46.74 | 38.48 35.41 | 16.98 48.44 | 62.32 29.03 | 33.70 42.99 42.25

Table 12: AST Evaluation for Hammers and different base models on BFCL.

Overall Acc Model AST Summary Simple Multiple Parallel Parallel Multiple Irrelevance Relevance

72.79 Qwen2-7B-Instruct 69.47 68.75 81.88 60.75 66.50 61.31 97.56
76.36 Qwen2-7b-xLAM 72.16 66.55 82.05 67.38 72.67 76.84 92.68
80.06 Hammer-7B 78.70 69.31 82.52 78.88 84.08 72.87 92.68
32.92 Qwen1.5-4B-Chat 25.43 24.60 32.99 22.12 22.00 66.56 29.27
71.13 Qwen1.5-4b-xLAM 67.75 63.88 77.84 62.62 66.67 58.20 97.56
72.87 Hammer-4B 69.59 62.58 77.72 69.12 68.92 68.66 90.24
46.90 Qwen2-1.5B-Instruct 41.44 50.77 61.80 19.38 33.83 22.91 92.68
69.42 Qwen2-1.5b-xLAM 65.39 63.30 73.84 57.25 67.17 62.27 92.68
71.16 Hammer-1.5B 65.52 62.34 72.84 58.75 68.17 72.18 92.68

75.22 xLAM-7B-fc (FC) 72.77 70.28 78.18 74.12 68.50 79.76 80.49
17.65 Deepseek-Coder-7B-Instruct 1.60 3.53 0.05 0.25 2.58 99.51 0.00
79.09 Deepseek-Coder-7B-Instruct-Hammer 76.84 71.03 84.51 77.00 74.83 67.14 100.00
70.96 xLAM-1.3B-fc (FC) 67.37 64.49 73.06 64.00 67.92 61.21 95.12
16.81 Deepseek-Coder-1.3B-Instruct 0.21 0.83 0.00 0.00 0.00 100.00 0.00
69.71 Deepseek-Coder-1.3B-Instruct-Hammer 67.52 65.47 74.71 60.88 69.00 57.93 90.24

Table 13: Full evaluation of the ablation study on different base models and benchmarks.

Academic Benchmarks (F1 Func-Name | F1 Func. + Args) F1 Average

Model API-Bank
L-1

API-Bank
L-2 Tool-Alpaca Seal-Tools

(Single-Tool)
Nexus
Raven

Func
Name

Func.+
Args

Qwen2-7B-Instruct 81.55 | 60.62 95.65 | 49.50 71.59 | 48.11 93.88 | 77.51 87.05 | 63.47 85.94 59.84
Qwen2-7b-xLAM 93.00 | 83.38 84.01 | 66.14 84.09 | 58.18 95.36 | 90.98 88.46 | 72.74 88.98 74.48

Hammer-7B 93.48 | 85.79 82.91 | 66.40 82.31 | 59.86 97.44 | 91.66 92.46 | 77.35 89.72 76.21
Qwen1.5-4B-Chat 55.33 | 59.78 46.74 | 38.48 35.41 | 16.98 48.44 | 62.32 29.03 | 33.70 42.99 42.25

Qwen1.5-4b-xLAM 86.68 | 78.64 73.17 | 58.32 84.18 | 55.48 93.19 | 88.28 81.28 | 64.10 83.70 68.96
Hammer-4B 91.65 | 81.46 77.59 | 61.01 85.09 | 56.96 96.42 | 92.45 81.73 | 64.89 86.50 71.35

Qwen2-1.5B-instruct 74.63 | 63.55 57.69 | 33.62 65.76 | 45.25 82.08 | 75.49 70.62 | 45.46 70.16 52.67
Qwen2-1.5b-xLAM 81.61 | 70.93 80.11 | 59.84 81.84 | 53.83 92.77 | 84.10 76.58 | 54.90 82.58 64.72

Hammer-1.5B 82.13 | 72.30 79.82 | 59.71 80.90 | 53.48 95.59 | 88.65 79.87 | 56.88 83.66 66.20

xLAM-7B-fc (FC) 90.05 | 80.69 72.49 | 64.24 67.26 | 58.96 78.97 | 76.87 54.09 | 57.50 72.57 67.65
Deepseek-Coder-7B-Instruct 51.42 | 56.70 35.51 | 39.64 11.58 | 20.08 50.00 | 65.47 26.89 | 46.47 35.08 45.67
Deepseek-Coder-7B-Hammer 83.47 | 75.18 69.17 | 60.04 83.77 | 62.95 96.95 | 93.20 93.75 | 83.35 85.42 74.94

xLAM-1.3B-fc (FC) 94.86 | 83.70 91.80 | 64.32 64.86 | 50.58 90.74 | 80.43 64.43 | 54.80 81.34 66.77
Deepseek-Coder-1.3B-Instruct 35.23 | 38.42 20.41 | 24.75 10.68 | 06.06 16.46 | 21.52 4.34 | 8.15 17.42 19.78
Deepseek-Coder-1.3B-Hammer 85.51 | 77.22 77.68 | 65.97 82.26 | 57.68 95.74 | 88.98 81.37 | 64.68 84.51 70.91

17

Published as a conference paper at ICLR 2025

F DIFFERENT TYPES OF FUNCTION-CALLING TASKS

Simple: This query style includes straightforward scenarios where a single function call is made
based on the user’s input with a single provided JSON format API description.

Multiple: In this style, user queries could be answered by one of several function calls. The chal-
lenge lies in selecting the most appropriate function from multiple provided APIs. It represents one
of the most common real-world use cases.

Parallel: This query style requires executing multiple function calls simultaneously in response to
a single user query, which may consist of one or more sentences but with only one API provided.

Parallel Multiple: This query style combines the parallel and multiple categories, where multiple
function and API documents are provided, and each function call might be invoked multiple times
based on the query’s requirements.

Irrelevance: In this query style, no suitable function exists within the candidate options to fulfill
users’ intent, thus the model should have the ability to detect it and decline the task, rather than
making incorrect attempts.

Figure 7: Demonstration of different function-calling styles.

G IMPACT OF IRRELEVANCE-AUGMENTED DATA ON MODEL PERFORMANCE

We conducted a thorough analysis to determine the number of failed cases resulting from irrelevant
function calls, particularly before and after incorporating the irrelevance-augmented dataset into the
training regimen for the Hammer model. The analysis provides insights into the model’s ability to
accurately detect irrelevant function calls.

Table 14: Performance of Hammer-7B “with|without” irrelevance-augmented dataset, where GT
stands for “ground truth”.

GT Irrelevant GT Relevant

Model Predict Irrelevant 745|16 35|0
Model Predict Relevant 370|1099 2450|2480

Table 14 clearly demonstrate the significant improvement in irrelevance detection when the Hammer
model is trained with the irrelevance-augmented dataset. Without this augmentation, the model’s
performance in detecting irrelevant function calls is poor, with almost all ground truth irrelevant
cases being predicted as relevant. This analysis underscores the urgency and importance of incor-
porating irrelevance-augmented data into the training process, which aligns with our motivation for
creating such a dataset and highlights its impact on model performance.

H ON-DEVICE FUNCTION CALLING PERFORMANCE AND EFFICIENCY

Our research focuses on the development of compact models (no larger than 7B) that achieve a
balance between robustness and performance, with a specific emphasis on maintaining accuracy

18

Published as a conference paper at ICLR 2025

in function calling—a critical factor for effective task execution on mobile devices. This section
provides a comprehensive analysis of the efficiency and performance of our model in on-device
function calling scenarios, aimed at meeting the requirements for lightweight, robust models suit-
able for mobile applications, such as personal assistants. Table 15 presents a detailed evaluation
of non-functional metrics and hardware configurations for our Hammer-7B model, after it has been
quantized using the Q4 K M method.

Table 15: Performance metrics of the Hammer-7B model on mobile devices after quantization.

Model Quantization Method Precision Prefill Speed Decode Speed Backend RAM Usage Processor Mobile Model

Hammer-7B Q4 K M 4 bits 9.4 tokens/sec 7.9 tokens/sec Android 4.7 GB / 16 GB Snapdragon 8 Gen 3 OPPO Find X7 Ultra

Quantization using the Q4 K M method results in approximately a 2% performance degradation,
which remains within an acceptable range, preserving the model’s suitability for mobile deployment.
These metrics demonstrate that the Hammer-7B model can operate efficiently on mobile devices.
However, its inference speed still has significant room for improvement due to the current lack of
universal and efficient edge-side inference frameworks. Nevertheless, we are confident that our
community will address this issue in the near future.

I EXAMPLE INPUT TO MODELS WITH FUNCTION MASKING

The prompted inputs to models in our experiment are exampled as:

[BEGIN OF TASK INSTRUCTION]
You are a tool calling assistant. In order to complete the user's
request, you need to select one or more appropriate tools from the
following tools and fill in the correct values for the tool parameters.
Your specific tasks are:
1. Make one or more function/tool calls to meet the request based

on the question.
2. If none of the function can be used, point it out and refuse to

answer.
3. If the given question lacks the parameters required by the function,

also point it out.
[END OF TASK INSTRUCTION]

[BEGIN OF AVAILABLE TOOLS]
[

{
"name": "LxOm64zLyg",
"description": "Gets hourly weather forecast information for

given geographical coordinates using the RapidAPI service.",
"parameters": {

"TDpjPd": {
"description": "The latitude of the geographical location.",
"type\": "int",
"default": 46.95828

},
"78th2U3lFj": {

"description": "The longitude of the geographical location.",
"type": "int",
"default": 10.87152

}
}

},
{

"name": "WoDdNSe7e7K5",
"description": "Fetches weather updates for a given city

19

Published as a conference paper at ICLR 2025

using the RapidAPI Weather API.",
"parameters": {

"LzZsvxUC": {
"description": "The name of the city for which to

retrieve weather information.",
"type": "str",
"default": "London"

}
}

},
{

"name": "CBrCNmwOERb",
"description": "Fetches the hourly weather forecast for a

given location using the RapidAPI service.",
"parameters": {

"TDEJ.ZwMt": {
"description": "The name of the location for which

to retrieve the hourly weather forecast.",
"type": "str",
"default": "Berlin"

}
}

},
{

"name": "1YTQVXkwLY",
"description": "Returns an air quality forecast for a given

location.",
"parameters": {

"2bkgDA": {
"description": "The latitude of the location for

which the air quality forecast is to be retrieved.",
"type": "int",
"default": "35.779"

},
"DQi.ReZ16": {

"description": "The longitude of the location for
which the air quality forecast is to be retrieved.",

"type": "int",
"default": "-78.638"

},
"hF.1": {

"description": "The number of hours for which the
forecast is to be retrieved (default is 72).",

"type": "int",
"default": "72"

}
}

}
]

[END OF AVAILABLE TOOLS]

[BEGIN OF FORMAT INSTRUCTION]
The output MUST strictly adhere to the following JSON format, and
NO other text MUST be included.\nThe example format is as follows.
Please make sure the parameter type is correct. If no function
call is needed, please directly output an empty list '[]'
```
[

20



Published as a conference paper at ICLR 2025

{
"name": "func_name1",
"arguments": {

"argument1": "value1",
"argument2": "value2"

}
},

... (more tool calls as required)
]
```
[END OF FORMAT INSTRUCTION]

[BEGIN OF QUERY]
What are the current weather conditions in Sydney?
[END OF QUERY]

The corresponding output generated by models should be:

```
[

{
"name": "WoDdNSe7e7K5",
"arguments": {

"LzZsvxUC": "Sydney"
}

}
]
```

21

	Introduction
	Related Works
	Problem Statement and Analysis
	Misleadingness by Function Name and Parameter Name
	The Impact of Excessive Focus on the Naming

	Methodology
	Function Masking
	Irrelevance-Augmented Dataset

	Evaluation
	Experimental Setup
	Overall Performance on Various Benchmarks
	Detailed Performance on Different Types of Function Calling
	Ablation on Different Base Models
	Ablation on Different Masking Ratio
	Ablation on Different Proportions of Irrelevance-Augmented Data

	Conclusion
	Analysis of xLAM Model Performance on Seal-Tools and Nexus Raven Benchmarks
	Error Type Analysis
	Data Contamination Clarification
	Potential Failure of Function-Masking
	Extra Experimental Results
	Different Types of Function-calling Tasks
	Impact of Irrelevance-Augmented Data on Model Performance
	On-Device Function Calling Performance and Efficiency
	Example Input to Models with Function Masking

