
A PRELIMINARIES

A.1 MODELING REPRESENTATION SPACE OF SIGMOID-BASED DETECTOR

In this section, we describe modeling the representation space of a sigmoid-based object detector
by fitting a multivariate Gaussian distribution. We denote the random variable of the input and its
label of a linear classifier as x ∈ X and y = {yc}c=1,··· ,C ∈ Y, yc = {0, 1}, respectively. Then, the
posterior distribution defined by the linear classifier whose output is formed by the sigmoid function
can be expressed as follows:

P (yc = 1|x) = 1

1 + exp (wcxbc)
=

exp (wcx+ bc)

exp (wcx+ bc) + 1
, (1)

where wc and bc are the weights and bias of the linear classifier for a category c, respectively.

Gaussian Discriminant Analysis (GDA) models the posterior distribution of the classifier by assuming
that the class conditional distribution (P (x|y)) and the class prior distribution (P (y)) follow the
multivariate Gaussian and the Bernoulli distributions, respectively, as follows:

P (x|yc = 0) = N (µ0,Σ0), P (x|yc = 1) = N (µ1,Σ1),

P (yc = 0) = β0/ (β0 + β1) , P (yc = 1) = β1/ (β0 + β1) , (2)

where µ{0,1} and Σ{0,1} are the mean and covariance of the multivariate Gaussian distribution, and
β{0,1} is the unnormalized prior for the category c and the background.

For the special case of GDA where all categories share the same covariance matrix (i.e., Σ0 = Σ1 =
Σc), known as Linear Discriminant Analysis (LDA), the posterior distribution (P (yc|x)) can be
expressed with P (x|yc) and P (yc) as follows:

P (yc = 1|x) =
P (yc = 1)P (x|yc = 1)

P (yc = 0)P (x|yc = 0) + P (yc = 1)P (x|yc = 1)

=
exp
(
(µ1µ0)

⊤
Σ1

cx− 1
2µ

⊤
1 Σ

1
cµ1 +

1
2µ

⊤
0 Σ

1
cµ0 + lnβ1/β0

)
exp
(
(µ1µ0)

⊤
Σ1

cx− 1
2µ

⊤
1 Σ

1
cµ1 +

1
2µ

⊤
0 Σ

1
cµ0 + lnβ1/β0

)
+ 1

. (3)

Note that the quadratic term is canceled out since the shared covariance matrix is used. The posterior
distribution derived by GDA in eq. 3 then becomes equivalent to the posterior distribution of the
linear classifier with the sigmoid function in eq. 1 when wc = (µ1µ0)

⊤
Σ1

c and bc = − 1
2µ

⊤
1 Σ

1
cµ1 +

1
2µ

⊤
0 Σ

1
cµ0 + lnβ1/β0. This implies that the representation space formed by x can be modeled by a

multivariate Gaussian distribution.

Based on the above derivation, if x is the output of the penultimate layer of an object detector for a
region proposal, and a linear classifier defined by wc and bc is the last layer of the object detector, it
can be said that the representation space of the object detector for a category c can be modeled with a
multivariate Gaussian distribution. In other words, the representation space for a category c can be
represented by two parameters µ1 (i.e., µc) and Σc of the multivariate Gaussian distribution.

Discussion. The sigmoid function can be viewed as a special case of the softmax function defined
for a single category as both functions take the form of an exponential term for the category-of-
interest normalized by the sum of exponential terms for all considered categories. Therefore, it is
straightforward to derive the modeling for the sigmoid-based detector from the previous work Lee
et al. (2018), who shows that the softmax-based classifier can be modeled with a multivariate
Gaussian distribution in the representation space. However, our derivation is still meaningful in that
it extends the applicability of an existing modeling limited to a certain type of classifier (i.e., based
on softmax) to general object detectors (i.e., based on sigmoid). Most object detectors, especially
one-stage detectors, generally use the sigmoid function, which does not consider other categories
when calculating the model output for a certain category, since more than one category can be active
on a single output.
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A.2 CROSS-ENTROPY WITH MIXTURE OF DELTA DISTRIBUTIONS AND MULTIVARIATE
GAUSSIAN DISTRIBUTION

In this section, we derive the cross-entropy of two distributions that are modeled by a mixture of
delta distributions and a multivariate Gaussian distribution as the normalized sum of Mahalanobis
distances. Assume that the data distributions P and Q in two sets DP and DQ can be modeled by
density functions (p and q) that take the form of a mixture of delta distributions and a multivariate
Gaussian distribution, respectively, as follows:

p(x) =
1

|DP |
∑

x′∈DP

δ(x− x′), (4)

q(x) =
1

√
2π

k
det(Σ)1/2

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
, (5)

where δ(x) is a Dirac delta function whose value is zero everywhere except at x = 0 and whose
integral over X , which is the entire space of x, is one. µ and Σ are two parameters of the multivariate
Gaussian distribution, which can be calculated empirically over all x ∈ DQ.

Then, the cross entropy, which statistically measures the difference from Q to P where Q is treated
as the reference distribution, can be expressed as:

H(P,Q) =−
∫
X
p(x) ln q(x)dx

=−
∫
X

1

|DP |
∑

x′∈DP

δ(x− x′) ln

(
1

√
2π

k
det (Σ)

1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

))
dx.

(6)

Using two basic rules of i)
∫
X (
∑

n fn(x)) dx =
∑

n

(∫
X fn(x)dx

)
if the summation is performed

on a finite set, and ii)
∫
X δ(x− a)f(x)dx = f(a) if f(x) is continuous on X , the cross entropy in

eq. 6 can be derived as:

H(P,Q) = − 1

|Dp|
∑
x∈Dp

ln

(
1

√
2π

k
det (Σ)

1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

))

=
1

2|Dp|
∑
x∈Dp

(x− µ)⊤Σ−1(x− µ) + ln (
√
2π

k
det (Σ)

1/2
). (7)

Note that conditions for realizing the two basic rules are satisfied in our scenario, as i) the summation
is computed on a finite set DP , and ii) a log of the multivariate Gaussian distribution is continuous on
X .

In our scenario where the cross-entropy is used to compare the distribution gaps of different test
datasets (here, DP s) while the reference dataset (DQ) is fixed, and it is computed on the representation
space of the detector, the cross-entropy can be expressed as:

H(P,Q) =
1

2|DP |
∑

x∈DP

(f(x)− µ)⊤Σ−1(f(x)− µ) + C, (8)

where f(·) is the output of the detector in the representation space. The second term of eq. 7 can be
regarded as a constant since k (the dimension of the representation space) and Σ (parameter of the
reference dataset DQ) are not affected by the test dataset DP .

B IMPLEMENTATION DETAILS

PTL. We followed the original PTL paper Shen et al. (2023) for all architectural details and training
specifications of PTL except for the numbers of training epochs and iterations. The numbers of
training epochs (used in sim2real transformer training) and training iterations (used in detector
training) are modified to adopt a training time curtailment strategy. Specifically, in the original PTL,
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Table 1: Wall-clock Training time breakdown for sim2real transformer training and detector
training. Training time is shown in mins. The numbers in the parentheses indicate training epochs and
iterations for the corresponding PTL iteration for sim2real transformer training and detector training,
respectively.

(a) sim2real transformer, Vis-20

from-prev-iter 0 1 2 3 4
28 (100) 41 (100) 56 (100) 69 (100) 83 (100)

✓ 28 (100) 8 (20) 12 (20) 14 (20) 17 (20)

(b) detector, Vis-20

from-prev-iter 0 1 2 3 4 5
40 (6.0k) 36 (6.0k) 32 (6.0k) 28 (6.0k) 25 (6.0k) 22 (6.0k)

✓ 40 (6.0k) 24 (1.2k) 21 (1.2k) 19 (1.2k) 17 (1.2k) 15 (1.2k)

(c) sim2real transformer, Vis-50

from-prev-iter 0 1 2 3 4
87 (100) 101 (100) 114 (100) 128 (100) 142 (100)

✓ 87 (100) 20 (20) 23 (20) 26 (20) 29 (20)

(d) detector, Vis-50

from-prev-iter 0 1 2 3 4 5
40 (6.0k) 38 (6.0k) 36 (6.0k) 35 (6.0k) 33 (6.0k) 31 (6.0k)

✓ 40 (6.0k) 25 (1.2k) 24 (1.2k) 23 (1.2k) 22 (1.2k) 21 (1.2k)

the sim2real transformer and detector are trained for 100 epochs and 6.0k iterations, respectively, but
when adopting the strategy, they are trained for 20 epochs and 1.2k iterations, respectively, after the
0th iteration.

Random selection. For random selection, we used the PTL implementation after modifying the
synthetic data selection. In particular, while PTL is designed to select synthetic images by weighting
images closer in domain gap to the training set, this selection is modified to randomly select synthetic
data. All other parts except this selection process of the PTL training pipeline were used unchanged.

Subsets of synthetic data pool The Archangel-synthetic dataset ? was originally created by varying
the five rendering parameters as follows: 10 altitudes (from 5m to 50m at 5m interval), 6 radii (from
5m to 30m at 5m interval), 12 angles (from 0◦ to 330◦ at 30◦ interval) 8 human characters (Juliet,
Kelly, Lucy, Mary, Romeo, Scott, Troy, and Victor), and 3 human poses (stand, prone, squat). Each
subset of the synthetic data pool is built using a sparse set of each rendering parameter, as follows:

• SAlt: using sparser 5 altitudes from 10m to 50m at 10m interval.

• SRad: using sparser 3 radii from 10m to 30m at 10m interval.

• SAng: using sparser 6 angles from 0◦ to 300◦ at 60◦ interval.

• SCha: using sparser 4 human characters of Juliet, Kelly, Romeo, and Scott.

• SPos: using sparser 1 human pose of standing.

For each subset, all other parameters were the same as those of the original pool, except for the
rendering parameter indicated to be used sparsely.

C NUMERICAL RESULTS

In this section, we present the numerical results of the graphs used for analysis in the main manuscript
and additional results not presented in the main manuscript.

C.1 CURTAILMENT OF PTL TRAINING TIME

The reduced training time and altered accuracy by adopting the tune-from-previous-iteration strat-
egy is reported in the main manuscript. Here, we also present the reduced time for two separate
components of the PTL training pipeline that are affected by the strategy: detector training and
sim2real transformer training (Table 1). The corresponding training times (in mins) with and without
the strategy for every PTL iteration in Vis-20/50 settings are shown in the table. It is noteworthy
that training time per PTL iteration is longer in Vis-50 than Vis-20 when using the same numbers
of training iterations and epochs. This is because in our experimental setting, the real images are
larger in size than the synthetic images (the image sizes of VisDrone images used as real data and the
Archangel-Synthetic images used as synthetic data are 2000×1500 and 512×512, respectively) and
thus require more computation time, and account for a larger portion of the training set in Vis-50.
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Table 2: Numerical results with the size of real dataset. In each bin presenting accuracy, the mean
and standard deviation of AP@.5 and AP@[.5:.95] calculated over 3 runs are reported.

(a) Same-domain and cross-domain accuracy in the Vis-N

setup w/ synth VisDrone Okutama ICG HERIDAL SARD

Vis-20
3.43±0.57 / 0.98±0.12 18.38±8.74 / 4.73±2.61 2.14±0.70 / 0.43±0.15 7.11±3.45 / 2.13±1.08 7.24±3.32 / 2.07±1.14

✓ 6.18±0.47 / 1.82±0.33 29.93±3.01 / 7.18±0.90 29.30±2.70 / 8.09±0.33 28.61±2.91 / 9.57±1.13 34.96±3.26 / 11.53±1.06

Vis-50
6.13±0.28 / 1.84±0.21 25.65±4.62 / 6.98±1.56 6.57±2.41 / 1.48±0.89 12.12±3.35 / 3.93±1.17 17.73±1.58 / 4.92±0.61

✓ 8.91±0.20 / 2.79±0.08 37.67±0.59 / 9.80±0.25 32.86±5.36 / 9.64±2.03 36.88±3.79 / 12.16±1.93 45.75±2.16 / 15.92±1.73

Vis-100
7.91±0.13 / 2.36±0.07 31.37±1.49 / 8.21±0.29 7.60±1.51 / 1.81±0.32 14.64±6.04 / 4.59±1.47 18.27±1.25 / 5.42±0.50

✓ 10.56±0.49 / 3.29±0.23 41.18±3.35 / 10.86±1.07 35.69±1.65 / 11.02±1.35 38.54±7.75 / 13.37±2.36 48.15±1.18 / 17.05±0.87

Vis-200
10.55±1.41 / 3.18±0.55 38.58±4.81 / 10.25±1.66 6.50±3.17 / 1.39±0.63 14.76±9.76 / 4.68±2.72 21.87±7.48 / 6.98±1.97

✓ 12.78±0.48 / 4.10±0.28 46.62±0.93 / 12.37±0.21 30.48±0.34 / 8.21±0.43 37.60±2.12 / 13.74±1.46 49.60±1.78 / 17.73±0.49

(b) Same-domain accuracy w/o synthetic data and its ratio to the Vis-N (w/ synthetic data) when using the same
number of real images

# of real image
testset 20 50 100 200

accuracy
Okutama

37.93±1.75 / 9.93±0.16 51.31±2.05 / 14.13±0.90 55.98±0.75 / 16.68±0.45 64.76±0.97 / 20.28±0.17

ratio to Vis-N (w/ synth) 0.79 / 0.72 0.73 / 0.69 0.74 / 0.65 0.72 / 0.61
accuracy

ICG
40.36±0.96 / 10.63±0.38 60.95±1.76 / 19.57±1.19 73.23±0.76 / 27.53±0.95 84.21±1.50 / 35.98±1.20

ratio to Vis-N (w/ synth) 0.73 / 0.76 0.54 / 0.49 0.49 / 0.40 0.36 / 0.23
accuracy

HERIDAL
41.39±2.86 / 12.75±1.82 58.97±2.86 / 19.76±0.96 65.78±0.70 / 26.27±1.25 71.53±0.49 / 31.18±1.70

ratio to Vis-N (w/ synth) 0.69 / 0.75 0.63 / 0.62 0.59 / 0.51 0.53 / 0.44
accuracy

SARD
33.44±6.36 / 8.52±2.20 51.35±1.68 / 15.28±0.78 66.81±3.15 / 23.75±1.79 75.76±1.62 / 30.17±0.98

ratio to Vis-N (w/ synth) 1.05 / 1.35 0.89 / 1.04 0.72 / 0.72 0.65 / 0.59

C.2 SCALABILITY BEHAVIOR OF REAL DATA

In Table 2, we present numerical results used to generate Fig. 2 of the main manuscript. Specifically,
the numbers in Table 2a correspond to Fig. 2(a) and (b) of the main manuscript while the numbers
in Table 2b are matched to Fig. 2(c). The results using AP@.5 follow a similar trend to those using
AP@[.5:.95], which have been analyzed in the main manuscript.

C.3 SCALABILITY BEHAVIOR OF SYNTHETIC DATA

In Table 3, we present numerical results used to generate Fig. 4 of the main manuscript. The results
using AP@.5 follows a similar trend to those using AP@[.5:.95], which have been analyzed in the
main manuscript.

In Figure 1, we also show the scatter plots of detection scores and Mahalanobis distances for different
numbers of synthetic images used in training. Among different experimental settings, we present the
scatter plots for three cases: i) testing on the Okutama-Action dataset in Vis-50, ii) testing on the
SARD dataset in Vis-100, and iii) testing on the HERIDAL dataset in Vis-200. For reference, the first
case is the same as the scatter plots in Fig. 3(b) and Fig. 5 of the main manuscript. To better focus
on the distribution of each scatter plot, scatter plots are shown separately for each size of synthetic
data. In the main manuscript, these scatterplots are shown together in one figure to emphasize the
differences between the plots. The observations of change in the scatter plots for the other two cases
are similar to those in the first case, which has been analyzed in the main manuscript.
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Table 3: Numerical results with the size of synthetic dataset. ‘Random’ denotes random selection.

(a) Vis-20

# of synthetic image
method test set 0 100 500 1000 2000
PTL

VisDrone 3.43±0.57 / 0.98±0.12
5.88±0.58 / 1.73±0.21 6.48±0.56 / 1.89±0.13 6.28±0.86 / 1.76±0.28 6.18±0.47 / 1.82±0.33

Random 5.90±0.29 / 1.63±0.07 6.40±0.85 / 1.79±0.28 6.41±0.20 / 1.85±0.09 6.09±0.69 / 1.75±0.28

PTL
Okutama 18.38±8.74 / 4.73±2.61

28.01±2.89 / 6.73±0.80 30.54±1.06 / 7.24±0.36 29.63±1.21 / 6.90±0.41 29.93±3.01 / 7.18±0.90

Random 27.54±1.40 / 6.18±0.62 28.20±1.74 / 6.30±0.34 27.20±0.90 / 6.08±0.24 27.80±3.03 / 6.08±0.99

PTL
ICG 2.14±0.70 / 0.43±0.15

15.16±3.85 / 3.58±1.24 23.03±4.68 / 6.13±1.79 26.70±1.86 / 7.47±1.37 29.30±2.70 / 8.09±0.33

Random 8.97±0.67 / 1.97±0.20 29.62±2.03 / 8.06±0.30 26.69±6.21 / 7.39±1.14 33.70±0.85 / 9.54±0.87

PTL
HERIDAL 7.11±3.45 / 2.13±1.08

20.24±3.85 / 5.87±1.83 26.50±3.02 / 7.86±1.10 26.98±5.38 / 8.49±1.14 28.61±2.91 / 9.57±1.13

Random 14.82±2.57 / 3.94±1.00 23.37±2.19 / 6.77±0.92 25.98±2.92 / 7.41±0.73 29.22±4.55 / 9.02±1.95

PTL
SARD 7.24±3.32 / 2.07±1.14

24.51±3.39 / 7.37±1.33 34.74±1.93 /11.11±1.14 35.65±3.07 /11.90±0.78 34.96±3.26 /11.53±1.06

Random 22.15±3.13 / 6.52±1.44 34.98±5.04 /11.18±1.77 37.35±3.35 /11.78±0.67 40.01±2.07 /13.36±0.85

(b) Vis-50

# of synthetic image
method test set 0 100 500 1000 2000
PTL

VisDrone 6.13±0.28 / 1.84±0.21
8.48±0.26 / 2.55±0.10 9.27±0.29 / 2.84±0.12 9.39±0.12 / 2.98±0.07 8.91±0.20 / 2.79±0.08

Random 8.17±0.28 / 2.43±0.22 9.23±0.29 / 2.77±0.15 8.97±0.08 / 2.70±0.11 9.01±0.56 / 2.69±0.04

PTL
Okutama 25.65±4.62 / 6.98±1.56

35.21±4.67 / 9.45±1.70 37.94±1.84 / 9.88±0.76 37.17±2.10 / 9.63±0.95 38.85±3.34 /10.04±1.10

Random 32.66±5.86 / 8.46±1.92 34.48±5.68 / 8.44±2.03 33.68±6.44 / 8.12±2.04 33.29±4.53 / 7.92±1.20

PTL
ICG 6.57±2.41 / 1.48±0.89

16.87±2.23 / 4.16±0.71 29.70±3.13 / 7.27±1.27 30.94±6.70 / 8.57±2.54 32.86±5.36 / 9.64±2.03

Random 14.43±2.72 / 3.24±0.90 28.78±4.90 / 7.05±1.65 31.45±1.49 / 8.72±1.44 35.51±2.12 / 9.69±0.33

PTL
HERIDAL 12.12±3.35 / 3.93±1.17

22.81±1.43 / 7.22±0.59 31.62±1.32 /10.27±0.74 33.24±1.66 /11.31±1.30 36.88±3.79 /12.16±1.93

Random 21.71±2.14 / 6.56±0.72 29.87±3.93 / 9.73±1.39 32.11±5.48 /10.41±2.96 34.06±5.59 /11.08±2.31

PTL
SARD 17.73±1.58 / 4.92±0.61

32.18±3.75 / 9.77±1.06 43.67±4.01 /14.33±1.66 43.59±2.31 /14.15±2.17 45.75±2.16 /15.92±1.73

Random 30.74±1.61 / 9.41±0.65 38.52±0.88 /12.10±0.96 44.28±2.83 /14.30±1.68 45.56±3.26 /15.21±1.64

(c) Vis-100

# of synthetic image
method test set 0 100 500 1000 2000
PTL

VisDrone 7.91±0.13 / 2.36±0.07
9.58±0.57 / 2.94±0.21 10.79±0.28 / 3.40±0.09 10.82±0.45 / 3.41±0.07 10.56±0.49 / 3.29±0.23

Random 9.13±0.60 / 2.64±0.16 10.66±0.10 / 3.23±0.09 10.67±0.43 / 3.28±0.14 10.13±0.27 / 3.11±0.03

PTL
Okutama 31.37±1.49 / 8.21±0.29

36.61±4.46 / 9.89±1.28 40.37±4.12 /10.41±0.91 40.76±4.69 /10.48±1.12 41.18±3.35 /10.86±1.07

Random 34.92±2.86 / 9.05±0.85 38.12±2.66 / 9.51±0.42 38.80±2.42 / 9.77±0.26 38.18±1.79 / 9.50±0.40

PTL
ICG 7.60±1.51 / 1.81±0.32

18.19±3.47 / 4.47±0.92 31.81±3.63 / 8.90±1.40 35.38±8.43 /10.17±2.30 35.69±1.65 /11.02±1.35

Random 16.33±1.34 / 3.66±0.57 31.67±3.23 / 7.51±1.20 32.98±2.74 / 8.90±1.23 38.75±2.49 /10.76±0.97

PTL
HERIDAL 14.64±6.04 / 4.59±1.47

25.14±9.32 / 8.23±2.54 35.00±6.30 /12.15±1.58 37.31±4.15 /13.38±0.73 38.54±7.75 /13.37±2.36

Random 23.77±7.78 / 7.43±2.13 34.28±7.17 /11.83±2.37 35.89±4.74 /12.69±1.33 40.59±5.17 /14.18±2.50

PTL
SARD 18.27±1.25 / 5.42±0.50

31.16±5.12 / 9.58±1.86 42.93±2.58 /13.98±1.20 46.04±2.30 /15.58±0.73 48.15±1.18 /17.05±0.87

Random 30.55±2.77 / 9.37±0.68 40.69±0.34 /13.13±0.12 44.10±3.84 /14.74±1.62 45.62±5.05 /15.13±2.15

(d) Vis-200

# of synthetic image
method test set 0 100 500 1000 2000
PTL

VisDrone 10.55±1.41 / 3.18±0.55
11.65±0.87 / 3.55±0.35 12.74±0.90 / 3.99±0.35 12.96±0.68 / 4.16±0.43 12.78±0.48 / 4.10±0.28

Random 11.35±1.23 / 3.42±0.52 12.07±1.11 / 3.72±0.46 12.63±0.59 / 3.95±0.36 12.59±1.17 / 3.97±0.49

PTL
Okutama 38.58±4.81 /10.25±1.66

40.23±2.20 /10.71±1.12 45.56±0.44 /12.44±0.51 47.79±2.47 /12.99±0.39 46.62±0.93 /12.37±0.21

Random 39.99±2.82 /10.43±0.48 39.95±2.33 /10.50±0.71 41.88±1.66 /11.02±0.74 41.20±0.92 /10.55±0.03

PTL
ICG 6.50±3.17 / 1.39±0.63

9.50±1.65 / 2.22±0.44 20.56±2.32 / 5.01±0.40 25.67±4.82 / 6.44±1.65 30.48±0.34 / 8.21±0.43

Random 9.27±2.16 / 2.49±0.16 18.29±5.19 / 4.45±1.31 23.29±5.46 / 5.98±1.31 27.29±4.52 / 7.41±1.46

PTL
HERIDAL 14.76±9.76 / 4.68±2.72

19.87±3.79 / 6.34±0.69 30.51±6.31 /10.34±1.39 34.76±8.89 /12.21±2.76 37.60±2.12 /13.74±1.46

Random 17.66±7.26 / 5.72±2.29 26.26±9.95 / 8.55±3.30 29.62±6.13 /10.09±1.44 33.74±8.06 /11.69±2.56

PTL
SARD 21.87±7.48 / 6.98±1.97

30.17±4.28 / 9.67±1.03 40.01±2.13 /13.35±0.57 46.91±5.03 /16.13±1.69 49.60±1.35 /17.73±0.49

Random 27.51±5.72 / 8.74±1.69 38.96±5.45 /12.43±2.31 44.59±1.56 /14.80±0.82 43.25±5.80 /14.85±2.10
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(a) Train: Vis-50, Test: Okutama-Action

102 105 108 1011 1014

Mahalanobis distance

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n 
sc

or
e

PTL: SARD, Vis-100
w/o synth

102 105 108 1011 1014

Mahalanobis distance

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n 
sc

or
e

PTL: SARD, Vis-100
w/ 100 synth

102 105 108 1011 1014

Mahalanobis distance

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n 
sc

or
e

PTL: SARD, Vis-100
w/ 500 synth

102 105 108 1011 1014

Mahalanobis distance

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n 
sc

or
e

PTL: SARD, Vis-100
w/ 1000 synth

102 105 108 1011 1014

Mahalanobis distance

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n 
sc

or
e

PTL: SARD, Vis-100
w/ 2000 synth

102 105 108 1011 1014

Mahalanobis distance

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n 
sc

or
e

Random selection: SARD, Vis-100
w/o synth

102 105 108 1011 1014

Mahalanobis distance

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n 
sc

or
e

Random selection: SARD, Vis-100
w/ 100 synth

102 105 108 1011 1014

Mahalanobis distance

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n 
sc

or
e

Random selection: SARD, Vis-100
w/ 500 synth

102 105 108 1011 1014

Mahalanobis distance

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n 
sc

or
e

Random selection: SARD, Vis-100
w/ 1000 synth

102 105 108 1011 1014

Mahalanobis distance

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n 
sc

or
e

Random selection: SARD, Vis-100
w/ 2000 synth

(b) Train: Vis-100, Test: SARD
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(c) Train: Vis-200, Test: HERIDAL

Figure 1: Scatter plot of detection scores and Mahalanobis distances with various numbers of
synthetic images. For each case, plots in the first row and the second row represent the scatter results
for PTL and random selection, respectively. Each of the five plots in each row shows the results
without using synthetic images, or with using 100, 500, 1000, or 2000 synthetic images, in order.
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