A Related Work

We provide an extended related work comparing the LSSL to previous recurrent, convolutional, and
continuous-time models.

HiPPO The LSSL is most closely related to the HiPPO framework for continuous-time memory
[24]] and its predecessor, the Legendre Memory Unit (LMU) [58]]. The HiPPO-RNN and the LMU
define dynamics of the form of equation (IJ), and incorporate it into an RNN architecture. A successor
to the LMU, the LMU-FFT [12]] keeps the original linear dynamics, allowing the LMU to be computed
with a cached convolution kernel.

These methods all suffer from two main limitations. First, the state matrix A and discretization
timescale At cannot be trained due to both limitations in theoretical understanding of which A
matrices are effective, as well as computational limitations. Second, @) is a 1-D to N-D map,
requiring states to be projected back down to 1-D. This creates an overall 1-D bottleneck in the state,
limiting the expressivity of the model.

Compared to these, the LSSL does not use a conventional RNN architecture, instead keeping the
linear recurrence (@) and downprojecting it with the second part of the state space representation (3).
To avoid the 1-D feature bottlneck, it simply computes H copies of this 1-D to 1-D independently,
creating an overall H-dimensional sequence-to-sequence model. However, this exacerbates the
computational issue, since the work is increased by a factor of H.

This work resolves the expressivity issue with new theory. Compared to HiPPO and the LMU, LSSL
allows training the A matrix by showing generalized theoretical results for the HiPPO framework,
showing that there is a parameterized class of structured state spaces that are HiPPO operators.

The LSSL makes progress towards the second issue with new algorithms for these structured matrices
(Theorem [2)). However, as noted in Sections[4.2]and [f] the algorithm presented in Theorem [2] was
later found to be not practical, and an improved representation and algorithm was found in subsequent
work.

Continuous-time CNNs. The CKConv is the only example of a continuous-time CNN that we
are aware of, and is perhaps the strongest baseline in our experiments. Rather than storing a finite
sequence of weights for a convolution kernel, the CKConv parameterizes it as an implicit function
from [0,1] — R which allows sampling it at any resolution. A successor to the CKConv is the
FlexConv [43]], which learns convolutional kernels with a flexible width. This is similar to the
convolution interpretation of LSSL when using certain HiPPO bases (Section [3.2).

Continuous-time RNNs. The connection from RNNs to continuous-time models have been known
since their inception, and recent years have seen an explosion of CT-RNN (continuous-time RNN)
models based on dynamical systems or ODEs. We briefly mention a few classic and modern works
along these lines, categorizing them into a few main topics.

First are theoretical works that analyze the expressivity of RNNs from a continuous-time perspective.
The connection between RNNs and dynamical systems has been studied since the 90s [22], fleshing
out the correspondence between different dynamical systems and RNN architectures [38]]. Modern
treatments have focused on analyzing the stability [[62]] and dynamics [29] of RNNs.

Second, a large class of modern RNNs have been designed that aim to combat vanishing gradients
from a dynamical systems analysis. These include include the AntisymmetricRNN [7], iRNN [30],
and LipschitzRNN [20], which address the exploding/vanishing gradient problem by reparatermizing
the architecture or recurrent matrix based on insights from an underlying dynamical system.

Third is a class of models that are based on an explicit underlying ODE introduced to satisfy various
properties. This category includes the UnICORNN [47]] and its predecessor coRNN [46] which
discretize a second-order ODE inspired by oscillatory systems. Other models include the Liquid Time-
Constant Networks (LTC) [27] and successor CfC [26], which use underlying dynamical systems with
varying time-constants with stable behavior and provable rates of expressivity measured by trajectory
length. The LTC is based on earlier dynamic causal models (DCM) [21]], which are a particular ODE
related to state spaces with an extra bilinear term. Finally, the LMU [58] and HiPPO [24] also fall in
this category, whose underlying ODEs are mathematically derived for continuous-time memorization.
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Fourth, the recent family of neural ODEs [[10], originally introduced as continuous-depth models,
have been adapted to continuous-time, spawning a series of “ODE-RNN” models. Examples include
the ODE-RNN [45]], GRU-ODE-Bayes [16], and ODE-LSTM [32], which extend adjoint-based
neural ODEs to the discrete input setting as an alternative to standard RNNs. Neural Controlled
Differential Equations (NCDE) [31] and Neural Rough Differential Equations (NRDE) [37] are
memory efficient versions that integrate observations more smoothly and can be extended to very
long time series.

Gating mechanisms. As a special case of continuous-time RNNs, some works have observed
the relation between gating mechanisms and damped dynamical systems [54]. Some examples
of continuous-time RNNs based on such damped dynamical systems include the LTC [27]] and
iRNN [30]. Compared to these, Lemma [3.1| shows a stronger result that sigmoid gates are not just
motivated by being an arbitrary monotonic function with range (0, 1), but the exact formula appears
out of discretizing a damped ODE.

B Model Details

B.1 (M)LSSL Computation

Section 3.1 noted that some of the computations for using the LSSL are expensive to compute. When
the LSSL fixes the A and At parameters (e.g. when they are not trained, or at inference time), these
computational difficulties can be circumvented by caching particular computations. In particular, this
case applies to the LSSL-f. Note that in this case, the other state-space matrices C' and D comprise
the O(H N) trainable parameters of the fixed-transition LSSL.

In particular, we assume that there is a black-box inference algorithm for this system, i.e. matrix-

vector multiplication by A (an example of implementing this black box for a particular structured
class is in Appendix [E.2Z). We then compute and cache

* the transition matrix A, which is computed by applying the black-box A MVM algorithm to
the identity matrix I.

¢ the Krylov matrix

K(A,B) = (B,4B,(A)B,...) e RN*E, (8)
which is computed in a parallelized manner by the squaring technique for exponentiation,
i.e. batch multiply by 4, (4)2, (A)4,....

At inferenciz tiﬁme, the model can be unrolled recurrently with A. At training time, the ci)nlolutional
filter K1,(A, B,C) (equation (7)) is computed with a matrix multiplication C - K (A, B) before
convolving with the input w.

Table [7] provides more detailed complexity of this version of the LSSL with fixed A, At.

Note that as mentioned in Section 6] this cached algorithm is fairly fast, but the main drawback is
that materializing the Krylov matrix (8)) requires O(N L) instead of O(L) space.

B.2 Initialization of A

The LSSL initializes the A parameter in (T) to the HiPPO-LegS operator, which was derived to solve
a particular continuous-time memorization problem. This matrix A € RV is

2n 4+ DV20Q2k + 12 ifn >k
Ay =<n+1 ifn==%.
0 ifn <k

Note that the LSSL-f is the LSSL with a non-trainable A (and At), so that A is fixed to the above
matrix.
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B.3 Initialization of At

One distinction between the LSSL and the most related prior work is that the inclusion of the
projection (2)) makes the layer a 1-dimensional to 1-dimensional map, instead of 1-D to N-D [24] 58]
This enables us to concatenate H copies of this map (at the expense of computation, cf. Section[4.2]
and Appendix [D). Even when At is not trained as in the LSSL-f, these H copies allow multiple
timescales to be considered by setting At differently for each copy.

In particular, we initialize At log-uniformly in a range At,,,;,, Atiqe (i-€., At is initialized within
this range, such that log At is uniformly distributed). The maximum and minimum values were
generally chosen to be a factor of 100 apart such that the length of the sequences in the dataset are
contained in this range. Specific values for each model and dataset are in Appendix [F] We did not
search over these as a hyperparameter, but we note that it can be tuned for additional performance
improvements in our experiments.

B.4 Deep Neural Network Architecture

The Deep LSSL models used in our experiments simply stack together LSSL layers in a simple deep
neural network architecture. We note the following architecture details.

Channels. The state-space model (T)+(2) accepts a 1-dimensional input u, but does not strictly
have to return a 1-dimensional output y. By making the matrices in (2) dimension C € RM*N D ¢
RM>1the output y will be dimension M instead of 1.

We call M the number of channels in the model.

Feedforward. There are two drawbacks with the current definition of LSSL:

* They are defined by running H independent copies of a state-space model, which means the
H input features do not interact at all.

e If the channel dimension is M > 1, then the LSSL is a map from dimension 1 to M, which
means residuals cannot be applied.

These are both addressed by introducing a position-wise feedforward layer after the LSSL of shape
H - M — H. This simultaneously mixes the hidden features, and projects the output back to
dimension 1 if necessary. There is also an optional non-linearity in between the LSSL and this
feedforward projection; we fix it to the GeLU activation function in our models.

We note that this factorization of parallel convolutions on the H features followed by a position-wise
linear map is very similar to depth-wise separable convolutions [13].

Residuals and normalization. To stack multiple layers of LSSLs together, we use very standard
architectures for deep neural networks. In particular, we use residual connections and a layer
normalization (either pre-norm or post-norm) in the style of standard Transformer architectures.
Whether to use pre-norm or post-norm was chosen on a per-dataset basis, and depended on whether
the model overfit; recent results have shown that pre-norm architectures are more stable [[15}135]], so
we used it on harder datasets with less overfitting. We note that we could have additionally inserted
MLP modules in between LSSL layers, in the style of Transformers [57]], but did not experiment with
this.

Parameter count. The overall parameter count of an LSSL model is M - H - (H + N).

We primarily used two model sizes in our experiments, which were chosen simply to produce round
numbers of parameters:

e LSSL small (= 200K parameters): 6 layers, H = 128, N = 128, M = 1.
» LSSL large (= 2M parameters): 4 layers, H = 256, N = 256, M = 4.

We did not search over additional sizes, but for some datasets reduced the model size for computational
reasons.
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C LSSL Proofs

This section gives refinements of the statements in Section [3] additional results, and proofs of all
results.

Appendix [C.T|has a more detailed (and self-contained) summary of basic methods in ODE approxi-
mation which will be used in the results and proofs.

Appendix [C.2] give more general statements and proofs of Lemma[3.T|and Lemma[3.2]in Lemma|[C.I
and Theorem ] respectively.

C.1 Approximations of ODEs

We consider the standard setting of a first-order initial value problem (IVP) ordinary differential
equation (ODE) for a continuous function f (¢, x)

(1) = f(t.2(t)

9
x(to) = Xo ( )
This differential form has an equivalent integral form
t
x(t)=xz0+ [ f(s,2(s))ds. (10)
to

Appendices [C.1.T] and [C.1.2] overview the Picard theorem and first-order numerical integration
methods, which apply to any IVP ([@). Appendix [C.1.3] then shows how to specialize it to linear
systems as in equation (T)).

At a high level, the basic approximation methods considered here use the integral form (I0) and
approximate the integral in the right-hand side by simple techniques.

C.1.1 Picard Iteration

The Picard-Lindelof Theorem gives sufficient conditions for the existence and uniqueness of
solutions to an IVP. As part of the proof, it provides an iteration scheme to compute this solution.

Theorem 3 (Picard-Lindelof). In the IVP ), if there is an interval around to such that f is Lipschitz
in its second argument, then there is an open interval I > tq such that there exists a unique solution
x(t) to the IVP in I. Furthermore, the sequence of Picard iterates 2 2 defined by

2O () = g
t
2Ot =zo+ [ fs,27V(s))ds

to

converges to .

The Picard iteration can be viewed as approximating by holding the previous estimate of the
solution (‘=1 fixed inside the RHS integral.

C.1.2 Numerical Integration Methods

Many methods for numerical integration of ODEs exist, which calculate discrete-time approximations
of the solution. We discuss a few of the simplest methods, which are first-order methods with local
error O(h?) [6].

These methods start by discretizing (I0) into the form

tr

x(ty) — x(t—1) = f(s,x(s))ds. (11)

th—1

Here we assume a sequence of discrete times tg, t1, to, . . . is fixed. For convenience, let x; denote
x(tx) and let Aty := t, — tx—1. The goal is now to approximate the integral in the RHS of (TT).
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Euler method. The Euler method approximates (I1)) by holding the left endpoint constant through-
out the integral (i.e., the “rectangle rule” with left endpoint), f(s,z(s)) = f(tx—1,x(tx—1)). The
discrete-time update becomes
g — Tp—1 = (tk — th—1) f(tr—1, 2(tk—1))
= Aty f(th—1,Tr-1)-
Backward Euler method. The backward Euler method approximates (TI)) by holding the right

endpoint constant throughout the integral (i.e., the “rectangle rule” with right endpoint), f(s, z(s)) =~
f(tg, xz(tr)). The discrete-time update becomes

Tp — Th—1 = (tk - tk—l)f(tkax(tk))
= Aty f(tk, xg)-

C.1.3 Discretization of State-Space Models

12)

(13)

In the case of a linear system, the IVP is specialized to the case
f(t,z(t)) = Az(t) + Bu(t).

Note that here u is treated as a fixed external input, which is constant from the point of view of this
ODE in z. Let uj, denote the average value in each discrete time interval,

1 [t
= — ds.
U, Al /tk1 u(s) ds

The integral equation (TT)) can be specialized to this case, and more generally a convex combination
of the left and right endpoints can be taken to approximate the integral, weighing them by 1 — o and
« respectively. Note that the case o = 0, 1 are specializations of the forward and backward Euler
method, and the case a = % is the classic “trapezoid rule” for numerical integration.

x(ty) — x(tg—1) = ) Az(s)ds + ) Bu(s) ds

te—1 th—1

tr
= / Azx(s) ds + Aty Buy,

te—1
~ Aty [(1 — a)Azg—1 + aAxy] + Aty Bug.
Rearranging yields
(I —aAty - A)xg = (I + (1 — a)Aty - A)xg—1 + Aty - Buy
zp = (I —alty, - A)HI + (1 — @)Aly, - A)xg—y + (I — aAty - A)" Aty - Buy,

This derives the generalized bilinear transform (GBT) [61]. The bilinear method is the case a =
% of special significance, and was numerically found to be better than the forward and backward Euler
methods o = 0, 1 both in synthetic function approximation settings and in end-to-end experiments
[24] Figure 4].

C.2 RNNs are LSSLs: Proof of Results in Section

We provide more detailed statements of Lemmas [3.1]and [3.2) from Section[3.2] In summary, LSSLs
and popular families of RNN methods all approximate the same continuous-time dynamics

i(t) = —x + f(t, z(t)) (14)
by viewing them with a combination of two techniques.
We note that these results are about two of the most commonly used architecture modifications for
RNNs. First, the gating mechanism is ubiquitous in RNNSs, and usually thought of as a heuristic
for smoothing optimization [28]]. Second, many of the effective large-scale RNNs use linear (gated)
recurrences and deeper models, which is usually thought of as a heuristic for computational effi-

ciency [3S)]. Our results suggest that neither of these are heuristics after all, and arise from standard
ways to approximate ODEs.

To be more specific, we show that:
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Table 6: A summary of the characteristics of popular RNN methods and their approximation mechanisms for
capturing the dynamics ©(t) = —x(t) + f(¢, 2(¢)) (equation (T4)). The LSSL entries are for the very specific
case withorder N =1and A = —1,B =1,C = 1, D = 0; LSSLs are more general.

Method RNN RNN LSSL LSSL

Variant Gated Gated, linear Discrete @)+({) Continuous (I)+@)
Special cases LSTM [28], GRU [14] QRNN [5]], SRU [33]]

Deep? Single-layer Deep Deep Deep

Continuous? Discrete-time Discrete-time Discrete-time Continuous-time
Linear? Non-linear Linear Linear Linear

Approximation
Depth-wise - Picard iteration Picard iteration Picard iteration
Time-wise Backwards Euler GBT(ax=1) GBT(a = %) (i.e. Bilinear) -

* Non-linear RNNs discretize the dynamics by applying backwards Euler discretiza-
tion to the linear term, which arises in the gating mechanism of RNNs (Appendix [C.2.2]
Lemmal|C.TJ).

* A special case of LSSLs approximates the dynamics (I4) (in continuous-time) by applying
Picard iteration to the non-linear term (Appendix [C.2.3] Theorem ).

* Deep linear RNNs approximate the dynamics (T4)) with both Picard iteration in the depth
direction to linearize the non-linear term, and discretization (gates) in the time direction to
discretize the equation (Appendix [C.2.4] Corollary[C.3).

A comparison is summarized in Table [6]

In the remainder of this section, we assume that there is an underlying function z(t) that satisfies
(T4) on some interval for any initial condition, and that f is continuous and Lipschitz in its second
argument. Our goal is to show that several families of models approximate this in various ways.

C.2.1 Intuition / Proof Sketches

We sketch the idea of how LSSLs capture popular RNNs. More precisely, we will show how
approximating the dynamics (T4)) in various ways lead to types of RNNs and LSSLs.

The first step is to look at the simpler dynamics
z(t) = —x(t) + u(t)

where there is some input u(t) that is independent of z. (In other words, in (T4), the function f (¢, z)
does not depend on the second argument.)

By directing applying the GBT discretization with « = 1, this leads to a gated recurrence
(Lemma [3.1).

The second step is that by applying the backwards Euler discretization more directly to (I4), this
leads to a gated RNN where the input can depend on the state (Lemma|[C.T).

Alternatively, we can apply Picard iteration on (14)), which says that the iteration
t t
2O (t) = xo +/ —z "V (s)ds —|—/ f(s, 2V (s)) ds
to to
converges to the solution z(t).

However, the first integral term is simple and can be tightened. We can instead try to apply Picard
iteration on only the second term, leaving the first integral in terms of 2(*). Intuitively this should
still converge to the right solution, since this is a weaker iteration; we’re only using the Picard
approximation on the second term.

2O (t) = o + /t —2O(s)ds + /t f(s, 2V (s)) ds

to
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Differentiating, this equation is the ODE
iO ) = —2O) + ft, 2Vt
f(t,
This implies that alternating point-wise functions with a simple linear ODE 3(“) (t) = —2(9(¢) +
u® (t) also captures the dynamics (T4). But this is essentially what an LSSL is.

To move to discrete-time, this continuous-time layer can be discretized with gates as in Lemma@
leading to deep linear RNNs such as the QRNN, or with the bilinear discretization, leading to the
discrete-time LSSL. We note again that in the discrete-time LSSL, A and B play the role of the gates
o,1—o.

C.2.2 Capturing gates through discretization
Lemma C.1. Consider an RNN of the form

o = (1 —o(2x))zk—1 + 0(2k) f(k, 28-1), (15)

where f(k,x) is an arbitrary function that is Lipschitz in its second argument (e.g., it may depend on
an external input uy).

Then equation (13)) is a discretization of the dynamics (T4) with step sizes At = exp(zk), i.e.
xg & x(ty) where ty, = Zle At;.

Proof. Apply the backwards Euler discretization (T3)) to equation (T4) to get

T — g1 = Aty [—zp + f(te, 1))
(14 Atp)zg = zi—1 + Atg f(tr, k)
Aty

Tp = ———Xp1 + ——— f(tg, ).
I A ! 1+Atkf(k’ k)
Aty ek 1 1 At
Note that 1+Aktk = Tie7r = 7= and AL = 1-— HA"tk,thus

g = (1 —o(zx))xp—1+ o(zk) f(k, xr—1)-
Here we are denoting f(k,z) = f(t,z) to be a discrete-time version of f evaluatable at the given

timesteps t. O

Note that a potential external input function u(t) | or sequence uy, is captured through the abstraction
f(¢t, z). For example, a basic RNN could define f(k,x) = f(tx,z) = tanh(Waz + Uuy).

C.2.3 Capturing non-linearities through Picard iteration

The main result of this section is Theorem 4] showing that LSSLs can approximate the same dynamics
as the RNNss in the previous section. This follows from a technical lemma.

Lemma C.2. Let f(t,x) be any function that satisfies the conditions of the Picard-Lindeldf Theorem
(Theorem 3).

Define a sequence of functions x'*) by alternating the (point-wise) function f with solving an ODE
2 O(t) = g
uO(t) = f(t,2“7D(1))
:'U(Z)(t) = Az®) (t) + u(é)(t).
Then ) converges to a solution x¥) (t) — x(t) of the IVP
o(t) = Ax(t) + f(t, z(t))
Iﬂ(to) = Z9-.

Theorem 4. A (continuous-time) deep LSSL with order N =1and A= —-1,B=1,C=1,D=0
approximates the non-linear dynamics (14).
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Proof. Applying the definition of an LSSL (equations (T)+(2)) with these parameters results in a
layer mapping u(t) — y(t) where y is defined implicitly through the ODE

9(t) = —y(t) + u(?).

This can be seen since the choice of C, D implies y(¢) = x(t) and the choice of A, B gives the above
equation.

Consider the deep LSSL defined by alternating this LSSL with position-wise (in time) non-linear
functions

uO(t) = f(t,y“ V(1))
30 = =y (1) +uO ).

But this is exactly a special case of Lemma so that we know y(©)(t) — y(t) such that y(t)
satisfies

y(t) = —y(t) + f{t,y(1))

as desired. O

Proof of Lemma[C2] Let
2(t) = e~ Ma(t)
(and zg = z(to) = x(tg) = xo). Note that
2(t) = e A [2(t) — Ax(t)]
= e A f(t,x(t))
= e At f(t, eM2(t)).

Since f satisfies the conditions of the Picard Theorem (i.e., is continuous in the first argument and
Lipschitz in the second), so does the function g where g(t, z) := e~ 4t f(t, eA*x) for some interval
around the initial time.

By Theorem the iterates z(©) defined by

t
20(t) = 2 +/ e A5 f(s, 22V (s)) ds (16)

to

converges to z.
Define () (t) = eA*2()(t). Differentiate (T6) to get
2O (1) = e At f (1, A1) (1))
= e M f(t, a0 ()

= e At (1),

But
2O (1) = At [g'c(f)(t) ~ Az® (t)] ,
SO
iD(t) = AzOt) +uD(t).
Since 2() — z and 29 (t) = 42D (t) and 2(t) = e**2(t), we have 2(©) — 1. O

C.2.4 Capturing Deep, Linear, Gated RNNs

We finally note that several types of RNNs exist which were originally motivated by approximating
linearizing gated RNNs for speed. Although these were treated as a heuristic for efficiency reasons,
they are explained by combining our two main technical results.
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Lemma[C.T|shows that a single-layer, discrete-time, non-linear RNN approximates the dynamics (14))
through discretization, which arises in the gating mechanism.

Theorem [] shows that a deep, continuous-time, linear RNN approximates (T4) through Picard
iteration, where the non-linearity is moved to the depth direction.

Combining these two results leads to Corollary [C.3] which says that a deep, discrete-time, linear
RNN can also approximate the same dynamics (14).

Corollary C.3. Consider a deep, linear RNN of the form

x](f) =(1- a(zk))xg_)l + J(zk)u,(f)

0 = —
u,i) = f(/c,acfC 1)).

This is a discretization of the dynamics (14) with step sizes Aty = exp(zy), i.e. x, = x(t)) where
k
tr = Zi:l At;.

Proof. By Lemma|C.I] the first equation is a discretization of the continuous-time equation
$Ot) = —2O@1) +u9 (1)
where
u(t) = f(t,2“"1 (1)

uses the continuous-time version f of f. But by Lemma this is an approximation of the dynamics
(T4) using Picard iteration. O

Notable examples of this type of model include the Quasi-RNN or QRNN [35] and the Simple
Recurrent Unit (SRU) [33]], which are among the most effective models in practice. We remark that
these are the closest models to the LSSL and suggest that their efficacy is a consequence of the results
of this section, which shows that they are not heuristics.

We note that there are many more RNN variants that use a combination of these gating and lineariza-
tion techniques that were not mentioned in this section, and can be explained similarly.

D LSSL Proofs and Algorithms

This section proves the results in Section4.1] and is organized as follows:

* Appendix [D.T]gives a self-contained synopsis of the HiPPO framework [24].

* Appendix [D.2]proves Theorem I} which shows that the hippo operators for any measure
lead to a simple linear ODE of the form of equation ().

» Appendix [D.3|proves Corollary 4.1} including a formal definition of quasiseparable matrices
(i.e., how LSSL matrices are defined) in Definition 4}

Notation This section is technically involved and we adopt notation to simplify reasoning about the
shapes of objects. In particular, we use bold capitals (e.g. A) to denote matrices and bold lowercase
(e.g. b) to denote vectors. For example, equation (I)) becomes & = Ax + bu. These conventions are
adopted throughout Appendices [D]and [E]

D.1 Preliminaries: HiPPO Framework and Recurrence Width

This section summarizes technical preliminaries taken directly from prior work. We include this
section so that this work is self-contained and uses consistent notation, which may deviate from prior
work. For example, we use modified notation from Gu et al. [24] in order to follow conventions in
control theory (e.g., we denote input by « and state by z as in (I])).

Appendix [D.1.1| formally defines the HiPPO operator mathematically as in [24] Section 2.2], and
Appendix overviews the steps to derive the HiPPO operator as in [24, Appendix C]. Ap-
pendix [D.1.3| defines the class of Low Recurrence Width (LRW) matrices, which is the class of
matrices that our generalization of the HiPPO results (Theorem [I]) uses.
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D.1.1 Definition of HiPPO Operator

Definition 1 ([24], Definition 1). Given a time-varying measure p‘") supported on (—oo,t], an
N-dimensional subspace G of polynomials, and a continuous function v : R>o — R, HiPPO defines
a projection operator proj, and a coefficient extraction operator coef; at every time t, with the
following properties:

1. proj, takes a function u restricted up to time t, u<; := u(x)|y<, and maps it to a polynomial
g9 € G, that minimizes the approximation error ||u<; — g™ |

La(p®)

2. coef, : G — RN maps the polynomial ¢*) to the coefficients c(t) € RN of the basis of
orthogonal polynomials defined with respect to the measure ji(*).

The composition coef, o proj, is called hippo, which is an operator mapping a function u : R>o — R
to the optimal projection coefficients c : R>o — R (i.e (hippo(u))(t) = coef;(proj,(f))-

D.1.2 HiPPO Framework for Deriving the HiPPO Operator

The main ingredients of HiPPO consists of an approximation measure and an orthogonal polynomial
basis. We recall how they are defined in [24] (we note that compared to Gu et al. [24]], our notation has
changed from input f(¢) coefficients (state) ¢(t) to input u(¢) and coefficients (state) x(t), following
conventions in controls).

Approximation Measures At every ¢, the approximation quality is defined with respect to a

measure (") supported on (—oco, t]. We assume that the measures (") have densities w(t,Y) :=
® L . . . . . . .
dg—y. Note that this implies that integrating with respect to du(?) is the same as integrating with

respect to w(t,Y) dY.

Orthogonal Polynomial basis Let {Pét) }nen denote a sequence of orthogonal polynomials with

respect to some time-varying measure 1Y), Let pgf ) be the normalized version of of orthogonal P,(Lt),

and define
pn(t7 Y) = pgzt) (Y>

In particular, the above implies that

t
/ PO - pP(V)w(t,Y)dY = Gy

—0Q0

In the general framework, HiPPO does not require an orthogonal polynomial basis as the selected
basis. The choice of basis is generalized by tilting with .

Tilted measure and basis For any scaling function x(¢,Y"), the functions p, (t,Y)x(¢,Y) are
orthogonal with respect to the density % at every time ¢. Define v(t) to be the normalized measure

with density proportional to 1%, with normalization constant ¢ (t) = Ot ;(Efg))z da.

We express the coefficients x.,(t) calculated by the HiPPO framework as:

_ L[ w(t,Y)

To use this to derive @, (t), let h(t,Y) = u(Y)p, (¢, Y)w(t,Y). We see that
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=N

uw(Y)pn(t, Y)w(t, Y)Y

&

h(t,Y)dY

S— 5—

O\w &l &~
| @

h(t,Y)dY + h(t,t)

QD
o

/Ot u(Y) (gtpn (t,Y)> w(t,Y)dY + /Ot FOY)pn (t,Y) (gtw (t, y)) ay
+ u(t)pn(t, hw(t, t).

This allows &, (t) to be written as

ZTn(t) = u(t)pn(t, t)w(t,t) + /0 u(Y) (gtp" (t, Y)) w(t,Y)dY

+ [ 10 01 (G 1)) v s)

Although Gu et al. [24] describe the framework in the full generality above and use x as another
degree of freedom, in their concrete derivations they always fix xy = w. Our general results also use
this setting. For the remainder of this section, we assume the “full tilting” case y = w. In particular,
this means that in Eq. (I8)), we essentially substitute w above with 1 and divide each term by the
inverse square root of our normalization constant, , to get the coefficient dynamics that we will use
in our arguments:

. 1 1 t o
() = qwmmﬁw+v@wéuwmmmayﬁﬂf (19)

Now, if we can show that each of the integrated terms in are linear combinations of z,,(t),
this would be the same as saying that &, (t) = A(t)x(t) + b(¢t)u(t) for some A(t). Therefore,
the incremental update operation would be bounded by the runtime of the matrix-vector operation
A(t)x(t).

D.1.3 Recurrence Width

Our final goal is to show that &,,(t) = A(t)z(t) + b(¢)u(t) for some A (t) with constant recurrence
width (see Definition [2). This will show Theorem|[I] and also imply that the MVM A (t)z(t) can be

computed in O(N) time. To build this argument, we borrow the fact that OPs all have recurrence
width 2 and results regarding matrix-vector multiplication of matrices with constant recurrence width
along with their inverses.

Definition 2 ([17]). An N x N matrix A has recurrence width t if the polynomials a;(X) =
Z;V:Bl Ali, j) X7 satisfy deg(a;) < i fori < t, and
t
a;i(X) =Y g:5(X)a;ij(X)
j=1

fori > t, where the polynomials g; ; € R[X] have degree at most j.

Theorem 5 ([17], Theorem 4.4). For any N x N matrix A with constant recurrence width, any
vector x € R", Ax can be computed with O(N) operations over R.

Theorem 6 ([17], Theorem 7.1). For any N x N matrix A with constant recurrence width, any
vector x € R", A~1x can be computed with O(N ) operations over R.

For the rest of the note we’ll assume that any operation over R can be done in constant time.
It would be useful for us to define P € RY*Y guch that the coefficients of the OP p;(X), i.e.

pi(X) = S0 Pl j1X
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D.2 Proof of Theorem[T]

This section proves Theorem [I] which is restated formally in Corollary [D.4] Appendix proves
some results relating orthogonal polynomials to recurrence width (Appendix [D.1.3). Appendix [D.2.7]
proves Corollary [D.4} Appendices[D.2.3]and [D.2.4] provides examples showing how Corollary [D.4]
can be specialized to exactly recover the HiPPO-LegT, HiPPO-LagT, HiPPO-LegS methods [24].

D.2.1 Relating Orthogonal Polynomials and Recurrence Width

Next we introduce the following lemma, which will be useful in our arguments:

Lemma D.1. For any n, there exists ordered sets of coefficients o, = {au i}, Bn = {Pn,i}»
(i) Pu(2) = iy anapi(Z)

(i) Zp(Z) = Y1y Bu.ipi(Z)

Proof. Follows from the fact that p;(z) for 0 < ¢ < N forms a basis and the observation of the
degrees of the polynomials on the LHS. O

The following matrices will aid in showing verifying that matrix vector multiplication with a given
matrix A can be computed in O(N) time.

Definition 3. D, D, € RN*Y gre the matrices such that
N— N—

pi(Z) =Y Duli,j1Z7, and Zpi(Z) =) Dali, j]Z.
=0 =0

Ju
Ju

[
[

Let S be the “right shift" matrix, i.e. for any matrix M, M'S has the columns of M shifted to right by
one. Note that S” corresponds to the “left shift" matrix.

We now note that:
LemmaD.2. D; = P-diag(0,1,...,N—1)-ST and D, = P-diag(0, 1,..., N —1). In particular,
D1z and Dz can be computed in O(N)) time for any z € RV,

Proof. Recall that P has the coefficients of the OP polynomials po(Z),...,pn—1(Z) as its rows.
Then note that

n—1
po(Z) =Y i-Pn,i- 27" (20)
=0

The claim on D; = P - diag(0,1,..., N — 1) - ST follows from the above. Recall that D has
recurrence width of 2. The claim on the runtime of computing Dz then follows from Theorem 3]
and the fact that both diag(0,1,..., N — 1) and S is n-sparse.

From Eq. (20), it is easy to see that
Zp,(2) =Y i-Pn,i]- Z".

The claim on the structure of D5 then follows from the above expression. The claim on runtime of
computing D»z follows from essentially the same argument as for D z.

O

Finally, we make the following observation:

Lemma D.3. Let A’ and B’ be defined such that A’ [n,i] = o, ; and B'[n,i] = B, ;. Then both A’
and B’ are both products of three matrices: two of which have recurrence width at most 2 and the
third is the inverse of a matrix that has recurrence width 2.
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Proof. We note that since P expresses the orthogonal polynomials in standard basis, P!
changes from OP basis to standard basis. This along with Lemma implies that A =
P - (diag(0,1,...,N —1)-ST) - P71 It is easy to check that diag(0,1,..., N — 1) - S” has
recurrence width 1 and the claim on A’ follows since P has recurrence width 2. A similar argument
proves the claim on B’. O

D.2.2 HiPPO for General Measures

Let 6 : R>o — R be a function such that for all ¢, §(¢) < ¢ and 0(¢) is differentiable.

In what follows, define
2(Y —1t)

‘We note that d 5
z
v @ 21
Further, note that:
dz d [2(Y —1t)
at dt( 0 +1)
_l B 2(Y —t)0'(t)
o(t) 0%(t)
— 2 /
= g (0O + (0 = 00'(0).
From the definition of z, we see that Y — ¢t = (2;2)9(”. Then
dz 2 z—1Y)\ ,
v am 0 () o)
_ /
i) o

o(t) 0(t)

Additionally, given a measure w on [-1,1] and OP family po(Y'), p1(Y), ... such that for all i # j,

1
/ Yy (V)Y =3,

define

w(Y,t) () and p, (Y1) = pu(2).

2
= —w
0(t)
Then we can adjust to:

t
2
2alt) = [ uV)pue) . (23)
t—0(t)

The Leibniz integral rule states that

o [P0 EIONP)
ot h(t,Y)dY = —h(t,Y)dY — o (t)h(a(t), '()h(t, ).
ot /(x(t) Y /a(t) Y o (Wh(a(t),t) + B(t)h(t.1)

If we let a(t) = t — 6(¢) and 8(¢) = ¢, then applying the Leibniz rule to (23) we get:

27



o L N T U ) 2
)= [ w00 (o) ) O = 0= 00t = 0t 000,057
+ u(t)pn(t, t)%)
, 2 2
1= (e~ 0P (1) + ulOpa(1) s

¢ dz 2 ACNE 2
+/t—9(t)u(y)dtpn(z)9(t)dy o(t) /t () P () o(t) ar.

From (22)), it follows that

2(1 = 0"(®)ult = 0()pn(=1)  2-u(®)pa(l) 2

. T - t u / z i _
= 0(t) - o(t) 0(t) /t—a(t) (Y)pn( )G(t) dy
(9’(t) t B n i - w t . . l
50 oy OGO = e [ apalgggav eb

Because deg (p),(z)) < n —1and deg ((z — 1)p,,(z)) < n, they can be written as a linear combina-
tion of {p} } ;<. Let us define {an i}, {Bn,;} such that

pn Z an ]pj and pn Z /BTL _]pj (25)

Then by using (23) in 24), we get:
() = 201 =0/ ()ult + 0(t))pa(=1) . 2 u(t)pn(1)

n—

2
_%;

o(t)
1 t 9
Oamj/t oo u(Y)pj(z)%dY

0 (t) & t 2 o'(t) [ 2
o o(t) Zﬂn,j /t—e(t) U(Y)pj(z)%dY— 10) /t—G(t) U(Y)Pn(z)%dy

§=0
2(1 = 0'(t)u(t + 0(t))pn(=1) | 2-u(t)pn(1)

<

o(t) o(t)
n—1
2 '(t) o)
80 jgo a2 ( 0] o) Zn(t).
Thus, in vector form we get
Theorem 7.
a(0) = — g A0 (0) — 221 O O)ult ~00) [pa(=D | + 2t [, (1)
O 70 N RTO R
2an,k + el(t)ﬁn,k ifk<n
where Ay (t)[n, k] = < 0'(t)Bnn +0'(t)  ifk=mn  for anPni as defined in (25).
0 otherwise
Corollary D.4. The matrix A, in Theorem[/|can be re-written as
Ay =2-A"+0(1) B +0'(t) L (26)

In particular, both A’ and B’ both products of three matrices: two of which have recurrence width at
most 2 and the third is the inverse of a matrix that has recurrence width 2.
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Proof. Eq. follows from Theorem [7] and defining A’ and B’ to contain the «,, ; and 3, k
coefficients.

D.2.3 Translated HiPPO (Sliding Windows)

The case when 6(¢) = 0 for all ¢ represents a constant-size sliding window, which Gu et al. [24]]
denote as the “Translated HiPPO” case with instantiations such as HIPPO-LegT (Translated Legendre)
and HiPPO-LagT (Translated Laguerre).

We now state a corollary of Theoremfor the case of (t) = 6 for all t.
Corollary D.5. Let 6(t) = 0 for all t. Then

in(t) = — g Aralt) — 2u(t —0) [pa(-D)| + 2u(t) [pa(1)

200, ifk<n

where Aq[n, j] = {0 otherwise

Next, we use the approximation

to handle the u(t — ) term in Corollary
Corollary D.6. Let 6(t) = 0 for all t. Then

where A = Ay + 2A, for Ay as defined in Corollary[D.3|and As[n, k| = p,(—1)pr(—1).

Proof. To approximate u(t — ), we note that when Y = ¢ — 6, z = —1. Then

N-1
u(t —0) ~ Y wp(t)pr(-1).
k=0
Then by Corollary [D.5]
1 2 (= : 2 :
T (t) ~ —5A1x(t) -3 (Z xk(t)pk(—1)> pn(=1)| + gu(t) pn(—1)| . 27
k=0 : :

Let us define a matrix, Ay € RY*Y matrix such that As[n, k] = p,(—1)px(—1). Then the claim
follows.
O

We now show that the special case of Corollary [D.6]for Legendre matches the results from [24].
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Corollary D.7. Let p,(z) = (24t) 1z P, (z) where P,,(z) are the Legendre polynomials. Then

Azx(t) + gbu(t)

Tn(t) = 7

1
0
where

1 ifk<n

Aln k] = (2n+1)% (2k+1)% {(_1)n_k kS n

and bln] = (2:1)?.

Proof. From Corollary [D.6]

where A = Ay + 2A, for A as defined in Corollary[D.5]and As[n, k] = p,(—1)pr(—1).
It is known from (7.21.1) and in [53] that

pr(—1) = (2";1)2&(1) and P, (—1) = (—1)". (28)
Further, )
pot) = (20) P ana Py - 1. 29)

Then b[n] = (2%t1) 2 follows from Corollaryand .

From the following recurrence relations [1, Chapter 12]:

(2n+1)Po(2) = Py (2) + P4 (2)

implies that

Phoi(2) = @n+1)Pu(2) + (20 + 1)Pya(2) + - +,

which in turn implies

P =2n—1)P,_1(2) + (2n —5)Py_3(2) +....

Then

[N

m@(%+1 PI2)

1

2
_ (2”; 1)’ ((Zn ) <2n2 1) : Poi(2)+ (20 —5) (2n2 5) : Poa(s) + .. )

= (@n+1)? ((2n —1)F Py_1(2) + (20— 5)? Py_s(2) + .. ) .

Thus, we have

o n+t 1)2(2k +1)2 if k < nand n — k is odd,
™F 10 is otherwise.
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Recalling that A;[n, k] = 2, k.

1 1 1 1
We note that from (28), Az[n, k] = (251)? (2E51)2 (1)n(—1)k = CotLZERELZ ( qynk,
Recalling A = A; 4+ 2A,, we get:

) 2+ (=1)"* ifk<n andn —kisodd
Akl =@n+1)2 (2k+1)20+ (—1)"* ifk<n andn— kiseven .
(—1)n—k itk >n

Note that the above is the same as:

[N

N 1 iftk<n
An,k]=(2n+1)2 (2k+1) {(_l)nk ifk>n’

which completes our claim.

D.2.4 Scaled HiPPO: Recovering HiPPO-LegS

We now use Theorem [7)to recover the HiPPO-Leg$ instantiation for the “Scaled Legendre” measure,
the main method from Gu et al. [24].

Corollary D.8. Let p,(z) = (%)
d(t) =t for all t. Then

12 P, (z) where P,,(z) are the Legendre polynomials and let

Tn(t) = %Am(t) + %bu(t)

where
@n+1)% (2k+1)% ifk<n
Ankl=<¢n+1 ifk=n,
0 ifk>n

and b[n] = (24t1) 7

Proof. Let §(t) = t. By Theorem [7|and noting that 6(¢) = 1, we get:

balt) =~ Asa(0) + u(0) | pa(1)

where
Qan’k + ﬁn,k ifk<n
A (t)[n, k] =< Bon +1 ifk=n (30)
0 otherwise

for a, 1,3,k as defined in (23).

Using the same arguments as in the proof of CorollaryElT b[n] = (22£1)? follows from Corollary
[D.6and (29). Also using similar arguments as the proof of Corollary we have

(2n41)2(2k + 1)2 if k < nand n — k is odd,
Qn k = . .
0 is otherwise.

From (8) in [24], we know that
(z+1)P,(2) =nP,(2) + 2n+1)Pr_1(2) + (2n — 3)Pp_2(2) + ...
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Including the normalization constant (2n.+1)2, we note that (z — 1)pl, (2) = (2 + 1)pl, (2) — 20, (2).
Then we get

(2 + Dp(2) = npn(2) = (20 +1)2 (20 — 1)2py_1(2) + (204 1) (20— 3)2pp_a(2) — ...
In other words,
—(2n+1)2(2k+1)2 if k < nand n — k is odd,
(2n41)2(2k + 1)2 if k < nand n — k is even
n ifn==%k
0 otherwise.

Bn,k =

Recalling that the definition for A; from (30), we get:

Nl

2n+1)2 (2k+1)° ifk<n
Ankl=<n+1 iftk=mn,
0 iftk>n
which completes our claim. O

D.3  Proof of Corollary [d.I; HiPPO for Classical Orthogonal Polynomials

This section proves Corollary @.1] showing that the HiPPO matrices for measures corresponding to
classical families of orthogonal polynomials [11]] are quasiseparable. We define quasi-separability
in Appendix Theorem [§] proves the claimed result for Jacobi polynomials and Lemma [D.TT]
proves the claimed result for Laguerre polynomials.

We note that there is a third family of classical OPs, the Hermite polynomials [11]], which have a
two-sided infinite measure. However, since HiPPO is about continuous-time memorization of a
function’s history, it requires a one-sided measure and therefore the Hermite polynomials are not
appropriate.

D.3.1 Quasiseparable Matrices
Definition 4 (from [19]). A matrix R € RN*N is (p, q)-quasiseparable if

» Every matrix contained strictly above the diagonal has rank at most p.

* Every matrix contained strictly below the diagonal has rank at most q.
A (q, q)-quasiseparable matrix is called q-quasiseparable.

We are interested in showing the A matrices for a broad class of OPs in Corollary are O(1)-
quasiseperable. We now state some properties of g-quasiseparable matrices:

Lemma D.9. Ler Q be q-quasiseparable. Then:
(i) For any q'-quasiseparable matrix Q' € RVN*N Q4+ Q' is (¢ + ¢')-quasiseparable.
(ii) For any E € RN*N E is r-quasiseparable where r = rank(E).

(iii) For any two diagonal matrices D1, Dy € RN*N D,QDs, is q-quasiseparable.

Proof. We argue each point separately:

(i) Any submatrix contained strictly below or above the diagonal in Q has rank < ¢ and its
corresponding submatrix in Q' also has rank < ¢’. This implies that the corresponding
submatrix in Q &+ Q’ has rank < ¢ + ¢’. Therefore Q = Q' is (¢ + ¢’)-quasiseparable.

(ii) Let the r = rank(E). Thus any submatrix in E has rank < r. Then E is r-quasiseparable.
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(iii) Multiplication by diagonal matrices only scales the rows and columns, leaving the rank of
each submatrix unchanged.

O

D.3.2 Jacobi Polynomials

The Jacobi polynomial of degree n with parameters o, 3 > —1 will be denoted J# (z). The Jacobi

polynomials are orthogonal with respect to measure w(z) = (1 — 2)*(1 + 2)”. In particular, it is
known from (eq. (4.3.3) from [53]) that

20+A+1 Fn+a+1I(n+3+1)
m+a+p+1 Fn+a+p+1)n!

5n,ma

RGICEUCPOUE

where I'(+) is the gamma function. Let

A8 — 200041 Tn+a+ DI(n+B+1) 5
m+a+pB+1  Tn+a+B+1)nl

be our normalization constant. We note that the normalized Jacobi polynomials
I (2)

P’ (2) =

form an orthonormal OP family.

We now discuss some useful properties of Jacobi polynomials. It is known that ([S0], eq. (3.100)):

T3P (2) = [(n+ B) I3 M z) + (n+ ) I3 (2)] . (32)

n+a+p

From (4.21.7) in [33], it is known that the derivative of J%? (z) is proportional to JoT1 71 (2):

0
0z

From (32)) and (33), it follows that

L I(e) = gln+at fH DI (). (33)

0 1 o o
ST =5 (n+ B () + 4+ a) 15 (). (34)

Additionally, the Jacobi polynomials J,, O‘H # (2) and J;; ’B *1(2) can be written as sums of Js‘;ﬁ 1(2)
polynomials. In particular from [50] (3 112) and (3. 115)

at1,8  \ _ I'(n+ ) — 2k+a+5+1) (kta+B+1) ap
Inc (Z)_F(n+a+ﬁ+l kZ:: T(k+B+1) S (z), (35)
and
aitl o Tl+a) T @ktat+B+D)I(k+a+B+1)
I (Z)if‘(n—i—a—i-ﬁ_yl) ;;)( 1) T(h+at1) Jp" (=)

(36)
Using and in allows us to write 5~ 9 joB () as a sum of {J,‘j’ﬂ (z)}k< as follows:
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2 Fn+at+f+1) & Fk+p+1)

ajaﬁ(z):nm( T(n + ) ’z_:(2k+a+ﬁ+1)l“(k+a+[3+I)Jsﬁ(z)>

n—1

_n—i—a( I'(n+«) )Z(_l)n—k(2k+a+ﬂ+1)F(k+a+6+UJ,?’B(Z)).

'n+a+p+1 = Fk+a+1)

(37

We use these properties to write %pgﬁ (z) as a sum of {pg’ﬁ (2) }k :
<n

Corollary D.10. Let p&? (z) and AP be as defined in (31).

Then

(n+8)

2

T(n+f) f @kt+atB+Ulk+atB+1) apas
In+a+pB+1) L(k+pB+1) ko ok
_(n+a)

2

T(nta) S o x@hta+B+DTk+a+B+1) ap ap
(F(n+a+ﬁ+1)z( b T(k+B+1) APy (Z)>

0
a,B a,8 —
55" P’ (2)

k=0

k=0

Proof. Recall that J&f (z) = A2#p2#. Then the claim follows from (37).

D.3.3 HiPPO for Jacobi Polynomials
Theorem 8. Let p&? (2) be defined as in and w(z) = (1 — 2)*(1 + 2)P. Then

T (t) = ngac(t) + %bu(t)

where A is 3-quasiseperable.
Proof. From Corollary

alt) ~ — g Aw(t) + Zu(t) [pP()

where A = A; + 2A, for A, as defined in Corollary[D.5|and As[n, k] = p2@ (—1)pe?(—1).
From Corollary [D.10] we observe that

(n+p)  __T(ntp) ((2k+a+5+1)r(k+a+ﬁ+1) \eBY
2 \&P  T(n+a+p+1) T'(k+B+1) k
=92. (n+a) I'(nta) n—k (2k+at+B+D)I'(k+a+B+1) ya,B :
Aifn, k] =2 (ote), Dlota) - ((_1) ot (ko) ) ) ifk <n
0 otherwise
(33)
Then we note that,
A; =D1:Q1D12 — D21 Q1 Do, (39
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where D11, D12, Dg1, Doy are the diagonal matrices such that

1 T+p+1)
AP T(n+a+B+1)

D11 [n, n] =

2k DI (k 1) ..

(1 I'n+a+1)

Doi[n,n] = (-1)" - P ' Pn+a+p+1)

a,p
A

T(k+a+1)
and
1 ifk<n
Quln k] = {0 otherwise. ’

(39) makes use of the fact that (—1)"+* = (—1)"~* along with the definitions above.

Any submatrix of Q; below the diagonal contains all 1s, and submatrix of Q; above the diagonal
contains all 0s. Then any submatrix above or below the diagonal has rank 1. Therefore Q; is 1-
quasiseparable. Since Q) is 1-quasiseparable and D11, D12, D21, Do are all diagonal matrices, part
(iii) of Lemmaimplies that the matrices D17 QD12 and D51 QD45 are both 1-quasiseparable.
Therefore part (i) of Lemma [D.9]implies that A is 2-quasiseparable.

From (4.1.1) and (4.1.4) in [53]], it is known that
1 (n+a (D)™ (n+p
B (1) = dp®B(1) =
pn () ( n )an pn () )\a,ﬂ (

_)\g'ﬂ

where

n 0 ifn<0’
Then A5 can be written D3Q2D4 where D3, D, are the diagonal matrices such that

Dafn,n] = (=D" <nzﬂ> Dalk, k] = (=" <k+6>’

Anf PN

I'(z+1 .
(Z> — { F(n-i—l)(f‘(z—)n-‘,-l) iftn >0

where Qa[n, k] =1 forall 0 < n,k < N. Q2 has rank 1, and D3, D, are diagonal matrices. Hence
by part (ii) and (iii) Lemma[D.9] A, is 1-quasiseparable.

Since A; is 2-quasiseparable and A, is 1-quasiseparable, part (i) of Lemma implies that
A = A; + 2A; is 3-quasiseparable and the claim follows. O

D.3.4 HiPPO-LagT

The Laguerre polynomial of degree 7 with parameters « > —1 will be denoted LS (z). The Laguerre
polynomials are orthogonal with respect to measure z*e™*. In particular, from (5.1.1) in [53] we
know that

Lo (2) Ly, (2) 2% *dz =

/°° F(n+a+ 1)!5
. m I‘(n + 1) n,m:-

1
Let \,, = (F(Fn(zili)l)) * be our normalization constant. We note that the normalized Laguerre

polynomials
pn(2) = A Lyp(t —Y) (40)
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form an orthonormal OP family with respect to measure w = (t — Y)%e~(t=Y) 1 (—co,t) Tor a fixed o
and tilting y = (t = Y)* exp (—152(t = ¥)) 1 oo, for a fixed 5.

We use the following result from [24]:
Theorem 9. Let p,(z) be defined as in ({40)). Then

Tn () = —Axz(t) + bu(t)
where
5 k=n
An,kl=41 if k<n,
0 otherwise

bln] = An(n‘;a)

We now show that A as defined in Theorem [J]is 1-quasiseperable.
Lemma D.11. Let A be defined as in Theorem[9} Then A is 1-quasiseperable.

Proof. From Theorem[J] we know that

BB if k=n
1 if k<n,
0 otherwise

bln] — /\n("‘;o‘).

Below the diagonal, all entries A[n, k] = 1. Then any submatrix below the diagonal has rank 1.
Similarly, above the diagonal, all entries A[n, k] = 0. Then any submatrix above the diagonal also
has rank 1. Then by Definition ] the claim follows.

Aln, k] =

O

E LSSL Algorithms

* Appendix [E.T| proves Theorem 2] providing an algorithm to compute the Krylov function
efficiently for LSSLs.

* Appendix [E.2]shows a further simplification of Corollary [4.1] presenting an even simpler
class of structured matrices that we use in our implementation of LSSL.

* Appendix [E.3|provides technical details of the implementation of LSSL, in particular for
computing the MVM black box (multiplication by A) and for computing gradients during
backpropagation.

E.1 Proof of Theorem 2|

This section addresses the computational aspects of the LSSL. In particular, we prove Theorem 2]
for the computational speed of computing the Krylov function (7)) for quasiseparable matrices A, by
providing a concrete algorithm in Appendix [E.I.1]

We restate the Krylov function (7)) here for convenience. Recall that L is the length of the input
sequence and N is the order of the LSSL internate state, e.g. A € RV*V,

Kr(A,B,C) = (CAiB)ie[L] e Rl = (CB,CAB,...,CA'"!B)

Remark E.1. We call (/) the Krylov function following the notation of [17], since it can be written

K(A, B)T'C where K(A, B) is the Krylov matrix defined in (8). Alternative naming suggestions are
welcome.
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E.1.1 The Algorithm

We follow the similar problem of [[17, Lemma 6.6] but track the dependence on L and the log factors
more precisely, and optimize it in the case of stronger structure than quasiseparability, which holds in
our setting (particularly Theorem [IT].

The first step is to observe that the Krylov function K1, (A, B, C) is actually the coefficient vector
of O(I — Az)~'B (mod z%) as a polynomial in 2. (Note that Az means simply multiplying every
entry in A by a scalar variable z.) This follows from expanding the power series (I — Az)~! =
I+ Ax + A%2? + .. .. Thus we first compute C'(I — Az)~! B, which is a rational function of degree
at most NV in the numerator and denominator (which can be seen by the standard adjoint formula for
the matrix inverse).

The second step is simply inverting the denominator of this rational function (mod z%) and multi-
plying by the numerator, both of which are operations that need L log(L) time by standard results for
polynomial arithmetic [51]].

For the remainder of this section, we focus on computing the first part. We make two notational
changes: First, we transpose C to make it have the same shape as B. We consider the more general
setting where B and C have multiple columns; this can be viewed as handling a “batch” problem
with several queries for B, C at the same time.

Lemma E.2. Let A be a g-quasiseparable matrix. Then
CT(1-Az)"'B where A € RV*N B,C ¢ RV*¥

is a k x k matrix of rational functions of degree at most N, which can be computed in O(q> log* N )
operations.

The main idea is that quasiseparable matrices are recursively “self-similar”, in that the principal
submatrices are also quasiseparable, which leads to a divide-and-conquer algorithm. In particular,

divide A = [i?g i?i] into quadrants. Then by Deﬁnition Ao, Aq; are both g-quasiseparable
and Ag1, Ap are rank g. Therefore the strategy is to view I — Ax as a low-rank perturbation of

smaller quasiseparable matrices and reduce the problem to a simpler one.

Proposition 10 (Binomial Inverse Theorem or Woodbury matrix identity [23[60]). Over a commu-
tative ring R, let A € RN*N and U,V € RN*P. Suppose A and A +UVT are invertible. Then
I, + VIA~1U € RP*P is invertible and

(A+UVH ' = A" - AT'UI, + VIATIU) ' VIAT!
For our purposes, R will be the ring of rational functions over R.

Proof of Lemmal[E.2} Since A is g-quasiseparable, we can write A1 = U, VT and Ag; = Uy VY,
where U., V. € FV*4_ Notice that we can write I — Az as

T
_ I—Aoo.'l,‘ 0 0 UU VL 0
I_Ax—[ 0 IAM}*{UL OH ] z.

Suppose we know the expansions of each of

M, € R¥*F = CT {I‘fgoox 1—2114_1 @1)
wern-or[-gor 3 T8 4]
Ms € R20%20 — [‘GL V(')U]T [I - gxoox . gux] - {[?L %U] 43)
M, € R2xk — l:\:)L \?U}T [I - goow - gnx} - (44)
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By Proposition [I0] the desired answer is
CT(X —A)"'B=M,; — My(Iz, + M;) ' M,.

Then the final result can be computed by inverting Io; +Mj3 (O(q® N log(N)) operations), multiplying
by My, My (O((kq? + k?>q)N log(N)) operations), and subtracting from M; (O (k%N log(N))
operations). This is a total of O((¢® + kq? + k%q) N log(N)) operations. Note that when k =
O(qlog N), this becomes O(¢> N log® N); we will use this in the analysis shortly.

To compute M, Mo, M3, My, it suffices to compute the following:
C{(I — Aoox)_lBo C,{(I — All.lf)_lBl
Cg(I — Aool’)_lUU C{(I — Au.’L’)_lUL

(45)
VI - Agr)'Uy  VEI - Apz) UL
VI - Agpz) "By VEI—-A;2) 'By.
But to compute those, it suffices to compute the following (k + t) x (k + t) matrices:
Co V" (I—Agz)'[By U
[Co VL] ( 00z)” [Bo U] 46)

C; Vu"I—Apz) ' [By Uy

Since Ay and A1, have the same form as A, this is two recursive calls of half the size. Notice that
the size of the other input (dimensions of B, C) is growing, but when the initial input is & = 1, it
never exceeds 1 + glog N (since they increase by g every time we go down a level). Earlier, we
noticed that when k = O(qlog N), the reduction step has complexity O(q>N log®(N)) for any
recursive call. The recursion adds an additional log N multiplicative factor on top of this. O

Corollary E.3. Suppose that A is semiseparable instead of quasiseparable, and suppose q is a small
constant. Then the cost of Lemma is O(N log®(N)) operations.

This follows from the fact that in the recursion @3)) and (46)), the U, V matrices do not have to be
appended if they already exist in B, C. For intuition, this happens in the case when A is tridiagonal,
so that U, V have the structure (1,0, ..., 0), or the case when the off-diagonal part of A is all 1 (such
as the HiPPO-LegT matrix). The matrices in Appendix [D.3|and Appendix [E.2](Theorems 8] [0]and[TT)
actually satisfy this stronger structure, so Corollary [E.3|applies.

Combining everything, this proves Theoremwith the exact bound N log? (N)+ Llog(L) operations.
The memory claim follows similarly, and the depth of the algorithm is log?(N') + log(L) from the
divide-and-conquer recursions.

E.1.2 Summary of Computation Speed for LSSLs and other Mechanisms

We provide a summary of complexity requirements for various sequence model mechanisms, includ-
ing several versions of the LSSL. Note that these are over exact arithmetic as in Theorem 2]

First, the self-attention mechanism is another common sequence model that has an L? dependence on
the length of the sequence, so it is not suitable for the very long sequences we consider here. (We do
note that there is an active line of work on reducing this complexity.)

Second, we include additional variants of the LSSL. In Table[7] LSSL-naive denotes learning A and
At for unstructured A; LSSL-fixed denotes not learning A, At (see Appendix [B]for details); LSSL
denotes the learning A and At for the structured class A.

We include brief explanations of these complexities for the LSSL variants.

LSSL-naive

o Parameters: O(H N) in the matrices B, C and O(NN?) in the matrix A.

s Training: O(HN?) to invert compute the matrix A for all H features. O(LHN?) to
compute the Krylov matrix C, CA, . ... O(BLlog(L)HN to multiply by B and convolve
with w.
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Table 7: Complexity of various sequence models in terms of length (L), batch size (B), and hidden dimension
(H). Measures are parameter count, training computation, memory requirement, and inference computation for 1
sample and time-step.

Convolution RNN
Parameters LH? H?
Training BLH? + Llog(L)(H? + BH) BLH?
Memory BLH + LH? BLH
Parallel Yes No
Inference LH? H?
Attention LSSL-naive
Parameters H?2 HN + N?
Training B(L*H + LH?) HN3+ LHN? + BLlog(LYHN
Memory B(L*+ HL) HN? + LHN + BLH
Parallel Yes Yes
Inference  L2H + H2L HN?
LSSL-fixed LSSL
Parameters HN HN
Training BLlog(L)HN BH(Nlog® N + Llog L) + BLlog(L)H
Memory LHN + BLH BHL
Parallel Yes Yes
Inference ~ HN? HN

Memory: O(HN?) to store A. O(LHN) to store the Krylov matrix. O(BLH) to store the
inputs/outputs

Inference: O(HN?) to for MVM by A.

LSSL-fixed

LSSL

Parameters: O(H N) in the matrices C.
Training: O(BLlog(L)H) to convolve with w.

Memory: O(LH N) to store the Krylov matrix (but cached, so no backprop). O(BLH ) for
inputs/outputs.

Inference: O(HN?) to for MVM by A.

Parameters: O(HN) for A, B, C, At.

Training: BH - O(N + L) to compute Krylov, O(BL log(L)H) for the convolution.
Memory: O(BH L) to store Krylov (and inputs/outputs).

Inference: O(HN)) to multiply z;[H, N] by A[H, N, N|

E.2 Further Simplification with Tridiagonal Matrices

The algorithm for Theorem [2]for general quasiseparable matrices is still difficult to implement in

practice,

and we make a further simplification using a particular subclass of quasiseparable matrices.

Theorem 11. The class of N x N matrices Sy = {P(D + T~1)Q} with diagonal D, P, Q and
tridiagonal T includes the original HiPPO-LegS, HiPPO-LegT, and HiPPO-LagT matrices [24)].

Theorem [ T]shows that a simple representation involving tridiagonal and diagonal matrices captures
all of the original HiPPO matrices. In particular, our LSSL implementation initializes A to be the
HiPPO-LegS matrix (Appendix [B) and learns within the class defined by Theorem|[T1]
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We note that the matrices in Theorem [IT] are all 1-quasiseparable and in particular also contain
the HiPPO matrices for Gegenbauer and generalized Laguerre orthogonal polynomials derived
in Theorem [9] In fact, the notion of semiseparability, which is closely related to (and actually
is the predecessor of) quasiseparability, was originally motivated precisely to capture inverses of
tridiagonal matrices. Thus the structured class in Theorem[IT]can be viewed as an approximation
of 3-quasiseparable matrices (Corollary {f.T)) to 1-quasiseparable, which still contains many of the
HiPPO families of interest.

Proof. We simply show that each of these specific matrices can be represented in the proposed form.
HiPPO-LegT.

Let A denote the HiPPO-LegT transition matrix. Up to row/column scaling (i.e. left- and right-
multiplication by diagonal P and (), we can write

Ar = (-1 * ifn<k
"1 ifn>k

The main observation is that

1 1 0 0 0 0
-1 0 1 0 0 0
N 0 0 0

—1 . . .
A _2 . : :
0 0 0 0 1 0

0 0 0 -1 0 1

(0 0 0 0 -1 1]

HiPPO-LegS. The HiPPO-LegS matrix is

(2n+DYV22k +1)Y2 ifn >k
A =—<n+1 ifn==%k.
0 ifn <k

1S can be written as — where P = () = diag((2n +1)2) an
This can be wri PA’'Q where P = Q = diag((2n +1)2) and

1 ifn>k
=10 ifn<k.
1—2n’3rl ifn=%k

Finally, A’ = D + T~! where D = — diag(
and —1 on the subdiagonal.

#—H) and 7' is the matrix with 1 on the main diagonal

HiPPO-LagT. The HiPPO-LagT matrix is

1 iftn>k
A =—30 ifn<k.
i ifn=k

This can be written as —P(D + T‘l)Q where P=Q =1,D = —%I, and 7 is the same tridiagonal
matrix as in the HiPPO-LegS case. O

E.3 Implementation Details

In this section we provide several implementation details that are useful for implementing LSSLs in
practice.

Recall that one of the main primitives of LSSLs is the matrix-vector multiplication y = Az (Sec-
tion Appendix , where A is the state matrix A discretized with step size At using the bilinear
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method (Appendix [C.1.3)). In Appendix [E.3.T] we describe how this MVM can be performed with
simpler MVM primitives which we call the “forward difference” and “backward difference”.

However, if these MVM primitives are implemented in a specialized way for particular classes
of A matrices (i.e., not using atoms in a standard autograd framework), then we also need to
calculate several additional gradients by hand. Appendix [E.3.2]shows that calculating gradients to
A, At, x during backpropagation can actually be reduced to those same forward/backward difference
primitives.

Finally, in the case when A is the structured class of matrices in Theorem[I T} Appendix [E.2]shows how
to efficiently calculate those primitives using a black-box tridiagonal solver. Our codd”|implements
all the algorithms in this section, with bindings to the cuSPARSE library for efficient tridiagonal
solving on GPU.

E.3.1 Matrix-vector Multiplication by the Bilinear Discretization

Bilinear Discretization The discrete state-space system is given by (@) and (3)), re-written here for
convenience

Ty = Z{L'tfl + E’U,t
Yy = Cxy + Duy

where A is a function of A,d; and A is a function of A, B, ;. In particular, we define A to be
the matrix discretized using the bilinear method (Appendix |C.1.3), and the system can be written

explicitly:
-1
(1 22) (o m)

Yyt = Cxy + Duy

Thus it suffices to compute the maps
F(A At,z) .= (I + AtA)x
and
B(A,At,x) := (I + AtA) '

We will call these functions the forward difference and backward difference maps, respectively. (The
Euler and backward Euler discretizations (Appendix|C.1.2) are also known as the “forward difference”
and “backward difference” methods, which in the case of linear systems reduces down to the maps F'
and B.)

E.3.2 Gradients through the Forward/Backward Difference Primitives

In this section we will let y = F/(A, At,z) ory = B(A, At, x) denote the computation of interest,
L(y) denote a generic loss function, and dx, dy, . . . denote gradients to z,y, . .. (e.g., dz = ag—;y)).

Derivatives of backward difference. First we have the standard 85&9) = ag;y) % = agéy) I+
AtA)~!. This corresponds to matrix-vector multiplication by (I + AA)~7T. In other words, it can be
computed by the primitive B(AT, At, dy).

OL(y)

Similarly, in order to compute we require 2. We need the result ag—;l =Y 19y ~Ifor
an invertible matrix Y [41, equation (59)]. Then

dy _ o+ Aa)t

OAtL OAtL
=—(I+ AtA)*l%(l + AtA) 'z

= —(I+AtA)TAT + AtA) 'z

?Available at https://github.com/HazyResearch/state-spaces
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and
OL(y) _ OL(y) Oy
DAL dy OAL
~ [9L(y)

= 3 (I 4+ AtA) ' A[(I+ AtA) ']

We can summarize this as follows. Let y = B(A, At,z) = (I + AtA)~tx and dy = OL(y)/0y (as
a column vector). Then

y = B(A, At, x)
dx = B(AT, At,dy)
dAt = —dz™ Ay.

Derivatives of forward difference. The forward case is simpler. Let y = F(A, At,z) = (I +
AtA)z. Then 9% = I + AtAand 2% = Ax. Thus

OAL
y = F(A, At x)
dx = (I + AtA) dy = F(AT, At, dy)
dAt = dyT Ax.

E.3.3 Computing the Forward/Backward Difference for Tridiagonal Inverse Matrices

Theoremuses the classes of matrices A = P(D + T~1)Q for diagonal D, P, ) and tridiagonal
T. We describe how the forward and backward difference MVMs can be performed efficiently for
this class of matrices by reducing to a black-box tridiagonal solver.

Forward difference. It is straightforward to compute
F(A At,z) = (I +At-P(D+ T HYQ)x =z + At - PDQx + At - PT ' Qu

in terms of multiplication by diagonal matrices x — Dz and tridiagonal solving = — Tz,

Backward difference. We will explicitly rewrite the inverse of the matrix G = I + At - P(D +
T-HQ.

The core observation is to multiply G by a choice selection of matrices to cancel out the 7~ term:
TP'GQ™ ' =TP'Q™ ! + AtTD + AtlI.
Rearranging yields
G '=Q N TP 'Q '+ AtTD + AtI)"'TP~*,

Now note that the matrix in the middle is tridiagonal. Hence we have reduced MVM by G~1, i.e. the
backward difference problem, to a series of diagonal and tridiagonal MVMs (easy), and a tridiagonal
inverse MVM (a.k.a. a tridiagonal solve).

F Additional Experiments and Experiment Details

We provide additional experiments and ablations in Appendix Appendix describes our
training methodology in more detail for each dataset. The hyperparameters for all reported results are
in Table [T1]

F.1 Additional Experiments

Missing Data on CharacterTrajectories. Table [8|has results for a setting considered in previous
work involving irregularly-sampled time series. LSSL is competitive with the best prior methods,
some of which were specialized to handle this setting.
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Table 8: Test accuracies for irregularly sampled time series on the CharacterTrajectories dataset. p% denotes
percent of data that was randomly dropped.

Model 0% 30%  50%  70%
GRU-ODE [16] 926 867 899

GRU-At 3] - 93.6 913 904
GRU-D [9] - 942 902 919
ODE-RNN [45] - 954 960 953
NCDE [31] - 98.7 988  98.6
CKCNN [44]  99.53 98.83 98.60 98.14
LSSL 99.30 98.83 98.83 98.37

Table 9: A and At ablations on sCIFAR.
Learn At Fixed At

Learn A 82.70 80.34
Fixed A 80.61 80.18

Table 10: A and At ablations on SC-Raw.
Learn At Fixed At

Learn A 96.07 95.20
Fixed A 91.59 90.51

A and At ablations. Tables [9]and [I0]show results on SpeechCommands-Raw and a smaller model
on sCIFAR, ablating that learning either the A or At parameters provides a consistent performance
increase.

Finally, Fig. 2] plots the At values at the beginning and end of training on the SpeechCommands-Raw
dataset, confirming that training At does noticeably change their values to better model the data. In
particular, the At values spread over time to cover a larger range of timescales.

F.2 Methodology

We describe our training procedure on each dataset for our model and any relevant baselines.

General All models and datasets used the Adam optimizer with a LR decay scheduler that reduced
LR by 5x upon validation plateau for 10 or 20 epochs. We fixed the batch size to 50 for the
MNIST/CIFAR datasets and 32 for other datasets, reducing if necessary to fit in memory.

For all models, we chose the hyperparameters that achieved the highest validation accuracy/RMSE
(values in Table [TT).

Error Bars We note that the results in Section [5|do not include standard deviations for formatting
reasons, since most of the baselines were best results reported in previous papers without error bars.
As Section [6|noted, the LSSL was actually quite stable in performance and not particularly sensitive
to hyperparameters. We note that for every result in Section 5} the LSSL with error bars was at least
one standard deviation above the baseline results.

F.2.1 Sequential and Permuted MNIST

The model architecture of LSSL(-f) was fixed to the small architecture with 200K parameters
(Appendix [B). Following [44], we fixed the learning rate scheduler to decay on plateau by with a
factor of 0.2, and the number of epochs to 200. We searched hyperparameters over the product of the
following learning rate values: {0.001,0.002,0.004,0.01}, and dropout values: {0.1,0.2}.
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Figure 2: We visualize the 32 largest and smallest At values at the start and end of training for the first layer of
our state-of-the-art LSSL model on the Speech Commands Raw dataset. The plots visualize ﬁ, which can be
interpreted as the timescale at which they operate (Section ). The plots confirm that LSSL does modify the dt
values in order to more appropriately model the speech data.

F.2.2 Sequential CIFAR

The model architecture of LSSL(-f) was fixed to the large architecture with 2M param-
eters (Appendix [B). We searched over the product of the following learning rate values:
{0.001,0.002,0.004, 0.01,0.02}, and dropout values: {0.2,0.3,0.4}.

F.2.3 BIDMC Healthcare

The BIDMC tasks aim at predicting three vital signs of a patient, respiratory rate (RR), heart rate
(HR), and oxygen saturation (SpO2), based on PPG and ECG signals. The clinical data is provided
by the Beth Israel Deaconess Medical Center. The PPG and ECG signals were sampled at 125Hz and
have a sequence length of 4000.

For this dataset, we fixed the small LSSL(-f) model (Appendix [B). Following [47], we changed the
scheduler to a multistep scheduler that decays on fixed epochs, and trained for 500 epochs.

For our methods, we searched over the product of the following learning rate values:
{0.004,0.01, 0.02}, and dropout values: {0.1,0.2}.

Baseline parameters. For CKConv, we searched over wy € [10, 50] following the guidelines of
Romero et al. [44] (best value wg = 20). Since we tuned the sensitive wg, we fixed the learning rate
to 0.001 and dropout to 0.1 which was the default used in [44].

The transformer model we used was a vanilla transformer with a hidden dimension of 256, 8 attention
heads, 4 layers, and a feedforward dimension of 1024. We used a learning rate of 0.001 and a dropout
of 0. We tried a few variants, but no transformer model was effective at all.
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F.2.4 CelebA

For these larger datasets, we reduced the size of the order N and did not tie it to H. These experiments
were computationally heavy and we did not do any tuning (i.e., Table[IT] are the only runs). The
model size was picked to train in a reasonable amount of time, and the learning rate for the first
attribute was picked based on general best hyperparameters for other datasets, and then reduced for
subsequent experiments on the other attributes.

Baseline parameters. For ResNet-18, we used the standard implementation with a learning rate of
0.001.

F.2.5 Speech Commands

For Speech Commands, we use the same dataset and preprocessing code from Kidger et al. [31],
Romero et al. [44]. We consider the two settings from Kidger et al. [31]: SC-Raw uses very long
time-series raw speech signals of 16000 timesteps each, while SC-MFCC uses standard MFCC
features of 161 timesteps.

For our models trained over the raw data, we searched over the product of the following learn-
ing rate values: {0.002,0.004,0.01}, and dropout values: {0.1,0.2}. For our models trained
over the MFCC features, we searched over the product of the following learning rate values:
{0.0001,0.001, 0.002,0.004, 0.01}, and dropout values: {0.1,0.2,0.3,0.4}.

Baseline parameters. To get more results for the strongest baselines on very long sequences in the
literature, we ran the UniCORNN [47]] baseline on both Raw and MFCC variants, and the Neural
Rough Differential Equations [37] baseline on the Raw variant.

For UniCORNN trained over the raw data, we searched over multiple hyperparameters. Specifically,
we searched over alpha: {0, 10, 20, 30,40}, At values: {0.00001,0.0001,0.001,0.01}, and learning
rate values: {0.0001, 0.0004,0.001,0.004}. However, since the method was not able to generalize to
the validation set for any hyperparameter combination, we used the authors’ reported hyperparameters
for the Eigenworms dataset as it also contains very long sequences (= 18000). In particular, we used
a learning rate of 0.02, hidden dimension of 256, 3 layers with dt values [0.0000281, 0.0343, 0.0343],
dropout of 0.1, and alpha of 0.

For UniCORNN trained over the MFCC features, we used the authors’ reported hyperparameters for
the MNIST dataset (again due to similarly sized sequence lengths), and further tuned the learning
rate over the values: {0.0001,0.001,0.005,0.01,0.02}, At values: {0.01,0.1}, and alpha values:
{10, 20, 30}.

The best model used a learning rate of 0.02, hidden dimension of 256, 3 layers with dt values of 0.19,
dropout of 0.1, and alpha of 30.65.

For NRDE on SC-Raw, we used depth 2, step size 4, hidden dimension 32, and 3 layers. Our results
were better than unofficial numbers reported in correspondence with the authors, so we did not tune
further.

F.2.6 Convergence Speed (Table[5)

The convergence table compared against logs directly from the corresponding baseline’s SOTA models
[44,147]), which were either released publicly or found in direct correspondence with the authors. To
generate the wall clock numbers, we ran the baseline models on the same hardware as our models
and extrapolated to the target epoch.

F.3 Hyperparameters

Best hyperparameters for all datasets are reported in Table[T1]
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Table 11: The values of the best hyperparameters found for each dataset.

Dataset Hyperparameters
Learning Rate Dropout Batch Size Epochs Depth Hidden Size H Order N Channels M

sMNIST 0.004 0.2 50 200 6 128 128 1
pPMNIST 0.001 0.2 50 200 6 128 128 1
sCIFAR 0.02 0.3 50 200 4 256 256 4
BIDMC-RR 0.004 0.1 32 500 6 128 128 1
BIDMC-HR 0.01 0.2 32 500 6 128 128 1
BIDMC-SpO2 0.01 0.1 32 500 6 128 128 1
SC Raw 0.01 0.2 16 50 4 256 128 2
SC MFCC 0.004 0.4 32 100 6 128 128 1
sCelebA-Att. 0.002 0.1 32 200 3 256 128 4
sCelebA-MSO 0.002 0.1 32 200 3 256 128 4
sCelebA-Smil. 0.01 0.1 32 200 3 256 128 4
sCelebA-WL 0.002 0.1 32 200 3 256 128 4
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