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ABSTRACT

In applications of diffusion models, controllable generation is of practical sig-
nificance, but is also challenging. Current methods for controllable generation
primarily focus on modifying the score function of diffusion models, while Mean
Reverting (MR) Diffusion directly modifies the structure of the stochastic differ-
ential equation (SDE), making the incorporation of image conditions simpler and
more natural. However, current training-free fast samplers are not directly ap-
plicable to MR Diffusion. And thus MR Diffusion requires hundreds of NFEs
(number of function evaluations) to obtain high-quality samples. In this paper,
we propose a new algorithm named MaRS (MR Sampler) to reduce the sampling
NFEs of MR Diffusion. We solve the reverse-time SDE and the probability flow
ordinary differential equation (PF-ODE) associated with MR Diffusion, and de-
rive semi-analytical solutions. The solutions consist of an analytical function and
an integral parameterized by a neural network. Based on this solution, we can gen-
erate high-quality samples in fewer steps. Our approach does not require training
and supports all mainstream parameterizations, including noise prediction, data
prediction and velocity prediction. Extensive experiments demonstrate that MR
Sampler maintains high sampling quality with a speedup of 10 to 20 times across
ten different image restoration tasks. Our algorithm accelerates the sampling pro-
cedure of MR Diffusion, making it more practical in controllable generation. 1

1 INTRODUCTION

Diffusion models have emerged as a powerful class of generative models, demonstrating remarkable
capabilities across a variety of applications, including image synthesis (Dhariwal & Nichol, 2021;
Ruiz et al., 2023; Rombach et al., 2022) and video generation (Ho et al., 2022a;b). In these applica-
tions, controllable generation is very important in practice, but it also poses considerable challenges.
Various methods have been proposed to incorporate text or image conditions into the score function
of diffusion models(Ho & Salimans, 2022; Ye et al., 2023; Zhang et al., 2023), whereas Mean Re-
verting (MR) Diffusion offers a new avenue of control in the generation process (Luo et al., 2023b).
Previous diffusion models (such as DDPM (Ho et al., 2020)) simulate a diffusion process that grad-
ually transforms data into pure Gaussian noise, followed by learning to reverse this process for
sample generation (Song & Ermon, 2020; Song et al., 2021). In contrast, MR Diffusion is designed
to produce final states that follow a Gaussian distribution with a non-zero mean, which provides
a simple and natural way to introduce image conditions. This characteristic makes MR Diffusion
particularly suitable for solving inverse problems and potentially extensible to multi-modal condi-
tions. However, the sampling process of MR Diffusion requires hundreds of iterative steps, which is
time-consuming.

˚These authors contributed equally to this work.
:Corresponding authors.
1Code is available at https://github.com/grrrute/mr-sampler
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Figure 1: Qualitative comparisons between MR Sampler and Posterior Sampling. All images
are generated by sampling from a pre-trained MR Diffusion (Luo et al., 2024a) on the RESIDE-6k
(Qin et al., 2020b) dataset and the CelebA-HQ (Karras, 2017) dataset.

To improve the sampling efficiency of diffusion models, various acceleration strategies have been
proposed, which can be divided into two categories. The first explores methods that establish di-
rect mappings between starting and ending points on the sampling trajectory, enabling acceleration
through knowledge distillation (Salimans & Ho, 2022; Song et al., 2023; Liu et al., 2022b). However,
such algorithms often come with trade-offs, such as the need for extensive training and limitations
in their adaptability across different tasks and datasets. The second category involves the design of
fast numerical solvers that increase step sizes while controlling truncation errors, thus allowing for
faster convergence to solutions (Lu et al., 2022a; Zhang & Chen, 2022; Song et al., 2020a).

Notably, fast sampling solvers mentioned above are designed for common SDEs such as VPSDE
and VESDE (Song et al., 2020b). Due to the difference between these SDEs and MRSDE, exist-
ing training-free fast samplers cannot be directly applied to Mean Reverting (MR) Diffusion. In
this paper, we propose a novel algorithm named MaRS (MR Sampler) that improves the sampling
efficiency of MR Diffusion. Specifically, we solve the reverse-time stochastic differential equation
(SDE) and probability flow ordinary differential equation (PF-ODE) (Song et al., 2020b) derived
from MRSDE, and obtain a semi-analytical solution, which consists of an analytical function and
an integral parameterized by neural networks. We prove that the difference of MRSDE only leads to
change in analytical part of solution, which can be calculated precisely. And the integral part can be
estimated by discretization methods developed in several previous works (Lu et al., 2022a; Zhang
& Chen, 2022; Zhao et al., 2024). We derive sampling formulas for two types of neural network
parameterizations: noise prediction (Ho et al., 2020; Song et al., 2020b) and data prediction (Sali-
mans & Ho, 2022). Through theoretical analysis and experimental validation, we demonstrate that
data prediction exhibits superior numerical stability compared to noise prediction. Additionally, we
propose transformation methods for velocity prediction networks (Salimans & Ho, 2022) so that our
algorithm supports all common training objectives. Extensive experiments show that our fast sam-
pler converges in 5 or 10 NFEs with high sampling quality. As illustrated in Figure 1, our algorithm
achieves stable performance with speedup factors ranging from 10 to 20.

In summary, our main contributions are as follows:

• We propose MR Sampler, a fast sampling algorithm for MR Diffusion, based on solving the
PF-ODE and SDE derived from MRSDE. Our algorithm is plug-and-play and can adapt to
all common training objectives.
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• We demonstrate that posterior sampling (Luo et al., 2024b) for MR Diffusion is equiva-
lent to Euler-Maruyama discretization, whereas MR Sampler computes a semi-analytical
solution, thereby eliminating part of approximation errors.

• Through extensive experiments on ten image restoration tasks, we demonstrate that MR
Sampler can reduce the required sampling time by a factor of 10 to 20 with comparable
sampling quality. Moreover, we reveal that data prediction exhibits superior numerical
stability compared to noise prediction.

2 BACKGROUND

In this section, we briefly review the basic definitions and characteristics of diffusion probabilistic
models and mean-reverting diffusion models.

2.1 DIFFUSION PROBABILISTIC MODELS

According to Song et al. (2020b), Diffusion Probabilistic Models (DPMs) can be defined as the
solution of the following Itô stochastic differential equation (SDE), which is a stochastic process
txtutPr0,T s with T ą 0, called forward process, where xt P RD is a D-dimensional random variable.

dx “ fpx, tqdt` gptqdw. (1)

The forward process performs adding noise to the data x0, while there exists a corresponding reverse
process that gradually removes the noise and recovers x0. Anderson (1982) shows that the reverse
of the forward process is also a solution of an Itô SDE:

dx “ rfpx, tq ´ gptq2∇x log ptpxqsdt` gptqdw̄, (2)

where f and g are the drift and diffusion coefficients respectively, w̄ is a standard Wiener process
running backwards in time, and time t flows from T to 0, which means dt ă 0. The score function
∇x log ptpxq is generally intractable and thus a neural network sθpx, tq is used to estimate it by
optimizing the following objective (Song et al., 2020b; Hyvärinen & Dayan, 2005):

θ˚ “ argmin
θ

Et

!

λptqEx0
Ext|x0

”

}sθpxt, tq ´ ∇xt
log ppxt|x0q}

2
2

ı)

. (3)

where λptq : r0, T s Ñ R` is a positive weighting function, t is uniformly sampled over r0, T s,
x0 „ p0pxq and xt „ ppxt|x0q. To facilitate the computation of ppxt|x0q, the drift coefficient
fpx, tq is typically defined as a linear function of x, as presented in Eq.(4). Based on the inference
by Särkkä & Solin (2019) in Section 5.5, the transition probability ppxt|x0q corresponding to Eq.(4)
follows Gaussian distribution, as shown in Eq.(5).

dx “ fptqxdt` gptqdw, (4)

ppxt|x0q „ N
ˆ

xt;x0e
şt
0
fpτqdτ ,

ż t

0

e2
şt
τ
fpξqdξg2pτqdτ ¨ I

˙

. (5)

Song et al. (2020b) proved that Denoising Diffusion Probabilistic Models (Ho et al., 2020) and
Noise Conditional Score Networks (Song & Ermon, 2019) can be regarded as discretizations of
Variance Preserving SDE (VPSDE) and Variance Exploding SDE (VESDE), respectively. As shown
in Table 1, the SDEs corresponding to the two most commonly used diffusion models both follow
the form of Eq.(4).

Table 1: Two popular SDEs, Variance Preserving SDE (VPSDE) and Variance Exploding SDE
(VESDE). mptq and vptq refer to mean and variance of the transition probability ppxt|x0q.

SDE fptq gptq mptq vptq

VPSDE(Ho et al., 2020) ´ 1
2βptq

a

βptq x0e
´ 1

2

şt
0
βpτqdτ I ´ Ie´

şt
0
βpτqdτ

VESDE(Song & Ermon, 2019) 0
b

drσ2ptqs

dt x0

“

σ2ptq ´ σ2p0q
‰

I
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2.2 MEAN REVERTING DIFFUSION MODELS

Luo et al. (2023b) proposed a special case of Itô SDE named Mean Reverting SDE (MRSDE), as
follows:

dx “ fptq pµ ´ xqdt` gptqdw, (6)
where µ is a parameter vector that has the same shape of variable x, and fptq, gptq are time-
dependent non-negative parameters that control the speed of the mean reversion and stochastic
volatility, respectively. To prevent potential confusion, we have substituted the notation used in
the original paper (Luo et al., 2023b). For further details, please refer to Appendix B. Under the
assumption that g2ptq{fptq “ 2σ2

8 for any t P r0, T s with T ą 0, Eq.(6) has a closed-form solution,
given by

xt “ x0e
´

şt
0
fpτqdτ ` µp1 ´ e´

şt
0
fpτqdτ q ` σ8

b

1 ´ e´2
şt
0
fpτqdτz, (7)

where σ8 is a positive hyper-parameter that determines the standard deviation of xt when t Ñ 8

and z „ N p0, Iq. Note that xt starts from x0, and converges to µ ` σ8z as t Ñ 8. According to
Anderson (1982)’s result, we can derive the following reverse-time SDE:

dx “
“

fptq pµ ´ xq ´ g2ptq∇x log ptpxq
‰

dt` gptqdw̄. (8)

Similar to DPMs, the score function in Eq.(8) can also be estimated by score matching methods
Song & Ermon (2019); Song et al. (2021). Once the score function is known, we can generate x0

from a noisy state xT . In summary, MRSDE illustrates the conversion between two distinct types
of data and has demonstrated promising results in image restoration tasks (Luo et al., 2023c).

Various algorithms have been developed to accelerate sampling of VPSDE, including methods like
CCDF (Chung et al., 2022), DDIM (Song et al., 2020a), PNDM (Liu et al., 2022a), DPM-Solver
(Lu et al., 2022a) and UniPC (Zhao et al., 2024). Additionally, Karras et al. (2022) and Zhou
et al. (2024) have introduced techniques for accelerating sampling of VESDE. However, the drift
coefficient of VPSDE and VESDE is a linear function of x, while the drift coefficient in MRSDE
is an affine function w.r.t. x, adding an intercept µ (see Eq.(4) and Eq.(6)). Therefore, current
sampling acceleration algorithms cannot be applied to MR Diffusion. To the best of our knowledge,
MR Sampler has been the first sampling acceleration algorithm for MR Diffusion so far.

3 FAST SAMPLERS FOR MEAN REVERTING DIFFUSION WITH NOISE
PREDICTION

According to Song et al. (2020b), the states xt in the sampling procedure of diffusion models cor-
respond to solutions of reverse-time SDE and PF-ODE. Therefore, we look for ways to accelerate
sampling by studying these solutions. In this section, we solve the noise-prediction-based reverse-
time SDE and PF-ODE, and we numerically estimate the non-closed-form component of the solu-
tion, which serves to accelerate the sampling process of MR diffusion models. Next, we analyze the
sampling method currently used by MR Diffusion and demonstrate that this method corresponds to
a variant of discretization for the reverse-time MRSDE.

3.1 SOLUTIONS TO MEAN REVERTING SDES WITH NOISE PREDICTION

Ho et al. (2020) reported that score matching can be simplified to predicting noise, and Song et al.
(2020b) revealed the connection between score function and noise prediction models, which is

∇xt log ppxt|x0q “ ´
ϵθpxt,µ, tq

σt
, (9)

where σt “ σ8

a

1 ´ e´2
şt
0
fpτqdτ is the standard deviation of the transition distribution ppxt|x0q.

Because µ is independent of t and x, we substitute ϵθpxt,µ, tq with ϵθpxt, tq for notation simplicity.
According to Eq.(9), we can rewrite Eq.(8) as

dx “

„

fptq pµ ´ xq `
g2ptq

σt
ϵθpxt, tq

ȷ

dt` gptqdw̄. (10)

Using Itô’s formula (in the differential form), we can obtain the following semi-analytical solution:

4



Published as a conference paper at ICLR 2025

Proposition 1. Given an initial value xs at time s P r0, T s, the solution xt at time t P r0, ss of
Eq.(10) is

xt “
αt

αs
xs `

ˆ

1 ´
αt

αs

˙

µ ` αt

ż t

s

g2pτq
ϵθpxτ , τq

ατστ
dτ `

d

´

ż t

s

α2
t

α2
τ

g2pτqdτz, (11)

where we denote αt :“ e´
şt
0
fpτqdτ and z „ N p0, Iq. The proof is in Appendix A.1.

However, the integral with respect to neural network output is still complicated. There have been
several methods (Lu et al., 2022a; Zhang & Chen, 2022; Zhao et al., 2024) to estimate the integral nu-
merically. We follow Lu et al. (2022b)’s method and introduce the half log-SNR λt :“ logpαt{σtq.
Since both fptq and gptq are deliberately designed to ensure that αt is monotonically decreasing
over t and σt is monotonically increasing over t. Thus, λt is a strictly decreasing function of t and
there exists an inverse function tpλq. Then we can rewrite gpτq in Eq.(11) as

g2pτq “ 2σ2
8fpτq “ 2fpτqpσ2

τ ` σ2
8α

2
τ q “ 2σ2

τ pfpτq `
fpτqσ2

8α
2
τ

σ2
τ

q

“ 2σ2
τ pfpτq `

1

2σ2
τ

dσ2
τ

dτ
q “ ´2σ2

τ

dλτ
dτ

.

(12)

By substituting Eq.(12) into Eq.(11), we obtain

xt “
αt

αs
xs `

ˆ

1 ´
αt

αs

˙

µ ´ 2αt

ż λt

λs

e´λϵθpxλ, λqdλ` σt

b

pe2pλt´λsq ´ 1qz, (13)

where xλ :“ xtpλτ q, ϵθpxλ, λq :“ ϵθpxtpλτ q, tpλτ qq. According to the methods of exponential in-
tegrators (Hochbruck & Ostermann, 2010; 2005), the pk´1q-th order Taylor expansion of ϵθpxλ, λq

and integration-by-parts of the integral part in Eq.(13) yields

´2αt

ż λt

λs

e´λϵθpxλ, λqdλ “ ´2σt

k´1
ÿ

n“0

«

ϵ
pnq

θ pxλs
, λsq

˜

eh ´

n
ÿ

m“0

phqm

m!

¸ff

` Ophk`1q, (14)

where h :“ λt ´ λs. We drop the discretization error term Ophk`1q and estimate the derivatives
with backward difference method. We name this algorithm as MR Sampler-SDE-n-k, where n means
noise prediction and k is the order. We present details in Algorithm 1 and 2.

3.2 SOLUTIONS TO MEAN REVERTING ODES WITH NOISE PREDICTION

Song et al. (2020b) have illustrated that for any Itô SDE, there exists a probability flow ODE, sharing
the same marginal distribution ptpxq as a reverse-time SDE. Therefore, the solutions of PF-ODEs
are also helpful in acceleration of sampling. Specifically, the PF-ODE corresponding to Eq.(10) is

dx

dt
“ fptq pµ ´ xq `

g2ptq

2σt
ϵθpxt, tq. (15)

The aforementioned equation exhibits a semi-linear structure with respect to x, thus permitting
resolution through the method of ”variation of constants”. We can draw the following conclusions:

Proposition 2. Given an initial value xs at time s P r0, T s, the solution xt at time t P r0, ss of
Eq.(15) is

xt “
αt

αs
xs `

ˆ

1 ´
αt

αs

˙

µ ` αt

ż t

s

g2pτq

2ατστ
ϵθpxτ , τqdτ, (16)

where αt :“ e´
şt
0
fpτqdτ . The proof is in Appendix A.1.

Then we follow the variable substitution and Eq.(12-14) in Section 3.1, and we obtain

xt “
αt

αs
xs `

ˆ

1 ´
αt

αs

˙

µ ´ σt

k´1
ÿ

n“0

«

ϵ
pnq

θ pxλs
, λsq

˜

eh ´

n
ÿ

m“0

phqm

m!

¸ff

` Ophk`1q, (17)

where ϵ
pnq

θ pxλ, λq :“ dnϵθpxλ,λq

dλn is the n-th order total derivatives of ϵθ with respect to λ. By
dropping the discretization error term Ophk`1q and estimating the derivatives of ϵθpxλs

, λsq with
backward difference method, we design the sampling algorithm from the perspective of ODE (see
Algorithm 3 and 4).
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3.3 POSTERIOR SAMPLING FOR MEAN REVERTING DIFFUSION MODELS

In order to improve the sampling process of Mean Reverting Diffusion, Luo et al. (2024b) proposed
the posterior sampling algorithm. They define a monotonically increasing time series ttiu

T
i“0 and

the reverse process as a Markov chain:

ppx1:T | x0q “ ppxT | x0q

T
ź

i“2

ppxi´1 | xi,x0q and xT „ N p0, Iq, (18)

where we denote xi :“ xti for simplicity. They obtain an optimal posterior distribution by mini-
mizing the negative log-likelihood, which is a Gaussian distribution given by

ppxi´1 | xi,x0q “ N pxi´1 | µ̃ipxi,x0q, β̃iIq,

µ̃ipxi,x0q “
p1 ´ α2

i´1qαi

p1 ´ α2
i qαi´1

pxi ´ µq `

1 ´
α2

i

α2
i´1

1 ´ α2
i

αi´1px0 ´ µq ` µ,

β̃i “

p1 ´ α2
i´1qp1 ´

α2
i

α2
i´1

q

1 ´ α2
i

,

(19)

where αi “ e´
şi
0
fpτqdτ and x0 “ pxi ´ µ ´ σiϵθpxi,µ, tiqq {αi ` µ. Actually, the reparame-

terization of posterior distribution in Eq.(19) is equivalent to a variant of the Euler-Maruyama dis-
cretization of the reverse-time SDE (see details in Appendix A.2). Specifically, the Euler-Maruyama
method computes the solution in the following form:

xt “ xs `

ż t

s

„

fpτq pµ ´ xτ q `
g2pτq

στ
ϵθpxτ , τq

ȷ

dτ `

ż t

s

gpτqdw̄τ , (20)

which introduces approximation errors from both the analytical term and the non-linear component
associated with neural network predictions. In contrast, our approach delivers an exact solution for
the analytical part, leading to reduced approximation errors and a higher order of convergence.

4 FAST SAMPLERS FOR MEAN REVERTING DIFFUSION WITH DATA
PREDICTION

Unfortunately, the sampler based on noise prediction can exhibit substantial instability, particularly
with small NFEs, and may perform even worse than posterior sampling. It is well recognized that
the Taylor expansion has a limited convergence domain, primarily influenced by the derivatives of
the neural networks. In fact, higher-order derivatives often result in smaller convergence radii. Dur-
ing the training phase, the noise prediction neural network is designed to fit normally distributed
Gaussian noise. When the standard deviation of this Gaussian noise is set to 1, the values of sam-
ples can fall outside the range of r´1, 1s with a probability of 34.74%. This discrepancy results
in numerical instability in the output of the neural network, causing its derivatives to exhibit more
pronounced fluctuations (refer to the experimental results in Section 5 for further details). Conse-
quently, the numerical instability leads to very narrow convergence domains, or in extreme cases, no
convergence at all, which ultimately yields awful sampling results.

Lu et al. (2022b) have identified that the choice of parameterization for either ODEs or SDEs is
critical for the boundedness of the convergent solution. In contrast to noise prediction, the data
prediction model (Salimans & Ho, 2022) focuses on fitting x0, ensuring that its output remains
strictly confined within the bounds of r´1, 1s, thereby achieving high numerical stability.

4.1 SOLUTIONS TO MEAN REVERTING SDES WITH DATA PREDICTION

According to Eq.(7), we can parameterize x0 as follows:

ϵθpxt, tq “
xt ´ αtxθpxt, tq ´ p1 ´ αtqµ

σt
. (21)
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By substituting Eq.(21) into Eq.(10), we derive the following SDE that incorporates data prediction:

dx “

„ˆ

g2ptq

σ2
t

´ fptq

˙

x `

ˆ

fptq ´
g2ptq

σ2
t

p1 ´ αtq

˙

µ ´
g2ptq

σ2
t

αtxθpxt, tq

ȷ

dt`gptqdw̄. (22)

This equation remains semi-linear with respect to x and thus we can employ Itô’s formula (in the
differential form) to obtain the solution to Eq.(22).

Proposition 3. Given an initial value xs at time s P r0, T s, the solution xt at time t P r0, ss of
Eq.(22) is

xt “
σt
σs
e´pλt´λsqxs ` µ

ˆ

1 ´
αt

αs
e´2pλt´λsq ´ αt ` αte

´2pλt´λsq

˙

`2αt

ż λt

λs

e´2pλt´λqxθpxλ, λqdλ` σt
a

1 ´ e´2pλt´λsqz,

(23)

where z „ N p0, Iq. The proof is in Appendix A.1.

Then we apply Taylor expansion and integration-by-parts to estimate the integral part in Eq.(23) and
obtain the stochastic sampling algorithm for data prediction (see details in Algorithm 5 and 6).

4.2 SOLUTIONS TO MEAN REVERTING ODES WITH DATA PREDICTION

By substituting Eq.(21) into Eq.(15), we can obtain the following ODE parameterized by data pre-
diction.

dx

dt
“

„

g2ptq

2σ2
t

´ fptq

ȷ

x `

„

fptq ´
g2ptq

2σ2
t

p1 ´ αtq

ȷ

µ ´
g2ptq

2σ2
t

αtxθpxt, tq. (24)

The incorporation of the parameter µ does not disrupt the semi-linear structure of the equation with
respect to x, and µ is not coupled to the neural network. This implies that analytical part of solutions
can still be derived concerning both x and µ. We present the solution below (see Appendix A.1 for
a detailed derivation).

Proposition 4. Given an initial value xs at time s P r0, T s, the solution xt at time t P r0, ss of
Eq.(24) is

xt “
σt
σs

xs ` µ

ˆ

1 ´
σt
σs

`
σt
σs
αs ´ αt

˙

` σt

ż λt

λs

eλxθpxλ, λqdλ. (25)

Similarly, only the neural network component requires approximation through the exponential inte-
grator method (Hochbruck & Ostermann, 2005; 2010). And we can obtain the deterministic sam-
pling algorithm for data prediction (see Algorithm 7 and 8 for details).

4.3 TRANSFORMATION BETWEEN THREE KINDS OF PARAMETERIZATIONS

There are three mainstream parameterization methods. Ho et al. (2020) introduced a training objec-
tive based on noise prediction, while Salimans & Ho (2022) proposed parameterization strategies for
data and velocity prediction to keep network outputs stable under the variation of time or log-SNR.
All three methods can be regarded as score matching approaches (Song et al., 2020b; Hyvärinen
& Dayan, 2005) with weighted coefficients. To ensure our proposed algorithm is compatible with
these parameterization strategies, it is necessary to provide transformation formulas for each pairs
among the three strategies.

The transformation formula between noise prediction and data prediction can be easily derived from
Eq.(7):

#

xθptq “
xt´p1´αtqµ´σtϵθptq

αt
,

ϵθptq “
xt´αtxθptq´p1´αtqµ

σt
.

(26)

For velocity prediction, we define ϕt :“ arctanp σt

σ8αt
q, which is slightly different from the def-

inition of Salimans & Ho (2022). Then we have αt “ cosϕt, σt “ σ8 sinϕt and hence
xt “ x0 cosϕt ` µp1 ´ cosϕtq ` σ8 sin pϕtqϵ. And the definition of vptq is

vt “
dxt

dϕt
“ µ sinϕt ´ x0 sinϕt ` σ8 cospϕtqϵ. (27)

7
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If we have a score function model vθptq trained with velocity prediction, we can obtain xθptq and
ϵθptq by (see Appendix A.3 for detailed derivations)

xθptq “ xt cosϕt ` µp1 ´ cosϕtq ´ vθptq sinϕt, (28)
ϵθptq “ pvθptq cosϕt ` xt sinϕt ´ µ sinϕtq{σ8. (29)

5 EXPERIMENTS

In this section, we conduct extensive experiments to show that MR Sampler can significantly speed
up the sampling of existing MR Diffusion. To rigorously validate the effectiveness of our method,
we follow the settings and checkpoints from Luo et al. (2024a) and only modify the sampling part.
Our experiment is divided into three parts. Section 5.1 compares the sampling results for different
NFE cases. Section 5.2 studies the effects of different parameter settings on our algorithm, including
network parameterizations and solver types. In Section 5.3, we visualize the sampling trajectories to
show the speedup achieved by MR Sampler and analyze why noise prediction gets obviously worse
when NFE is less than 20.

5.1 MAIN RESULTS

Following Luo et al. (2024a), we conduct experiments with ten different types of image degradation:
blurry, hazy, JPEG-compression, low-light, noisy, raindrop, rainy, shadowed, snowy, and inpainting
(see Appendix D.1 for details). We adopt LPIPS (Zhang et al., 2018) and FID (Heusel et al., 2017)
as main metrics for perceptual evaluation, and also report PSNR and SSIM (Wang et al., 2004) for
reference. We compare MR Sampler with other sampling methods, including posterior sampling
(Luo et al., 2024b) and Euler-Maruyama discretization (Kloeden et al., 1992). We take two tasks
as examples and the metrics are shown in Figure 2. Unless explicitly mentioned, we always use
MR Sampler based on SDE solver, with data prediction and uniform λ. The complete experimental
results can be found in Appendix D.3. The results demonstrate that MR Sampler converges in a few
(5 or 10) steps and produces samples with stable quality. Our algorithm significantly reduces the
time cost without compromising sampling performance, which is of great practical value for MR
Diffusion.

5.2 EFFECTS OF PARAMETER CHOICE

In Table 2, we compare the results of two network parameterizations. The data prediction shows
stable performance across different NFEs. The noise prediction performs similarly to data prediction
with large NFEs, but its performance deteriorates significantly with smaller NFEs. The detailed
analysis can be found in Section 5.3. In Table 3, we compare MR Sampler-ODE-d-2 and MR
Sampler-SDE-d-2 on the inpainting task, which are derived from PF-ODE and reverse-time SDE
respectively. SDE-based solver works better with a large NFE, whereas ODE-based solver is more
effective with a small NFE. In general, neither solver type is inherently better.

Table 2: Ablation study of network parameteriza-
tions on the Rain100H dataset.

NFE Parameterization LPIPS↓ FID↓ PSNR↑ SSIM↑

50 Noise Prediction 0.0606 27.28 28.89 0.8615
Data Prediction 0.0620 27.65 28.85 0.8602

20 Noise Prediction 0.1429 47.31 27.68 0.7954
Data Prediction 0.0635 27.79 28.60 0.8559

10 Noise Prediction 1.376 402.3 6.623 0.0114
Data Prediction 0.0678 29.54 28.09 0.8483

5 Noise Prediction 1.416 447.0 5.755 0.0051
Data Prediction 0.0637 26.92 28.82 0.8685

Table 3: Ablation study of solver types on the
CelebA-HQ dataset.

NFE Solver Type LPIPS↓ FID↓ PSNR↑ SSIM↑

50 ODE 0.0499 22.91 28.49 0.8921
SDE 0.0402 19.09 29.15 0.9046

20 ODE 0.0475 21.35 28.51 0.8940
SDE 0.0408 19.13 28.98 0.9032

10 ODE 0.0417 19.44 28.94 0.9048
SDE 0.0437 19.29 28.48 0.8996

5 ODE 0.0526 27.44 31.02 0.9335
SDE 0.0529 24.02 28.35 0.8930

5.3 ANALYSIS

Sampling trajectory. Inspired by the design idea of NCSN (Song & Ermon, 2019), we provide
a new perspective of diffusion sampling process. Song & Ermon (2019) consider each data point
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(b) LPIPS on low-light dataset

5 10 20 50 100
NFE

10

20

40

100

200

FI
D

155.26
141.90

117.77

45.13

14.48

157.28
143.68 120.83

61.21

16.0616.32 15.65 14.92 14.47 14.61

14.20
15.51 14.82 14.62 14.61

Posterior Sampling
Euler Discretization
MR Sampler-1
MR Sampler-2

(c) FID on motion-blurry dataset
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Figure 2: Perceptual evaluations on low-light and motion-blurry datasets.
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(a) Sampling results.
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(b) Trajectory.

Figure 3: Sampling trajectories. In (a), we compare our method (with order 1 and order 2) and
previous sampling methods (i.e., posterior sampling and Euler discretization) on a motion blurry im-
age. The numbers in parentheses indicate the NFE. In (b), we illustrate trajectories of each sampling
method. Previous methods need to take many unnecessary paths to converge. With few NFEs, they
fail to reach the ground truth (i.e., the location of x0). Our methods follow a more direct trajectory.

(e.g., an image) as a point in high-dimensional space. During the diffusion process, noise is added
to each point x0, causing it to spread throughout the space, while the score function (a neural net-
work) remembers the direction towards x0. In the sampling process, we start from a random point
by sampling a Gaussian distribution and follow the guidance of the reverse-time SDE (or PF-ODE)
and the score function to locate x0. By connecting each intermediate state xt, we obtain a sam-
pling trajectory. However, this trajectory exists in a high-dimensional space, making it difficult to
visualize. Therefore, we use Principal Component Analysis (PCA) to reduce xt to two dimensions,
obtaining the projection of the sampling trajectory in 2D space. As shown in Figure 3, we present
an example. Previous sampling methods (Luo et al., 2024b) often require a long path to find x0,
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and reducing NFE can lead to cumulative errors, making it impossible to locate x0. In contrast, our
algorithm produces more direct trajectories, allowing us to find x0 with fewer NFEs.

Ground Truth

Low light Noise prediction (15)

Data prediction (15)

(a) Sampling results.

0 2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

Index of timestep

Noise prediction
Data prediction

(b) Ratio of convergence.

Figure 4: Convergence of noise prediction and data prediction. In (a), we choose a low-light
image for example. The numbers in parentheses indicate the NFE. In (b), we illustrate the ratio of
components of neural network output that satisfy the Taylor expansion convergence requirement.

Numerical stability of parameterizations. From Table 1, we observe poor sampling results for
noise prediction in the case of few NFEs. The reason may be that the neural network parameterized
by noise prediction is numerically unstable. Recall that we used Taylor expansion in Eq.(14), and
the condition for the equality to hold is |λ ´ λs| ă Rpsq. And the radius of convergence Rptq can
be calculated by

1

Rptq
“ lim

nÑ8

ˇ

ˇ

ˇ

ˇ

cn`1ptq

cnptq

ˇ

ˇ

ˇ

ˇ

, (30)

where cnptq is the coefficient of the n-th term in Taylor expansion. We are unable to compute this
limit and can only compute the n “ 0 case as an approximation. The output of the neural network
can be viewed as a vector, with each component corresponding to a radius of convergence. At each
time step, we count the ratio of components that satisfy Ripsq ą |λ ´ λs| as a criterion for judging
the convergence, where i denotes the i-th component. As shown in Figure 4, the neural network
parameterized by data prediction meets the convergence criteria at almost every step. However,
the neural network parameterized by noise prediction always has components that cannot converge,
which will lead to large errors and failed sampling. Therefore, data prediction has better numerical
stability and is a more recommended choice.

6 CONCLUSION

We have developed a the fast sampling algorithm of MR Diffusion. Compared with DPMs, MR
Diffusion is different in SDE and thus not adaptable to existing training-free fast samplers. We
propose MR Sampler for acceleration of sampling of MR Diffusion. We solve the reverse-time SDE
and PF-ODE derived from MRSDE and find a semi-analytical solution. We adopt the methods of
exponential integrators to estimate the non-linear integral part. Abundant experiments demonstrate
that our algorithm achieves small errors and fast convergence. Additionally, we visualize sampling
trajectories and explain why the parameterization of noise prediction does not perform well in the
case of small NFEs.

Limitations and broader impact. Despite the effectiveness of MR Sampler, our method is still
inferior to distillation methods (Song et al., 2023; Luo et al., 2023a) within less than 5 NFEs. Addi-
tionally, our method can only accelerate sampling, but cannot improve the upper limit of sampling
quality.
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Our codes are based on the official code of MR Diffusion (Luo et al., 2023b) and DPM-Solver (Lu
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2023b). We will release them after the blind review.
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APPENDIX

We include several appendices with derivations, additional details and results. In Appendix A, we
provide derivations of propositions in Section 3 and 4, equivalence between posterior sampling and
Euler-Maruyama discretization, and velocity prediction, respectively. In Appendix B, we compare
the notations used in this paper and MRSDE (Luo et al., 2023b). In Appendix C, we list detailed
algorithms of MR Sampler with various orders and parameterizations. In Appendix D, we present
details about datasets, settings and results in experiments. In Appendix E, we provide an in-depth
discussion on determining the optimal NFE.

A DERIVATION DETAILS

A.1 PROOFS OF PROPOSITIONS

Proposition 1. Given an initial value xs at time s P r0, T s, the solution xt at time t P r0, ss of
Eq.(10) is

xt “
αt

αs
xs ` p1 ´

αt

αs
qµ ` αt

ż t

s

g2pτq
ϵθpxτ , τq

ατστ
dτ `

d

´

ż t

s

α2
t

α2
τ

g2pτqdτz, (31)

where αt :“ e´
şt
0
fpτqdτ and z „ N p0, Iq.

Proof. For SDEs in the form of Eq.(1), Itô’s formula gives the following conclusion:

dψpx, tq “
Bψpx, tq

Bt
dt`

Bψpx, tq

Bx
rfpx, tqdt` gptqdws `

1

2

B2ψpx, tq

Bx2
g2ptqdt, (32)

where ψpx, tq is a differentiable function. And we define

ψpx, tq “ xe
şt
0
fpτqdτ

By substituting fpx, tq and gptq with the corresponding drift and diffusion coefficients in Eq.(10),
we obtain

dψpx, tq “ µfptqe
şt
0
fpτqdτdt` e

şt
0
fpτqdτ

„

g2ptq

σt
ϵθpxt, tqdt` gptqdw̄

ȷ

.

And we integrate both sides of the above equation from s to t:

ψpx, tq´ψpx, sq “ µpe
şt
0
fpτqdτ´e

şs
0
fpτqdτ q`

ż t

s

e
şτ
0
fpξqdξg2pτq

ϵθpxτ , τq

στ
dτ`

ż t

s

e
şτ
0
fpξqdξgpτqdw̄.

Note that w̄ is a standard Wiener process running backwards in time and we have the quadratic
variation pdw̄q2 “ ´dτ . According to the definition of ψpx, tq and αt, we have

xt

αt
´

xs

αs
“ µ

ˆ

1

α t
´

1

α s

˙

`

ż t

s

g2pτq
ϵθpxτ , τq

ατστ
dτ `

d

´

ż t

s

g2pτq

α2
τ

dτz,

which is equivalent to Eq.(31).

Proposition 2. Given an initial value xs at time s P r0, T s, the solution xt at time t P r0, ss of
Eq.(15) is

xt “
αt

αs
xs ` p1 ´

αt

αs
qµ ` αt

ż t

s

g2pτq

2ατστ
ϵθpxτ , τqdτ, (33)

where αt :“ e´
şt
0
fpτqdτ .

Proof. For ODEs which have a semi-linear structure as follows:
dx

dt
“ P ptqx `Qpx, tq, (34)

the method of ”variation of constants” gives the following solution:

xptq “ e
şt
0
P pτqdτ ¨

„
ż t

0

Qpx, τqe´
şτ
0
P prqdrdτ ` C

ȷ

.
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By simultaneously considering the following two equations

$

&

%

xptq “ e
şt
0
P pτqdτ ¨

”

şt

0
Qpx, τqe´

şτ
0
P prqdrdτ ` C

ı

,

xpsq “ e
şs
0
P pτqdτ ¨

”

şs

0
Qpx, τqe´

şτ
0
P prqdrdτ ` C

ı

,

and eliminating C, we obtain

xptq “ xpsqe
şt
s
P pτqdτ `

ż t

s

Qpx, τqe
şt
τ
P pξqdξdτ. (35)

Now we compare Eq.(15) with Eq.(34) and let

P ptq “ ´fptq

and Qpx, tq “ fptqµ `
g2ptq

2σt
ϵθpxt, tq.

Therefore, we can rewrite Eq.(35) as

xt “ xse
´

şt
s
fpτqdτ `

ż t

s

e´
şt
τ
fpξqdξ

„

fpτqµ `
g2pτq

2στ
ϵθpxτ , τq

ȷ

dτ

“ xse
´

şt
s
fpτqdτ ` µp1 ´ e´

şt
s
fpτqdτ q `

ż t

s

e´
şt
τ
fpξqdξ g

2pτq

2στ
ϵθpxτ , τqdτ,

which is equivalent to Eq.(33).

Proposition 3. Given an initial value xs at time s P r0, T s, the solution xt at time t P r0, ss of
Eq.(22) is

xt “
σt
σs
e´pλt´λsqxs ` µ

ˆ

1 ´
αt

αs
e´2pλt´λsq ´ αt ` αte

´2pλt´λsq

˙

`2αt

ż λt

λs

e´2pλt´λqxθpxλ, λqdλ` σt
a

1 ´ e´2pλt´λsqz,

(36)

where z „ N p0, Iq.

Proof. According to Eq.(32), we define

uptq “
g2ptq

σ2
t

´ fptq

and ψpx, tq “ xe
şt
0
upτqdτ .

We substitute fpx, tq and gptq in Eq.(32) with the corresponding drift and diffusion coefficients in
Eq.(22), and integrate both sides of the equation from s to t:

xt “ xse
şt
s
upτqdτ ` µ

ż t

s

e
şt
τ
upξqdξ

„

fpτq ´
g2pτq

σ2
τ

p1 ´ ατ q

ȷ

dτ

´

ż t

s

e
şt
τ
upξqdξ

„

g2pτq

σ2
τ

ατxθpxτ , τq

ȷ

dτ `

ż t

s

e
şt
τ
upξqdξgpτqdw̄.

(37)

We can rewrite gpτq as Eq.(12) and obtain

e
şt
s
upτqdτ “ exp

ż t

s

ˆ

´2
dλτ
dτ

´ fpτq

˙

dτ “
αt

αs
e´2pλt´λsq “

σt
σs
e´pλt´λsq. (38)
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Next, we consider each term in Eq.(37) by employing Eq.(12) and Eq.(38). Firstly, we simplify the
second term:

µ

ż t

s

e
şt
τ
upξqdξ

„

fpτq ´
g2pτq

σ2
τ

p1 ´ ατ q

ȷ

dτ

“ µ

ż t

s

σt
στ
e´pλt´λτ q

„

fpτq ` 2p1 ´ ατ q
dλτ
dτ

ȷ

dτ

“ µσte
´λt

ż t

s

eλτ

στ
rfpτqdτ ` 2p1 ´ ατ qdλτ s

“ µσte
´λt

ż t

s

ατ

σ2
τ

rfpτqdτ ` 2dλτ ´ 2ατdλτ s

“ µσte
´λt

ż t

s

´dατ

σ2
τ

`
2ατ

σ2
τ

dλτ ´ 2
α2
τ

σ2
τ

dλτ . (39)

Note that

dλt “ d

˜

log
αt

σ8

a

1 ´ α2
t

¸

“
dαt

αt
`
αtdαt

1 ´ α2
t

“
dαt

αtp1 ´ α2
t q
. (40)

Substitute Eq.(40) into Eq.(39) and we obtain

µ

ż t

s

e
şt
τ
upξqdξ

„

fpτq ´
g2pτq

σ2
τ

p1 ´ ατ q

ȷ

dτ

“ µσte
´λt

ż t

s

´dατ

σ2
τ

`
2dατ

σ2
τ p1 ´ α2

τ q
´ 2

α2
τ

σ2
τ

dλτ

“ µσte
´λt

ż t

s

1 ` α2
τ

σ2
8p1 ´ α2

τ q2
dατ ´ 2e2λτdλτ

“ µσte
´λt

ż t

s

1

σ2
8

d

ˆ

ατ

1 ´ α2
τ

˙

´ 2e2λτdλ

“ µ

ˆ

1 ´
αt

αs
e´2pλt´λsq ´ αt ` αte

´2pλt´λsq

˙

. (41)

Secondly, we rewrite the third term in Eq.(37) by employing Eq.(12) and Eq.(38).

´

ż t

s

e
şt
τ
upξqdξ

„

g2pτq

σ2
τ

ατxθpxτ , τq

ȷ

dτ “ ´

ż t

s

σt
στ
e´pλt´λτ q

„

´2
dλτ
dτ

ατxθpxτ , τq

ȷ

dτ

“ 2

ż t

s

σte
2λτ ´λtxθpxτ , λτ qdλτ

“ 2αt

ż λt

λs

e´2pλt´λqxθpxλ, λqdλ. (42)

Thirdly, we consider the fourth term in Eq.(37) (note that pdw̄q2 “ ´dτ ):

ż t

s

e
şt
τ
upξqdξgpτqdw̄ “

d

´

ż t

s

e2
şt
τ
upξqdξg2pτqdτz

“

d

´

ż t

s

σ2
t

σ2
τ

e´2pλt´λτ q

ˆ

´2σ2
τ

dλτ
dτ

˙

dτz

“

d

σ2
t

ż t

s

2e2pλτ ´λtqdλτz

“ σt
a

1 ´ e´2pλt´λsqz. (43)

Lastly, we substitute Eq.(38) and Eq.(41-43) into Eq.(37) and obtain the solution as presented in
Eq.(36).
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Proposition 4. Given an initial value xs at time s P r0, T s, the solution xt at time t P r0, ss of
Eq.(24) is

xt “
σt
σs

xs ` µ

ˆ

1 ´
σt
σs

`
σt
σs
αs ´ αt

˙

` σt

ż λt

λs

eλxθpxλ, λqdλ. (44)

Proof. Note that Eq.(24) shares the same structure as Eq.(34). Let

P ptq “
g2ptq

2σ2
t

´ fptq,

and Qpx, tq “

„

fptq ´
g2ptq

2σ2
t

p1 ´ αtq

ȷ

µ ´
g2ptq

2σ2
t

αtxθpxt, tq.

According to Eq.(12), we first consider

e
şt
s
P pτqdτ “ exp

ż t

s

„

g2pτq

2σ2
τ

´ fpτq

ȷ

dτ “ exp

ż t

s

´dλτ ` d logατ

“ exp

ż t

s

d logατ ´ d log
ατ

στ
“ exp

ż t

s

d log στ “
σt
σs
. (45)

Then, we can rewrite Eq.(35) as

xt “
σt
σs

xs ` µ

ż t

s

σt
στ

„

fpτq ´
g2pτq

2σ2
τ

p1 ´ ατ q

ȷ

dτ ´

ż t

s

σt
στ

g2pτq

2σ2
τ

ατxθpxτ , τqdτ. (46)

Firstly, we consider the second term in Eq.(46)

µ

ż t

s

σt
στ

„

fpτq ´
g2pτq

2σ2
τ

p1 ´ ατ q

ȷ

dτ

“ µσt

ż t

s

1

στ

„

fpτq ´
g2pτq

2σ2
τ

`
g2pτq

2σ2
τ

ατ

ȷ

dτ

“ µσt

„
ż t

s

1

στ

ˆ

fpτq ´
g2pτq

2σ2
τ

˙

dτ `

ż t

s

g2pτq

2σ3
τ

ατdτ

ȷ

“ µσt

„

´

ż t

s

d log στ
στ

´

ż t

s

ατ

στ
dλτ

ȷ

(refer to Eq.(12) and Eq.(45)

“ µσt

„
ż t

s

d

ˆ

1

στ

˙

´

ż t

s

deλτ

ȷ

“ µ

ˆ

1 ´
σt
σs

`
σt
σs
αs ´ αt

˙

. (47)

Secondly, we rewrite the third term in Eq.(46)

´

ż t

s

σt
στ

g2pτq

2σ2
τ

ατxθpxτ , τqdτ “ σt

ż t

s

eλτxθpxλ, λqdλτ . (48)

By substituting Eq.(47) and Eq.(48) into Eq.(46), we can obtain the solution shown in Eq.(44).

A.2 EQUIVALENCE BETWEEN POSTERIOR SAMPLING AND EULER-MARUYAMA
DISCRETIZATION

The posterior sampling (Luo et al., 2024b) algorithm utilizes the reparameterization of Gaussian
distribution in Eq.(19) and computes xi´1 from xi iteratively as follows:

xi´1 “ µ̃ipxi,x0q `

b

β̃izi,

µ̃ipxi,x0q “
p1 ´ α2

i´1qαi

p1 ´ α2
i qαi´1

pxi ´ µq `

1 ´
α2

i

α2
i´1

1 ´ α2
i

αi´1px0 ´ µq ` µ,

β̃i “

p1 ´ α2
i´1qp1 ´

α2
i

α2
i´1

q

1 ´ α2
i

,

(49)
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where zi „ N p0, Iq, αi “ e´
şi
0
fpτqdτ and x0 “ pxi ´ µ ´ σiϵθpxi,µ, tiqq {αi ` µ. By substi-

tuting x0 into µ̃i, we arrange the equation and obtain

µ̃ipxi,x0q “
αi´1

αi
xi ` p1 ´

αi´1

αi
qµ ´

αi´1

αi
´ αi

αi´1

1 ´ α2
i

σiϵ̃θpxi,µ, tiq

“
αi´1

αi
xi ` p1 ´

αi´1

αi
qµ ´

αi´1

αi
´ αi

αi´1
a

1 ´ α2
i

σ8ϵ̃θpxi,µ, tiq.

(50)

We note that
αi´1

αi
“ e

şi
i´1

fpτqdτ
“ 1 `

ż i

i´1

fpτqdτ ` o

ˆ
ż i

i´1

fpτqdτ

˙

« 1 ` fptiq∆ti, (51)

where the high-order error term is omitted and ∆ti :“ ti´ti´1. By substituting Eq.(51) into Eq.(50)
and Eq.(49), we obtain

µ̃ipxi,x0q “ p1 ` fptiq∆tiqxi ´ fptiq∆tiµ ´
2fptiq∆tiσ8

a

1 ´ α2
i

ϵ̃θpxi,µ, tiq, (52)

β̃i “

p1 ´ α2
i´1qp1 ´

α2
i

α2
i´1

q

1 ´ α2
i

«
2fptiq∆tip1 ´ α2

i´1q

1 ´ α2
i

. (53)

On the other hand, the reverse-time SDE has been presented in Eq.(10). Combining the assumption
g2ptq{fptq “ 2σ2

8 in Section 2.2 and the definition of σt in Section 3.1, the Euler–Maruyama
descretization of this SDE is

xi´1 ´ xi “ ´fptiqpµ ´ xiq∆ti ´
g2ptiq

σi
ϵ̃θpxi,µ, tiq∆ti ` gptiq

a

∆tizi,

6 xi´1 “ p1 ` fptiq∆tiqxi ´ fptiq∆tiµ ´
2σ2

8fptiq

σ8

a

1 ´ α2
i

ϵ̃θpxi,µ, tiq∆ti ` gptiq
a

∆tizi

“ p1 ` fptiq∆tiqxi ´ fptiq∆tiµ ´
2fptiq∆tiσ8

a

1 ´ α2
i

ϵ̃θpxi,µ, tiq ` σ8

a

2fptiq∆tizi

“ µ̃ipxi,x0q ` σ8

d

1 ´ α2
i

1 ´ α2
i´1

β̃izi. (54)

Thus, the posterior sampling algorithm is a special Euler–Maruyama descretization of reverse-time
SDE with a different coefficient of Gaussian noise.

A.3 DERIVATIONS ABOUT VELOCITY PREDICTION

Following Eq.(27), We can define the velocity prediction as
vθptq “ µ sinϕt ´ xθptq sinϕt ` σ8 cospϕtqϵθptq. (55)

And we have the relationship between xθptq and ϵθptq as follows:
xt “ xθptq cosϕt ` µp1 ´ cosϕtq ` σ8 sin pϕtqϵθptq. (56)

In order to get xθ from vθ, we rewrite Eq.(55) as
xθptq sin2 ϕt “ µ sin2 ϕt ´ vθptq sinϕt ` σ8ϵθptq sinϕt cosϕt. (57)

Then we replace ϵθptq according to Eq.(56)

xθptq sin2 ϕt “ µ sin2 ϕt ´ vθptq sinϕt ` rxt ´ xθptq cosϕt ´ µp1 ´ cosϕtqs cosϕt

“ p1 ´ cosϕtqµ ´ vθptq sinϕt ` xt cosϕt ´ xθptq cos2 ϕt. (58)
Arranging the above equation, we can obtain the transformation from vθ to xθ, as shown in Eq.(28).
Similarly, we can also rewrite Eq.(55) and replace xθptq as follows:

σ8 cos2pϕtqϵθptq “ vθptq cosϕt ´ µ sinϕt cosϕt ` xθptq sinϕt cosϕt

“ vθptq cosϕt ´ µ sinϕt cosϕt ` sinϕt rxt ´ µp1 ´ cosϕtq ´ σ8 sin pϕtqϵθptqs

“ vθptq cosϕt ´ µ sinϕt ` xθptq sinϕt ´ σ8 sin2 ϕtϵθptq. (59)
Thus we obtain the transformation from vθ to ϵθ, as presented in Eq.(29).
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B NOTATION COMPARISON TABLE

This paper fptq gptq αt σt

MRSDE (Luo et al., 2023b) θt σt e´
şt
0
θτdτ σ8

a

1 ´ e´2
şt
0
θτdτ

Table 4: The correspondence between the notations used in this paper (left column) and notations
used by MRSDE (right column).

C DETAILED SAMPLING ALGORITHM OF MR SAMPLER

We list the detailed MR Sampler algorithm with different solvers, parameterizations and orders as
follows.

Algorithm 1 MR Sampler-SDE-n-1.

Require: initial value xT “ µ ` σ8ϵ, Gaussian noise sequence tzi|zi „ N p0, IquMi“1, time steps
ttiu

M
i“0, data prediction model xθ. Denote hi :“ λti ´ λti´1

for i “ 1, . . . ,M .
1: xt0 Ð xT . Initialize an empty buffer Q.
2: Q

buffer
ÐÝÝÝ xθpxt0 , t0q

3: for i Ð 1 to M do
4: xti “

αti

αti´1
xti´1 `

´

1 ´
αti

αti´1

¯

µ ´ 2σtipe
hi ´ 1qϵθpxti´1 , ti´1q ` σti

?
e2hi ´ 1zi

5: If i ă M , then Q buffer
ÐÝÝÝ xθpxti , tiq

6: end for
7: return xtM

Algorithm 2 MR Sampler-SDE-n-2.

Require: initial value xT “ µ ` σ8ϵ, Gaussian noise sequence tzi|zi „ N p0, IquMi“1, time steps
ttiu

M
i“0, data prediction model xθ. Denote hi :“ λti ´ λti´1 for i “ 1, . . . ,M .

1: xt0 Ð xT . Initialize an empty buffer Q.
2: Q

buffer
ÐÝÝÝ xθpxt0 , t0q

3: xt1 “
αt1

αt0
xt0 `

´

1 ´
αt1

αt0

¯

µ ´ 2σt1peh1 ´ 1qϵθpxt0 , t0q ` σt1
?
e2h1 ´ 1z1

4: Q
buffer

ÐÝÝÝ xθpxt1 , t1q

5: for i Ð 2 to M do
6: Di “

ϵθpxti´1
,ti´1q´ϵθpxti´2

,ti´2q

hi´1

7: xti “
αti

αti´1
xti´1 `

´

1 ´
αti

αti´1

¯

µ´2σti
“

pehi ´ 1qϵθpxti´1 , ti´1q ` pehi ´ 1 ´ hiqDi

‰

`

σti
?
e2hi ´ 1zi

8: If i ă M , then Q buffer
ÐÝÝÝ xθpxti , tiq

9: end for
10: return xtM

20



Published as a conference paper at ICLR 2025

Algorithm 3 MR Sampler-ODE-n-1.

Require: initial value xT “ µ ` σ8ϵ, time steps ttiu
M
i“0, data prediction model xθ. Denote

hi :“ λti ´ λti´1
for i “ 1, . . . ,M .

1: xt0 Ð xT . Initialize an empty buffer Q.
2: Q

buffer
ÐÝÝÝ xθpxt0 , t0q

3: for i Ð 1 to M do
4: xti “

αti

αti´1
xti´1

`

´

1 ´
αti

αti´1

¯

µ ´ σtipe
hi ´ 1qϵθpxti´1

, ti´1q

5: If i ă M , then Q buffer
ÐÝÝÝ xθpxti , tiq

6: end for
7: return xtM

Algorithm 4 MR Sampler-ODE-n-2.

Require: initial value xT “ µ ` σ8ϵ, time steps ttiu
M
i“0, data prediction model xθ. Denote

hi :“ λti ´ λti´1
for i “ 1, . . . ,M .

1: xt0 Ð xT . Initialize an empty buffer Q.
2: Q

buffer
ÐÝÝÝ xθpxt0 , t0q

3: xt1 “
αt1

αt0
xt0 `

´

1 ´
αt1

αt0

¯

µ ´ σt1peh1 ´ 1qϵθpxt0 , t0q

4: Q
buffer

ÐÝÝÝ xθpxt1 , t1q

5: for i Ð 2 to M do
6: Di “

ϵθpxti´1
,ti´1q´ϵθpxti´2

,ti´2q

hi´1

7: xti “
αti

αti´1
xti´1

`

´

1 ´
αti

αti´1

¯

µ ´ σti
“

pehi ´ 1qϵθpxti´1
, ti´1q ` pehi ´ 1 ´ hiqDi

‰

8: If i ă M , then Q buffer
ÐÝÝÝ xθpxti , tiq

9: end for
10: return xtM

Algorithm 5 MR Sampler-SDE-d-1.

Require: initial value xT “ µ ` σ8ϵ, Gaussian noise sequence tzi|zi „ N p0, IquMi“1, time steps
ttiu

M
i“0, data prediction model xθ. Denote hi :“ λti ´ λti´1

for i “ 1, . . . ,M .
1: xt0 Ð xT . Initialize an empty buffer Q.
2: Q

buffer
ÐÝÝÝ xθpxt0 , t0q

3: for i Ð 1 to M do
4: xti “

σti

σti´1
e´hixti´1

` µ
´

1 ´
αti

αti´1
e´2hi ´ αti ` αtie

´2hi

¯

` σti
?
1 ´ e´2hizi `

αti

`

1 ´ e´2hi
˘

xθpxti´1
, ti´1q

5: If i ă M , then Q buffer
ÐÝÝÝ xθpxti , tiq

6: end for
7: return xtM
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Algorithm 6 MR Sampler-SDE-d-2.

Require: initial value xT “ µ ` σ8ϵ, Gaussian noise sequence tzi|zi „ N p0, IquMi“1, time steps
ttiu

M
i“0, data prediction model xθ. Denote hi :“ λti ´ λti´1 for i “ 1, . . . ,M .

1: xt0 Ð xT . Initialize an empty buffer Q.
2: Q

buffer
ÐÝÝÝ xθpxt0 , t0q

3: xt1 “
σt1

σt0
e´h1xt0 ` µ

´

1 ´
αt1

αt0
e´2h1 ´ αt1 ` αt1e

´2h1

¯

` αt1

`

1 ´ e´2h1
˘

xθpxt0 , t0q `

σt1
?
1 ´ e´2h1z1

4: Q
buffer

ÐÝÝÝ xθpxti , tiq
5: for i Ð 2 to M do
6: Di “

xθpxti´1
,ti´1q´xθpxti´2

,ti´2q

hi´1

7: xti “
σti

σti´1
e´hixti´1 ` µ

´

1 ´
αti

αti´1
e´2hi ´ αti ` αtie

´2hi

¯

` σti
?
1 ´ e´2hizi `

αti

`

1 ´ e´2hi
˘

xθpxti´1
, ti´1q ` αti

´

hi ´ 1´e´2hi

2

¯

Di

8: If i ă M , then Q buffer
ÐÝÝÝ xθpxti , tiq

9: end for
10: return xtM

Algorithm 7 MR Sampler-ODE-d-1.

Require: initial value xT “ µ ` σ8ϵ, time steps ttiu
M
i“0, data prediction model xθ. Denote

hi :“ λti ´ λti´1 for i “ 1, . . . ,M .
1: xt0 Ð xT . Initialize an empty buffer Q.
2: Q

buffer
ÐÝÝÝ xθpxt0 , t0q

3: for i Ð 1 to M do
4: xti “

σti

σti´1
xti´1

` µ
´

1 ´
σti

σti´1
`

σti

σti´1
αti´1

´ αti

¯

` αti

`

1 ´ e´hi
˘

xθpxti´1
, ti´1q

5: If i ă M , then Q buffer
ÐÝÝÝ xθpxti , tiq

6: end for
7: return xtM

Algorithm 8 MR Sampler-ODE-d-2.

Require: initial value xT “ µ ` σ8ϵ, time steps ttiu
M
i“0, data prediction model xθ. Denote

hi :“ λti ´ λti´1 for i “ 1, . . . ,M .
1: xt0 Ð xT . Initialize an empty buffer Q.
2: Q

buffer
ÐÝÝÝ xθpxt0 , t0q

3: xt1 “
σt1

σt0
xt0 ` µ

´

1 ´
σt1

σt0
`

σt1

σt0
αt0 ´ αt1

¯

` αt1

`

1 ´ e´h1
˘

xθpxt0 , t0q

4: Q
buffer

ÐÝÝÝ xθpxt1 , t1q

5: for i Ð 2 to M do
6: xti “

σti

σti´1
xti´1

` µ
´

1 ´
σti

σti´1
`

σti

σti´1
αti´1

´ αti

¯

` αti

`

1 ´ e´hi
˘

xθpxti´1
, ti´1q `

αti

`

hi ´ 1 ` e´hi
˘ xθpxti´1

,ti´1q´xθpxti´2
,ti´2q

hi´1

7: If i ă M , then Q buffer
ÐÝÝÝ xθpxti , tiq

8: end for
9: return xtM
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D DETAILS ABOUT EXPERIMENTS

D.1 DETAILS ABOUT DATASETS

We list details about the used datesets in 10 image restoration tasks in Table 5.

Task name Dataset name Reference Number of testing images

Blurry GoPro Nah et al. (2017) 1111

Hazy RESIDE-6k Qin et al. (2020a) 1000

JPEG-compressing DIV2K, Flickr2K and LIVE1 Agustsson & Timofte (2017),Timofte et al. (2017), Sheikh (2005) 29

Low-light LOL Wei et al. (2018) 15

Noisy DIV2K, Flickr2K and CBSD68 Agustsson & Timofte (2017),Timofte et al. (2017),Martin et al. (2001) 68

Raindrop RainDrop Qian et al. (2018) 58

Rainy Rain100H (Yang et al., 2017) 100

Shadowed SRD (Qu et al., 2017) 408

Snowy Snow100K-L (Liu et al., 2018) 601

Inpainting CelebaHQ (Lugmayr et al., 2022) 100

Table 5: Details about the used datasets in 10 image restoration tasks

D.2 DETAILS ON THE NEURAL NETWORK ARCHITECTURE

In this section, we describe the neural network architecture used in experiments. We follow the
framework of Luo et al. (2024a), an image restoration model designed to address multiple degrada-
tion problems simultaneously without requiring prior knowledge of the degradation. The diffusion
model in Luo et al. (2024a) is derived from Luo et al. (2023c), and its neural network architecture
is based on NAFNet. NAFNet builds upon the U-Net architecture by replacing traditional activa-
tion functions with SimpleGate and incorporating an additional multi-layer perceptron to manage
channel scaling and offset parameters for embedding temporal information into the attention and
feedforward layers. For further details, please refer to Section 4.2 in Luo et al. (2023c).

D.3 DETAILED METRICS ON ALL TASKS

We list results on four metrics for ten image restoration tasks in Table 6-15.

NFE Method LPIPS↓ FID↓ PSNR↑ SSIM↑

100

Posterior 0.0385 18.35 29.49 0.9102
Euler 0.0426 20.71 29.34 0.8981

MR Sampler-1 0.0390 18.16 29.45 0.9086
MR Sampler-2 0.0397 18.81 29.30 0.9055

50

Posterior 0.4238 247.0 12.85 0.6048
Euler 0.4449 249.5 12.68 0.5800

MR Sampler-1 0.0379 18.03 29.68 0.9118
MR Sampler-2 0.0402 19.09 29.15 0.9046

20

Posterior 0.7130 347.4 10.19 0.2171
Euler 0.7257 344.3 10.16 0.2073

MR Sampler-1 0.0383 18.29 30.05 0.9172
MR Sampler-2 0.0408 19.13 28.98 0.9032

10

Posterior 0.8097 374.1 9.802 0.1339
Euler 0.8154 381.1 9.786 0.1305

MR Sampler-1 0.0401 18.46 30.61 0.9229
MR Sampler-2 0.0437 19.29 28.48 0.8996

5

Posterior 0.8489 385.6 9.599 0.1057
Euler 0.8525 384.7 9.587 0.1042

MR Sampler-1 0.0428 20.00 31.03 0.9262
MR Sampler-2 0.0529 24.02 28.35 0.8930

Table 6: Image inpainting.

NFE Method LPIPS↓ FID↓ PSNR↑ SSIM↑

100

Posterior 0.0614 21.42 27.43 0.8763
Euler 0.0683 23.27 27.09 0.8577

MR Sampler-1 0.0608 21.30 27.45 0.8754
MR Sampler-2 0.0626 21.47 27.18 0.8691

50

Posterior 0.2374 72.04 21.35 0.7037
Euler 0.2730 76.02 21.02 0.6676

MR Sampler-1 0.0602 20.91 27.63 0.8803
MR Sampler-2 0.0628 21.85 27.08 0.8685

20

Posterior 0.6622 123.8 16.42 0.3546
Euler 0.6861 126.0 16.23 0.3431

MR Sampler-1 0.0601 21.32 28.07 0.8903
MR Sampler-2 0.0650 22.34 26.89 0.8645

10

Posterior 0.8013 138.5 14.76 0.2694
Euler 0.8164 140.4 14.64 0.2640

MR Sampler-1 0.0608 22.26 28.50 0.8992
MR Sampler-2 0.0698 23.92 26.49 0.8573

5

Posterior 0.8590 145.8 13.92 0.2318
Euler 0.8680 145.8 13.85 0.2290

MR Sampler-1 0.0611 23.29 28.89 0.9065
MR Sampler-2 0.0628 21.95 27.06 0.8718

Table 7: Snowy image restoration.
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NFE Method LPIPS↓ FID↓ PSNR↑ SSIM↑

100

Posterior 0.0970 20.14 27.84 0.8391
Euler 0.1129 20.30 27.59 0.8112

MR Sampler-1 0.0984 20.03 27.73 0.8370
MR Sampler-2 0.0989 20.69 27.44 0.8329

50

Posterior 0.6119 101.8 18.29 0.4720
Euler 0.6985 114.2 17.80 0.4123

MR Sampler-1 0.0978 20.90 27.92 0.8409
MR Sampler-2 0.1006 20.74 27.20 0.8310

20

Posterior 1.043 187.2 14.73 0.2049
Euler 1.065 192.9 14.56 0.1955

MR Sampler-1 0.0954 19.79 28.31 0.8505
MR Sampler-2 0.1014 20.93 27.17 0.8299

10

Posterior 1.122 208.4 13.67 0.1525
Euler 1.133 209.7 13.57 0.1484

MR Sampler-1 0.0956 19.87 28.67 0.8554
MR Sampler-2 0.1044 21.85 26.99 0.8276

5

Posterior 1.155 218.9 13.12 0.1298
Euler 1.161 221.4 13.06 0.1278

MR Sampler-1 0.0964 20.16 28.90 0.8601
MR Sampler-2 0.2203 36.69 23.73 0.6690

Table 8: Shadowed image restoration.

NFE Method LPIPS↓ FID↓ PSNR↑ SSIM↑

100

Posterior 0.0594 25.58 29.14 0.8704
Euler 0.0725 28.80 28.77 0.8473

MR Sampler-1 0.0594 30.53 29.15 0.8679
MR Sampler-2 0.0616 27.33 28.92 0.8614

50

Posterior 0.4418 183.1 16.41 0.4903
Euler 0.4560 185.2 16.24 0.4729

MR Sampler-1 0.0586 30.73 29.34 0.8730
MR Sampler-2 0.0620 27.65 28.85 0.8602

20

Posterior 0.6865 293.6 12.54 0.2464
Euler 0.6943 299.0 12.49 0.2402

MR Sampler-1 0.0604 31.19 29.81 0.8845
MR Sampler-2 0.0635 27.79 28.60 0.8559

10

Posterior 0.7972 323.0 11.50 0.1755
Euler 0.8043 330.8 11.46 0.1724

MR Sampler-1 0.0659 31.66 30.28 0.8943
MR Sampler-2 0.0678 29.54 28.09 0.8483

5

Posterior 0.8663 332.4 10.96 0.1450
Euler 0.8714 332.5 10.94 0.1435

MR Sampler-1 0.0729 32.06 30.68 0.9029
MR Sampler-2 0.0637 26.92 28.82 0.8685

Table 9: Rainy image restoration.

NFE Method LPIPS↓ FID↓ PSNR↑ SSIM↑

100

Posterior 0.0443 19.70 30.05 0.8910
Euler 0.0634 24.19 29.31 0.8438

MR Sampler-1 0.0437 19.94 29.91 0.8852
MR Sampler-2 0.0454 21.35 29.55 0.8768

50

Posterior 0.4289 100.1 23.19 0.4663
Euler 0.5011 111.6 22.35 0.4106

MR Sampler-1 0.0428 19.14 30.07 0.8914
MR Sampler-2 0.0459 20.50 29.40 0.8764

20

Posterior 0.8873 190.8 17.37 0.1925
Euler 0.9082 194.1 17.10 0.1839

MR Sampler-1 0.0439 19.31 30.44 0.9025
MR Sampler-2 0.0470 21.08 29.34 0.8745

10

Posterior 0.9884 215.5 15.67 0.1419
Euler 0.9993 213.1 15.52 0.1381

MR Sampler-1 0.0466 20.60 30.77 0.9114
MR Sampler-2 0.0485 22.17 29.37 0.8779

5

Posterior 1.030 226.3 14.82 0.1209
Euler 1.037 226.4 14.74 0.1190

MR Sampler-1 0.0497 21.18 31.04 0.9175
MR Sampler-2 0.0733 28.26 28.03 0.8369

Table 10: Raindrop image restoration.

NFE Method LPIPS↓ FID↓ PSNR↑ SSIM↑

100

Posterior 0.1694 65.79 25.97 0.7267
Euler 0.2719 68.69 24.28 0.5686

MR Sampler-1 0.1629 59.12 25.97 0.7244
MR Sampler-2 0.1586 64.02 25.67 0.7126

50

Posterior 0.7713 135.7 18.19 0.2763
Euler 0.8060 143.5 17.74 0.2615

MR Sampler-1 0.1680 65.14 26.20 0.7330
MR Sampler-2 0.1615 64.24 25.61 0.7127

20

Posterior 0.9941 181.6 14.76 0.1821
Euler 1.006 188.3 14.61 0.1781

MR Sampler-1 0.1872 71.31 26.68 0.7494
MR Sampler-2 0.1695 64.90 25.46 0.7098

10

Posterior 1.057 202.6 13.59 0.1550
Euler 1.063 207.0 13.51 0.1529

MR Sampler-1 0.2043 79.28 27.13 0.7628
MR Sampler-2 0.1853 70.19 25.09 0.6984

5

Posterior 1.087 213.5 13.00 0.1419
Euler 1.091 218.6 12.96 0.1408

MR Sampler-1 0.2046 80.45 27.51 0.7743
MR Sampler-2 0.3178 73.93 24.32 0.5485

Table 11: Noisy image restoration.
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NFE Method LPIPS↓ FID↓ PSNR↑ SSIM↑

100

Posterior 0.0796 34.70 23.84 0.8496
Euler 0.1014 37.46 23.27 0.8027

MR Sampler-1 0.0774 32.91 23.80 0.8451
MR Sampler-2 0.0789 32.91 23.59 0.8394

50

Posterior 0.6572 151.3 9.490 0.2746
Euler 0.7517 176.7 9.402 0.2340

MR Sampler-1 0.0784 34.45 23.51 0.8476
MR Sampler-2 0.0786 32.85 23.52 0.8382

20

Posterior 1.288 390.1 8.211 0.0648
Euler 1.297 396.8 8.212 0.0625

MR Sampler-1 0.0791 35.28 24.22 0.8586
MR Sampler-2 0.0792 32.80 23.63 0.8399

10

Posterior 1.351 432.2 8.130 0.0476
Euler 1.354 424.2 8.136 0.0467

MR Sampler-1 0.0831 41.10 24.04 0.8619
MR Sampler-2 0.0841 36.53 23.22 0.8398

5

Posterior 1.371 453.0 8.114 0.0408
Euler 1.372 447.2 8.118 0.0405

MR Sampler-1 0.0860 41.81 24.02 0.8676
MR Sampler-2 0.0782 33.98 24.13 0.8507

Table 12: Low-light image restoration.

NFE Method LPIPS↓ FID↓ PSNR↑ SSIM↑

100

Posterior 0.1702 45.77 25.78 0.7380
Euler 0.2949 56.99 23.84 0.5398

MR Sampler-1 0.1636 43.67 25.81 0.7362
MR Sampler-2 0.1555 44.58 25.46 0.7220

50

Posterior 0.6494 103.7 19.34 0.2908
Euler 0.7035 113.7 18.62 0.2659

MR Sampler-1 0.1734 47.09 26.06 0.7470
MR Sampler-2 0.1567 45.56 25.41 0.7224

20

Posterior 0.8252 140.6 16.44 0.1988
Euler 0.8477 144.5 16.19 0.1921

MR Sampler-1 0.1993 51.43 26.58 0.7649
MR Sampler-2 0.1675 47.36 25.33 0.7235

10

Posterior 0.8723 158.9 15.49 0.1738
Euler 0.8859 159.9 15.34 0.1701

MR Sampler-1 0.2183 57.83 26.98 0.7771
MR Sampler-2 0.1871 51.25 25.08 0.7197

5

Posterior 0.8941 163.6 14.99 0.1615
Euler 0.9013 162.0 14.91 0.1596

MR Sampler-1 0.2281 59.17 27.28 0.7853
MR Sampler-2 0.3751 62.60 23.15 0.4797

Table 13: JPEG image restoration.

NFE Method LPIPS↓ FID↓ PSNR↑ SSIM↑

100

Posterior 0.0211 4.755 30.37 0.9485
Euler 0.0358 6.182 29.95 0.9319

MR Sampler-1 0.0219 4.826 30.42 0.9462
MR Sampler-2 0.0230 4.978 30.26 0.9431

50

Posterior 0.3994 35.47 15.34 0.5808
Euler 0.4745 42.70 15.16 0.5160

MR Sampler-1 0.0211 4.737 30.49 0.9484
MR Sampler-2 0.0233 4.993 30.19 0.9427

20

Posterior 0.9911 114.0 12.81 0.1832
Euler 1.012 118.5 12.71 0.1752

MR Sampler-1 0.0200 4.682 30.63 0.9534
MR Sampler-2 0.0240 5.077 30.06 0.9409

10

Posterior 1.116 144.0 11.94 0.1261
Euler 1.128 147.3 11.87 0.1228

MR Sampler-1 0.0197 4.785 30.80 0.9579
MR Sampler-2 0.0246 5.228 29.65 0.9372

5

Posterior 1.162 159.1 11.47 0.1042
Euler 1.168 161.2 11.43 0.1026

MR Sampler-1 0.0205 4.926 30.56 0.9604
MR Sampler-2 0.0228 5.174 29.65 0.9416

Table 14: Hazy image restoration.

NFE Method LPIPS↓ FID↓ PSNR↑ SSIM↑

100

Posterior 0.1249 14.48 27.48 0.8442
Euler 0.1404 16.06 27.16 0.8179

MR Sampler-1 0.1239 14.61 27.46 0.8419
MR Sampler-2 0.1248 14.61 27.30 0.8365

50

Posterior 0.5112 45.13 24.41 0.5571
Euler 0.5739 61.21 23.79 0.4957

MR Sampler-1 0.244 14.47 27.59 0.8461
MR Sampler-2 0.1251 14.62 27.24 0.8360

20

Posterior 1.069 117.8 18.20 0.1717
Euler 1.089 120.8 17.94 0.1637

MR Sampler-1 0.1287 14.92 27.85 0.8544
MR Sampler-2 0.1266 14.82 27.13 0.8337

10

Posterior 1.187 141.9 16.11 0.1136
Euler 1.197 143.7 15.96 0.1104

MR Sampler-1 0.1356 15.65 28.10 0.8613
MR Sampler-2 0.1300 15.51 26.88 0.8295

5

Posterior 1.228 155.3 15.08 0.0922
Euler 1.234 157.3 15.00 0.0907

MR Sampler-1 0.1422 16.32 28.31 0.8668
MR Sampler-2 0.1248 14.20 26.92 0.8354

Table 15: Motion-blurry image restoration.

D.4 DETAILS ON NUMERICAL STABILITY AT LOW NFES

We have included further details regarding numerical stability at 5 NFEs to complement the ex-
periments presented in Section 5.3. As illustrated in Figure 5, when the NFE is relatively low, the
convergence rate of noise prediction at each step does not exceed 40%, which results in sampling
collapse. In contrast, during the final 1 or 2 steps, the convergence rate of data prediction approaches
nearly 100%.

D.5 WALL CLOCK TIME

We measured the wall clock time in our experiments on a single NVIDIA A800 GPU. The average
wall clock time per image of two representative tasks (low-light and motion-blurry image restora-
tion) are reported in Table 16 and 17.

D.6 PRESENTATION OF SAMPLING RESULTS

We present the sampling results for all image restoration tasks in Figure 6 and 7. We choose one
image for each task.
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Figure 5: Convergence of noise prediction and data prediction at 5 NFEs. In (a), we choose
a stained image for example. The numbers in parentheses indicate the NFE. In (b), we illustrate
the ratio of components of neural network output that satisfy the Taylor expansion convergence
requirement.

Table 16: Wall clock time on the Low-light
dataset.

NFE Method Time(s)↓

100 Posterior Sampling 17.19
MR Sampler-2 17.83

50 Posterior Sampling 8.605
MR Sampler-2 8.439

20 Posterior Sampling 3.445
MR Sampler-2 3.285

10 Posterior Sampling 1.727
MR Sampler-2 1.569

5 Posterior Sampling 0.8696
MR Sampler-2 0.7112

Table 17: Wall clock time on the Motion-
blurry dataset.

NFE Method Time(s)↓

100 Posterior Sampling 82.04
MR Sampler-2 81.16

50 Posterior Sampling 41.23
MR Sampler-2 40.18

20 Posterior Sampling 16.44
MR Sampler-2 15.59

10 Posterior Sampling 8.212
MR Sampler-2 7.413

5 Posterior Sampling 4.133
MR Sampler-2 3.294

E SELECTION OF THE OPTIMAL NFE

In practice, sampling quality is expected to degrade as the NFE decreases, which requires us to make
a trade-off between sampling quality and efficiency. From the perspective of reverse-time SDE and
PF-ODE, the estimation error of the solution plays a critical role in determining the sampling quality.
This estimation error is primarily influenced by hmax “ max1ďiďMtλi ´ λi´1u “ Op 1

M q, where
M represents the NFE. During sampling, the noise schedule must be designed in advance, which
also determines the λ schedule. Since λi is monotonically increasing, a larger NFE results in a
smaller hmax, thereby reducing the estimation error and improving sampling quality. However,
different sampling algorithms exhibit varying convergence rates. Experimental results show that
the MR Sampler (our method) can achieve a good score with as few as 5 NFEs, whereas posterior
sampling and Euler discretization fail to converge even with 50 NFEs.

Specifically, we conducted experiments on the snowy dataset with low NFE settings, and the results
are presented in Table 18. The sampling quality remains largely stable for NFE values larger than
10, gradually deteriorates when the NFE is below 10, and collapses entirely when NFE is reduced
to 2. Based on our experience, we recommend using 10–20 NFEs, which provides a reasonable
trade-off between efficiency and performance.
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Figure 6: Comparisons between posterior sampling and MR Sampler-SDE-d-2 on snowy, shad-
owed, rainy, raindrop, noisy and low-light datasets.

Table 18: Results of MR Sampler-SDE-2 with data prediction and uniform λ on the snowy dataset.

NFE 100 50 20 10 8 6 5 4 2

LPIPS↓ 0.0626 0.0628 0.0650 0.0698 0.0725 0.0744 0.0628 0.1063 1.422
FID↓ 21.47 21.85 22.34 23.92 24.81 25.60 21.95 30.18 421.1

PSNR↑ 27.18 27.08 26.89 26.49 26.61 26.40 27.06 25.38 6.753
SSIM↑ 0.8691 0.8685 0.8645 0.8573 0.8462 0.8407 0.8718 0.7640 0.0311
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Figure 7: Comparisons between posterior sampling and textitMR Sampler-SDE-d-2 on JPEG-
compressed, hazy, inpainting and motion-blurry datasets.
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