A Notation

S;: Search options for layer;.

|S;|: Num of search options on layer;.

s;: selected search option on layer; from the set S;

0;: default search option applied on layer;, o1 .1, is the architecture of the baseline model.

(s1, 82, .-, 81,): A model architecture that applies s; on layery, sz on layers, ..., $g, on layery,

(81..i—1, i, 0541..1.): A model architecture that applies s; on layery, sz on layers, ..., default search
option 0,41 on layer;y1, ... o, on layery, and search z; on layer;.

M ;: A model candidate that is searched on layer;, it’s in the form of (s1.;—1, i, 0i+1..1.)-
M;: All model candidates searching on layer;.

M 5, Model candidates searching on layer;, and are mapped to i € H.

¢ : M — H: transforms a model architecture M € M to a finite integer set H

B NASBench-101 Search Details

NASBench-101 defines a search space on 5 ops, each op has 3 options (conv1x1, conv3x3, maxpool
3x3), and 21 potential edges to connect these ops and input, output ops. It contains S09M candidates
with their number of parameters, accuracy on Cifar-10, and other information.

We construct the LayerNAS search space by adding a new edge for each layer. Search options in each
layer are used to determine either to include a new op or connect two existing ops. By doing so, all
constructed candidates can be legit, because all candidates are connected graphs. And this approach
of search space construction can satisfy the assumption of LayerNAS: the best model candidate in
layer; can be constructed from candidates in layer;_; by adding an new edge.

In the experiments, Regularized Evolution (RE) sets population_size=50, tournament_size=10;
Proximal Policy Optimization (PPO) sets train_batch_size=16, update_batch_size=8,
num_updates_per_feedback=10. Both RE and PPO are using MNAS as objective function:
Accuracy x (Cost/Target) %07

In Figure |1} we observe that in earlier searching iterations LayerNAS performs slightly worse than
other algorithms. This is because LayerNAS initially searches model candidates with fewer ops
and edges, which intuitively perform poorly. However, after collecting enough information from
early layers, LayerNAS consistently performs better. This is because LayerNAS does not rely on
randomness, rather, it adds ops and edges from successful candidates in each layers, leading to
continuous improvement.
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Figure 1: NASBench-101 test accuracy on Cifar-10, average on 100 runs
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Table 1: Comparison on NASBench-101

Algorithm  Validation accuracy  Test accuracy
RS 0.9480 0.9401
RE 0.9497 0.9416
PPO 0.9476 0.9396
LayerNAS 0.9505 0.9426
Optimal 0.9432 0.9445

C NATS-Bench Search Details

In the experiments, Regularized Evolution (RE) sets population_size=50, tournament_size=10;
Proximal Policy Optimization (PPO) sets train_batch_size=16, update_batch_size=8,
num_updates_per_feedback=10. Both RE and PPO are using MNAS as objective function:
Accuracy x (Cost/Target) %07

C.1 NATS-Bench topology search
NATS-Bench topology search defines a search space on 6 ops that connect 4 tensors, each op has 5
options (conv1x1, conv3x3, maxpool3x3, no-op, skip).

In our experiments, we construct the LayerNAS search space by adding a new tensor for each layer.
Search options in each layer are encoded with all op types that connect this tensor to previous tensors.
So it has only 3 layers, each layer has 5, 25, 125 options.

Validation and test accuracy are shown in Figure [2]and Figure[3]
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Figure 2: NATS-Bench topology search valid accuracy on (a) Cifarl0 (b) Cifar100 (c) Imagenet16-
120
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Figure 3: NATS-Bench topology search test accuracy on (a) Cifar10 (b) Cifar100 (c) Imagenet16-120

C.2 NATS-Bench size search

NATS-Bench size search provides a dataset with information on model architectures with 5 layers.
Each layer is a convolutional layer with different num of channels selected from {8, 16, 24, 32, 40,
48, 56, 64}. The model with 64 channels for all layers has the most model parameters, the largest
latency and the best accuracy. The objective is to find the optimal model with 50% FLOPs.
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LayerNAS constructs the search space by using the largest model as base model, and applies search
options that reduce channels per layer. Althoughh LayerNAS steadily improves valid accuracy over
time, test accuracy drops. This is due to in-correlation between test accuracy and valid accuracy.

Validation and test accuracy are shown in Figure ] and Figure[5] We can observe that LayerNAS can
outperform other algorithms on both validation and test accuracy. We can also attribute test accuracy
drop in LayerNAS to the lack of correlation with validation accuracy.
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Figure 4: NATS-Bench size search valid accuracy on (a) Cifar10 (b) Cifar100 (c) Imagenet16-120
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Figure 5: NATS-Bench size search test accuracy on (a) Cifar10 (b) Cifar100 (c) Imagenet16-120

D Dynamic Programming Implementation of LayerNAS for Multi-objective
NAS

Algorithm [T] demonstrates how to implement LayerNAS with Dynamic Programming, which has
clear explanation why search complexity is O(H - [S| - L) .

The implementation is not used in practice because it spends most of time searching in layery 1,
we cannot get a model in expected cost range until last layer is searched.

Algorithm 1 Dynamic Programming for Combinatorial Optimization

fori=1to L —1do
for M; € M; do
for s € S;;1 do
M1 = apply_search_option(M;, s)
h = cost(M41)
accuracy = train_and_eval(M; 1)
if accuracy > Accuracy(M; 5) then
Ml+1,h = Ml+1
end if
end for
end for
end for

E Discussion on search space assumptions

Assumption 4.1 sets some characteristics of search spaces that can be leveraged to improve the search
efficiency. Instead of expecting all search spaces can satisfy this assumption, in experiments, we
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construct search spaces based on MobileNet to intentionally make them satisfy Assumption 4.1.
While we cannot guarantee that all search spaces can be transformed to satisfy Assumption 4.1,
most search spaces used in existing models or studies either implicitly use this assumption or can
be transformed to satisfy it. We also demonstrate the effectiveness of this assumption from the
experiments on MobileNet.

E.1 Search space is complete

Assume we are searching for the optimal model s;..s,,, and we store all possible model candidates
on each layer. During the search process on layer,, we generate model architectures by modifying
op, to other options in S. Since we store all model architectures for layer,,_1, the search process can
create all [S|™ candidates on layer,, by adding each s,, € S to the models in M,,_;. Therefore, M,
contains all possibilities in the search space. This process can then be applied backward to the first
layer.

E.2 Sequential search order

Assume, after LayerNAS sequential search, we get optimal model defined as a;..a;..a,,. For sake
of contradiction, there exists a model a;..b;..a,,, with superior performance, by applying a change
in previous layers. Since the search space is complete, model a;..b;0;41..0,, must exist, and has
been processed in M. In the sequential search, model a;..b;a;41..0,, can be created by using a; 1
on layer;;+1. Repeating this process for all subsequent layers will eventually lead to a;..b;..ay,
contradicting our assumption that optimal model from sequential search is a; ..a;..a,,. Therefore, we
can search sequentially.

E.3 Limit of the assumption

MobileNet architecture does not satisfy Assumption 4.1 by default. Residual requires layer; and
layer; have the same num of filters. Suppose S; = {32,64,96}, S; = {64, 96, 128}, the residual
shortcut cannot be created if s; = 32, s; = 96. This is the case when preceding layers are coupled
with succeeding layers. To overcome this issue, we introduce a virtual layer, with options {64, 96}.
We first search this shared filter to create residual shortcuts, and then search specs for each layer. This
transformation ensures that the new search space satisfy Assumption 4.1. In the case of MobileNet
search space, we first search for the common filters for the block and then for the expanded filters for
each layer. This approach allows us to perform LayerNAS on a search space that satisfies Assumption
4.1.

F Discussion on num of replicas to store

From experiments on MobileNet, we observed that multiple runs on the same model architecture
can yield standard deviations of accuracy ranging from 0.08% to 0.15%. Often times, the difference
can be as high as 0.3%. To address this, we propose storing multiple candidates for the same cost to
increase the likelihood of keeping the better model architecture for every layer search.

Suppose we have two models with the same cost, x and y, where x is inferior and y is superior, and the
training accuracy follows a Gaussian distribution N (1, o2). The probability of - obtaining a higher
accuracy than y is P(z —y > 0), where © — y ~ N(uz — f1y, 02> + 0,,%). In emprical examples,
faz — iy = —0.002 and o, = 0.001, then x has the probability of 9.2% of obtaining a higher accuracy.
When we have L = 20 layers, the probability of keeping the better model architecture for every layer
search is (1 — p)? = 18%.

By storing k candidates with the same cost, we can increase the probability of keeping the better
model architecture. When k& = 3, the probability of storing all inferior models is p* = 0.08%. The
probability of keeping the better model architecture for all L = 20 layer searches is 98.4%, which is
practically good enough.

Theoretically, if we store infinite candidates per layer, we are performing a complete grid search,
which guarantees a optimal model architecture.
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Table 2: 60M MAdds Search Space

Operator # Output filter # Expanded Filter strides | [S]
conv2d{3x3} 16 2
bneck {3x3} {24, 20, 18, 16, 14, 12} 2 6
Block filter {36, 32, 28, 24, 20, 18, 16} 7
{144, 136, 128, 120, 112, 104,
bneck {3x3, 5x5} 96, 88, 80, 72, 68, 64, 60, 56} 2 28
{144, 136, 128, 120, 112, 104,
bneck {3x3, 5x5} 96, 88, 80, 72 68, 64, 60, 56} 1 28
Block filter {60, 56, 52, 48, 44, 40, 36, 32, 28} 9
{192, 176, 160, 144, 128,
bneck {3x3, 5x5, 7x7} 112, 104, 96, 88, 80, 72, 64} 2 36
{480, 440, 400, 360, 320, 300,
bneck {3x3, 5x5, 7x7} 280, 260, 240, 220, 200, 180, 160} 1 39
{480, 440, 400, 360, 320, 300,
bneck {3x3, 5x5, 7x7} 280, 260, 240, 220, 200, 180, 160} 1 39
{96, 88, 80, 72, 64, 60, 56,
Block filter 52,48, 44, 40, 36, 32} 13
{240, 200, 180, 160, 140,
bneck {3x3, 5x5, 7x7} 120, 100, 90, 80} 1 27
{288, 256, 224, 208, 192, 176,
bneck {3x3, 5x5, 7x7} 160, 152, 144, 136, 128, 120} 1 36
{192, 176, 160, 144, 128, 120, 112,
Block filter 104, 96, 88, 80, 72, 64} 13
{576, 544, 512, 480, 448, 416,
bneck {3x3, 5x5, 7x7} 384, 352, 320, 288, 256, 224} 2 36
{1152, 1088, 1024, 960, 896, 832,
bneck {3x3, 5x5, 7x7} 768, 704, 640, 576, 516, 448} 1 36
{1152, 1088, 1024, 960, 896, 832,
bneck {3x3, 5x5, 7x7} 768, 704, 640, 576, 516, 448} 1 36
conv2d 1x1 {864, 576}, 2
pool, 7x7
conv2d 1x1 {1536, 1024} 2
conv2d 1x1 {1001}

G MobileNetV2 and MobileNetV3 Search Details

We aim to search models under different MAdds constrants: 60M (similar to MobileNetV3-Small),
220M (similar to MobileNetV3-Large), 300M (similar to MobileNetV2), 600M (similar to Mo-
bileNetV2 1.4x).

For each block, we will search the number of output filters of the block first. All layers in the block
have the same number of output filters to create residual block correctly. Following the search for the
block output filters, we search expanded filter and kernel size of each layers in this block. Strides are
fixed for all layers. We use S| to denote the number of search options of this layer, which facilitates
the computation on the number of unique model architectures, and max number of required search
trials in LayerNAS.

G.1 60M MAdds Model

The search spaces has L = 16 encoded length. Number of unique model architecture is [ S| =
5.0e + 20. We store up to 300 model candidates per layer, so max number of trials is 300 x > [S| =
1.2e + 5.
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Table 3: LayerNAS Model under 60M MAdds

Input Operator | # Output filter | # Expanded Filter | strides

224 x 224 x 3 | conv2d 3x3 16 2
112 x 112 x 16 | bneck 3x3 16 2
56 x 56 x 16 bneck 3x3 28 144 2
28 x 28 x 28 bneck 3x3 28 128 1
28 x 28 x 28 bneck 5x5 44 96 2
14 x 14 x 44 bneck 3x3 44 220 1
14 x 14 x 44 bneck 3x3 44 200 1
14 x 14 x 44 bneck 7x7 40 160 1
14 x 14 x 40 bneck 3x3 40 152 1
14 x 14 x 96 bneck 5x5 96 224 2
7 X 7x96 bneck 3x3 96 448 1
7xT7x96 bneck 3x3 96 512 1
7 X7 x96 conv2d 1x1 864 1
7 x 7 x 864 pool, 7x7 1
7x T x 864 conv2d 1x1 1536 1
7x7x1536 | conv2d 1x1 1001 1

G.2 220M MAdds Model

The search spaces has L = 21 encoded length, the number of unique model architecture is [ [ [S| =
4.8e + 26 For LayerNAS, we store up to 300 model candidates per layer, so max number of trials is
300 x > |S| =1.5e+5

G.3 300M MAdds Model

The search spaces has L = 26 encoded length, the number of unique model architectures is [ |
5.3e + 30. We store up to 300 model candidates per layer, so max number of trials is 300 x >

1.4e + 5.

G.4 600M MAdds Model

S|
S|

The search spaces has L = 31 encoded length, the number of unique model architecture is [ [ [S| =
1.6e + 39 For LayerNAS, we store up to 300 model candidates per layer, so max number of trials is
300 x >_|S| = 2.0e + 6



Table 4: 220M MAdds Search Space

Operator # Output filter # Expanded Filter strides | |S]
Conv2d(3x3) 16 2
bneck {3x3] (24,20, 18, 16, 14, 12} I 6
Block filter (36, 32, 28, 24, 20, 16}
{96, 88, 80, 72,
bneck {3x3, 5x5} 68, 64, 60, 56, 48} 2 18
{124, 116, 108, 100, 92, 84,
bneck {3x3, 5x5, 7x7} 72, 68, 64, 56, 48} 1 33
{64, 56, 52, 48,
Block filter 44, 40, 36, 32, 24} 9
{128, 120, 112, 104, 96,
bneck {3x3, 5x5, 7x7} 88, 80, 76, 72, 64, 56} 2 |33
{240, 200, 180, 160,
bneck {3x3, 5x5, 7x7} 140, 120, 110, 100, 80} 1 27
{240, 200, 180, 160,
bneck {3x3, 5x5, 7x7} 140, 120, 110, 100, 80} 1 27
{160, 140, 130, 120,
Block filter 110, 100, 80, 70, 60} 9
{360, 320, 300, 280, 260,
bneck {3x3, 5x5, 7x7} 240, 220, 200, 180, 160} 2 30
{400, 360, 340, 320, 300, 280,
bneck {3x3, 5x5, 7x7} 260, 240, 220, 200, 180, 160, 120} 1 36
{368, 336, 304, 288, 272, 256,
bneck {3x3, 5x5, 7x7} 240, 224, 208, 184, 168, 152} 1 36
{368, 336, 304, 288, 272, 256,
bneck {3x3, 5x5, 7x7} 240, 224, 208, 184, 168, 152} 1 36
{224,208, 192, 176, 160,
Block filter 144, 128, 112, 96, 80} 10
{960, 880, 800, 720, 640, 560,
bneck {3x3, 5x5, 7x7} 520, 480, 440, 400, 360} 1 33
{1344, 1200, 1056, 960, 888,
bneck {3x3, 5x5, 7x7} 816, 768, 720, 624, 576, 480} 1 33
{320, 280, 240, 220,
Block filter 200, 180, 160, 120, 100 } 9
{1344, 1200, 1056, 960, 888,
bneck {3x3, 5x5, 7x7} 816, 768, 720, 624, 576, 480} 2 33
{1920, 1760, 1600, 1440, 1280,
bneck {3x3, 5x5, 7x7} 1120, 960, 880, 800, 720, 640} 1 33
{1920, 1760, 1600, 1440, 1280,
bneck {3x3, 5x5, 7x7} 1120, 960, 880, 800, 720, 640} 1 33
{1728, 1664, 1600,
bneck {3x3, 5x5, 7x7} | {480, 440, 400, 360, 320, 300, 280} 1536, 1440, 1280, 1216} 1 7
conv2d Ix1 {960}
pool, 7x7
conv2d 1x1 {1440, 1280} 2
conv2d 1x1 {1001}




Table 5: LayerNAS Model under 220M MAdds

Input Operator | # Output filter | # Expanded Filter | strides

224 x 224 x 3 | conv2d 3x3 16 2
112 x 112 x 16 | bneck 3x3 18 1
112 x 112 x 16 | bneck 3x3 24 64 2
56 x 56 x 28 bneck 3x3 24 48 1
56 x 56 x 28 bneck 5x5 56 80 2
28 x 28 x 44 bneck 5x5 56 200 1
28 x 28 x 44 bneck 5x5 56 100 1
28 x 28 x 44 bneck 5x5 80 400 2
14 x 14 x 40 bneck 3x3 80 200 1
14 x 14 x 96 bneck 3x3 80 272 1
7 X 7x96 bneck 3x3 80 168 1
14 x 14 x 44 bneck 5x5 112 440 1
14 x 14 x 40 bneck 5x5 112 576 1
14 x 14 x 96 bneck 7x7 160 624 2
7Tx7x96 bneck 5x5 160 640 1
7T X7 x96 bneck 3x3 160 640 1
7 X7 x96 conv2d 1x1 960 1
7 X7 x 864 pool, 7x7 1
7T x 7 x 864 conv2d 1x1 1280 1
7x 7 x 1536 | conv2d IxI 1001 1




Table 6: 300M MAdds Search Space

Operator # Output filter # Expanded Filter strides | [S]
Conv2d(3x3) 32 2

bneck {3x3] (24,20, 16, 14} 1 i

Block filter {48, 44, 40, 36, 32, 28, 24} 7

bneck {3x3, 5x5} (72,64,56,52,48,44,40} | 2 | 14
{144, 128, 120, 112,

bneck {3x3, 5x5} 104, 96, 92, 88, 80, 76} 1|20
{144, 128, 120, 112,

bneck {3x3, 5x5} 104, 96, 92, 88, 80, 76} 1 20

Block filter {60, 56, 52, 48, 44, 40, 36, 32} 8
(144, 128, 120, 112,

bneck {3x3, 5x5} 104, 96, 92, 88, 80, 76} 2 |20
{180, 160, 140, 130,

bneck {3x3, 5x5, 7x7) 120, 110, 100, 80} 1 |24
{180, 160, 140, 130,

bneck {3x3, 5x5, 7x7) 120, 110, 100, 80} 1 24
{180, 160, 140, 130,

bneck {3x3, 5x5, 7x7} 120, 110, 100, 80} 1|24

Block filter {120, 110, 100, 90, 80, 70, 60} 7
{360, 320, 280, 260,

bneck {3x3, 5x5, 7x7} 240, 220, 200, 180} 2 | 24
{360, 320, 280, 260,

bneck {3x3, 5x5, 7x7} 240, 220, 200, 180} 1| 24
{360, 320, 280, 260,

bneck {3x3, 5x5, 7x7} 240, 220, 200, 180} 1| 24

Block filter (144, 128, 120, 104, 96, 88, 80, 72] 8
{360, 320, 280, 260,

bneck {3x3, 5x5, 7x7} 240, 220, 200, 180} 1| 24
{432, 400, 368, 336,

bneck {3x3, 5x5, 7x7) 304, 288, 272, 256, 240) 1|27
{432, 400, 368, 336,

bneck {3x3, 5x5, 7x7} 304, 288, 272, 256, 240} 1 27
{432, 400, 368, 336,

bneck {3x3, 5x5, 7x7} 304, 288, 272, 256, 240} 1|27

Block filter (288, 256, 224, 192, 160, 144} 6
{864, 800, 736, 672,

bneck {3x3, 5x5, 7x7} 608, 576, 512, 448} 2 24
{864, 800, 736, 672,

bneck {3x3, 5x5, 7x7} 608, 576, 512, 448} 1 24
{864, 800, 736, 672,

bneck {3x3, 5x5, 7x7} 608, 576, 512, 448} 1 24
{864, 800, 736, 672,

bneck {3x3, 5x5, 7x7) 608, 576, 512, 448) 1|24
{1728, 1664, 1600,

bneck {3x3, 5x5, 7x7} | {480, 440, 400, 360, 320, 300, 280} 1536, 1440, 1280, 1216} 1 7

pool, 7x7
conv2d 1x1 {1920, 1600, 1280} 3
conv2d 1x1 {1001}




Table 7: LayerNAS Model under 300M MAdds

Input Operator | # Output filter | # Expanded Filter | strides
224 x 224 x 3 | conv2d 3x3 32 2
112 x 112 x 32 | bneck 3x3 24 1
112 x 112 x 24 | bneck 3x3 28 40 2
56 x 56 x 28 bneck 3x3 28 144 1
56 x 56 x 28 bneck 3x3 28 88 1
56 X 56 X 28 bneck 3x3 40 104 2
28 x 28 x 40 bneck 5x5 40 110 1
28 x 28 x 40 bneck 3x3 40 180 1
28 x 28 x 40 bneck 5x5 40 130 1
28 x 28 x 40 bneck 7x7 90 260 2
14 x 14 x 90 bneck 3x3 90 220 1
14 x 14 x 90 bneck 3x3 90 200 1
14 x 14 x 90 bneck 7x7 120 320 1
14 x 14 x 120 | bneck 5x5 120 288 1
14 x 14 x 120 | bneck 7x7 120 256 1
14 x 14 x 120 | bneck 3x3 120 368 1
14 x 14 x 120 | bneck 7x7 160 608 2
7 x7x 160 bneck 7x7 160 576 1
7 x7x160 bneck 5x5 160 608 1
7 x7x160 bneck 3x3 160 448 1
7 x7x 160 bneck 3x3 280 1216 1
7 x 7T x 280 pool, 7x7 1
7 x 7 x 280 conv2d 1x1 1920 1
7x7x1920 | conv2d 1x1 1001 1

10



Table 8: 600M MAdds Search Space

Operator # Output filter # Expanded Filter strides | [S]
Conv2d(3x3) 2 2
bneck (3x3) 136, 32, 28, 24, 20, 16) I 6
Block filter {56, 52, 48, 44, 40, 36, 32, 28} 8
bneck {3x3, 5x5} {88, 80, 72, 64, 56, 52, 48} 2 14
bneck {3x3, 5x5) (88, 80, 72, 64, 56, 52, 48) 1 |14
bneck {3x3, 5x5} {88, 80, 72, 64, 56, 52, 48} 1 14
bneck {3x3, 5x5) (88, 80, 72, 64, 56, 52, 48) | 14
Block filter {72, 64, 60, 56, 52, 48, 44, 40} 8
{180, 160, 144, 128, 120,
bneck {3x3, 5x5} 112, 104, 96, 92, 88, 80} 2 |2
{240, 220, 200, 180,
bneck {3x3, 5x5, 7x7} 160, 140, 130, 120, 100} 1 27
{240, 220, 200, 180,
bneck {3x3, 5x5, 7x7} 160, 140, 130, 120, 100} 1 27
{240, 220, 200, 180,
bneck {3x3, 5x5, 7x7} 160, 140, 130, 120, 100} 1 27
{240, 220, 200, 180,
bneck {3x3, 5x5, 7x7} 160, 140, 130, 120, 100} 1 27
Block filter {200, 180, 160, 140, 120, 100, 90, 80} 8
{440, 400, 360, 320,
bneck {3x3, 5x5, 7x7} 280, 260, 240, 200} 2 24
{560, 520, 480, 440,
bneck {3x3, 5x5, 7x7} 400, 360, 320, 280, 240} 1 27
{560, 520, 480, 440,
bneck {3x3, 5x5, 7x7} 400, 360, 320, 280, 240} 1 27
{560, 520, 480, 440,
bneck {3x3, 5x5, 7x7} 400, 360, 320, 280, 240} 1 27
{180, 160, 144, 128,
Block filter 120, 104, 96, 88, 80} 9
{560, 520, 480, 440,
bneck {3x3, 5x5, 7x7} 400, 360, 320, 280, 240} 1 27
{560, 528, 496, 464, 432, 400,
bneck {3x3, 5x5, 7x7} 368, 336, 304, 288, 272, 256} 1 36
{560, 528, 496, 464, 432, 400,
bneck {3x3, 5x5, 7x7} 368, 336, 304, 288, 272, 256} 1 36
{560, 528, 496, 464, 432, 400,
bneck {3x3, 5x5, 7x7} 368, 336, 304, 288, 272, 256} 1 36
{560, 528, 496, 464, 432, 400,
bneck {3x3, 5x5, 7x7} 368, 336, 304, 288, 272, 256} 1 36
Block filter {320, 288, 256, 224, 192, 160} 6
{992, 928, 864, 800,
bneck {3x3, 5x5, 7x7} 736, 672, 608, 576, 512} 2 27
{992, 928, 864, 800,
bneck {3x3, 5x5, 7x7} 736, 672, 608, 576, 512} 1 27
{992, 928, 864, 800,
bneck {3x3, 5x5, 7x7} 736, 672, 608, 576, 512} 1 27
{992, 928, 864, 800,
bneck {3x3, 5x5, 7x7} 736, 672, 608, 576, 512} 1 27
{992, 928, 864, 800,
bneck {3x3, 5x5, 7x7} 736, 672, 608, 576, 512} 1 27
{600, 560, 520, 480, {1920, 1856, 1792, 1728,
bneck {3x3, 5x5, 7x7} 440, 400, 360, 320} 1664, 1600, 1536, 1440} 1 24
pool, 7x7
conv2d 1x1 {2560, 2240, 1920} 3
conv2d 1x1 {1001}
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Table 9: LayerNAS Model under 600M MAdds

Input Operator | # Output filter | # Expanded Filter | strides
224 x 224 x 3 | conv2d 3x3 32 2
112 x 112 x 32 | bneck 3x3 36 1
112 x 112 x 36 | bneck 5x5 36 80 2
56 x 56 x 36 bneck 5x5 36 72 1
56 x 56 x 36 bneck 3x3 36 80 1
56 x 56 x 36 bneck 5x5 36 72 1
56 x 56 x 36 bneck 3x3 48 144 2
28 x 28 x 48 bneck 3x3 48 140 1
28 x 28 x 48 bneck 3x3 48 160 1
28 x 28 x 48 bneck 3x3 48 130 1
28 x 28 x 48 bneck 5x5 48 140 1
28 X 28 x 48 bneck 7x7 140 360 2
14 x 14 x 140 bneck 5x5 140 360 1
14 x 14 x 140 bneck 3x3 140 560 1
14 x 14 x 140 bneck 5x5 140 440 1
14 x 14 x 140 bneck 7x7 144 360 1
14 x 14 x 144 bneck 5x5 144 560 1
14 x 14 x 144 bneck 3x3 144 288 1
14 x 14 x 144 bneck 5x5 144 400 1
14 x 14 x 144 bneck 5x5 144 256 1
14 x 14 x 144 bneck 3x3 192 864 2
7 X 7x192 bneck 5x5 192 928 1
7 x7x192 bneck 7x7 192 736 1
7 x7x192 bneck 7x7 192 800 1
7 x7x192 bneck 3x3 192 928 1
7 x 7 x192 bneck 3x3 320 1440 1
7 X7 x 320 pool, 7x7 1
7 x 7 x 320 conv2d 1x1 2560 1
7 x 7 x 2560 conv2d 1x1 1001 1
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