
A Related Work

We provide an extended related work comparing the LSSL to previous recurrent, convolutional, and
continuous-time models.

HiPPO The LSSL is most closely related to the HiPPO framework for continuous-time memory
[24] and its predecessor, the Legendre Memory Unit (LMU) [58]. The HiPPO-RNN and the LMU
define dynamics of the form of equation (1), and incorporate it into an RNN architecture. A successor
to the LMU, the LMU-FFT [12] keeps the original linear dynamics, allowing the LMU to be computed
with a cached convolution kernel.

These methods all suffer from two main limitations. First, the state matrix A and discretization
timescale ∆t cannot be trained due to both limitations in theoretical understanding of which A
matrices are effective, as well as computational limitations. Second, (1) is a 1-D to N -D map,
requiring states to be projected back down to 1-D. This creates an overall 1-D bottleneck in the state,
limiting the expressivity of the model.

Compared to these, the LSSL does not use a conventional RNN architecture, instead keeping the
linear recurrence (4) and downprojecting it with the second part of the state space representation (5).
To avoid the 1-D feature bottlneck, it simply computes H copies of this 1-D to 1-D independently,
creating an overall H-dimensional sequence-to-sequence model. However, this exacerbates the
computational issue, since the work is increased by a factor of H .

This work resolves the expressivity issue with new theory. Compared to HiPPO and the LMU, LSSL
allows training the A matrix by showing generalized theoretical results for the HiPPO framework,
showing that there is a parameterized class of structured state spaces that are HiPPO operators.

The LSSL makes progress towards the second issue with new algorithms for these structured matrices
(Theorem 2). However, as noted in Sections 4.2 and 6, the algorithm presented in Theorem 2 was
later found to be not practical, and an improved representation and algorithm was found in subsequent
work.

Continuous-time CNNs. The CKConv is the only example of a continuous-time CNN that we
are aware of, and is perhaps the strongest baseline in our experiments. Rather than storing a finite
sequence of weights for a convolution kernel, the CKConv parameterizes it as an implicit function
from [0, 1] → R which allows sampling it at any resolution. A successor to the CKConv is the
FlexConv [43], which learns convolutional kernels with a flexible width. This is similar to the
convolution interpretation of LSSL when using certain HiPPO bases (Section 3.2).

Continuous-time RNNs. The connection from RNNs to continuous-time models have been known
since their inception, and recent years have seen an explosion of CT-RNN (continuous-time RNN)
models based on dynamical systems or ODEs. We briefly mention a few classic and modern works
along these lines, categorizing them into a few main topics.

First are theoretical works that analyze the expressivity of RNNs from a continuous-time perspective.
The connection between RNNs and dynamical systems has been studied since the 90s [22], fleshing
out the correspondence between different dynamical systems and RNN architectures [38]. Modern
treatments have focused on analyzing the stability [62] and dynamics [29] of RNNs.

Second, a large class of modern RNNs have been designed that aim to combat vanishing gradients
from a dynamical systems analysis. These include include the AntisymmetricRNN [7], iRNN [30],
and LipschitzRNN [20], which address the exploding/vanishing gradient problem by reparatermizing
the architecture or recurrent matrix based on insights from an underlying dynamical system.

Third is a class of models that are based on an explicit underlying ODE introduced to satisfy various
properties. This category includes the UnICORNN [47] and its predecessor coRNN [46] which
discretize a second-order ODE inspired by oscillatory systems. Other models include the Liquid Time-
Constant Networks (LTC) [27] and successor CfC [26], which use underlying dynamical systems with
varying time-constants with stable behavior and provable rates of expressivity measured by trajectory
length. The LTC is based on earlier dynamic causal models (DCM) [21], which are a particular ODE
related to state spaces with an extra bilinear term. Finally, the LMU [58] and HiPPO [24] also fall in
this category, whose underlying ODEs are mathematically derived for continuous-time memorization.

15

Fourth, the recent family of neural ODEs [10], originally introduced as continuous-depth models,
have been adapted to continuous-time, spawning a series of “ODE-RNN” models. Examples include
the ODE-RNN [45], GRU-ODE-Bayes [16], and ODE-LSTM [32], which extend adjoint-based
neural ODEs to the discrete input setting as an alternative to standard RNNs. Neural Controlled
Differential Equations (NCDE) [31] and Neural Rough Differential Equations (NRDE) [37] are
memory efficient versions that integrate observations more smoothly and can be extended to very
long time series.

Gating mechanisms. As a special case of continuous-time RNNs, some works have observed
the relation between gating mechanisms and damped dynamical systems [54]. Some examples
of continuous-time RNNs based on such damped dynamical systems include the LTC [27] and
iRNN [30]. Compared to these, Lemma 3.1 shows a stronger result that sigmoid gates are not just
motivated by being an arbitrary monotonic function with range (0, 1), but the exact formula appears
out of discretizing a damped ODE.

B Model Details

B.1 (M)LSSL Computation

Section 3.1 noted that some of the computations for using the LSSL are expensive to compute. When
the LSSL fixes the A and ∆t parameters (e.g. when they are not trained, or at inference time), these
computational difficulties can be circumvented by caching particular computations. In particular, this
case applies to the LSSL-f. Note that in this case, the other state-space matrices C and D comprise
the O(HN) trainable parameters of the fixed-transition LSSL.

In particular, we assume that there is a black-box inference algorithm for this system, i.e. matrix-
vector multiplication by A (an example of implementing this black box for a particular structured
class is in Appendix E.2). We then compute and cache

• the transition matrix A, which is computed by applying the black-box A MVM algorithm to
the identity matrix I .

• the Krylov matrix

K(A,B) = (B,AB, (A)2B, ...) ∈ RN×L, (8)

which is computed in a parallelized manner by the squaring technique for exponentiation,
i.e. batch multiply by A, (A)2, (A)4,

At inference time, the model can be unrolled recurrently with A. At training time, the convolutional
filter KL(A,B,C) (equation (7)) is computed with a matrix multiplication C · K(A,B) before
convolving with the input u.

Table 7 provides more detailed complexity of this version of the LSSL with fixed A,∆t.

Note that as mentioned in Section 6, this cached algorithm is fairly fast, but the main drawback is
that materializing the Krylov matrix (8) requires O(NL) instead of O(L) space.

B.2 Initialization of A

The LSSL initializes the A parameter in (1) to the HiPPO-LegS operator, which was derived to solve
a particular continuous-time memorization problem. This matrix A ∈ RN×N is

Ank =

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

.

Note that the LSSL-f is the LSSL with a non-trainable A (and ∆t), so that A is fixed to the above
matrix.

16

B.3 Initialization of ∆t

One distinction between the LSSL and the most related prior work is that the inclusion of the
projection (2) makes the layer a 1-dimensional to 1-dimensional map, instead of 1-D to N -D [24, 58].
This enables us to concatenate H copies of this map (at the expense of computation, cf. Section 4.2
and Appendix D). Even when ∆t is not trained as in the LSSL-f, these H copies allow multiple
timescales to be considered by setting ∆t differently for each copy.

In particular, we initialize ∆t log-uniformly in a range ∆tmin,∆tmax (i.e., ∆t is initialized within
this range, such that log ∆t is uniformly distributed). The maximum and minimum values were
generally chosen to be a factor of 100 apart such that the length of the sequences in the dataset are
contained in this range. Specific values for each model and dataset are in Appendix F. We did not
search over these as a hyperparameter, but we note that it can be tuned for additional performance
improvements in our experiments.

B.4 Deep Neural Network Architecture

The Deep LSSL models used in our experiments simply stack together LSSL layers in a simple deep
neural network architecture. We note the following architecture details.

Channels. The state-space model (1)+(2) accepts a 1-dimensional input u, but does not strictly
have to return a 1-dimensional output y. By making the matrices in (2) dimension C ∈ RM×N , D ∈
RM×1, the output y will be dimension M instead of 1.

We call M the number of channels in the model.

Feedforward. There are two drawbacks with the current definition of LSSL:

• They are defined by running H independent copies of a state-space model, which means the
H input features do not interact at all.

• If the channel dimension is M > 1, then the LSSL is a map from dimension 1 to M , which
means residuals cannot be applied.

These are both addressed by introducing a position-wise feedforward layer after the LSSL of shape
H · M → H . This simultaneously mixes the hidden features, and projects the output back to
dimension 1 if necessary. There is also an optional non-linearity in between the LSSL and this
feedforward projection; we fix it to the GeLU activation function in our models.

We note that this factorization of parallel convolutions on the H features followed by a position-wise
linear map is very similar to depth-wise separable convolutions [13].

Residuals and normalization. To stack multiple layers of LSSLs together, we use very standard
architectures for deep neural networks. In particular, we use residual connections and a layer
normalization (either pre-norm or post-norm) in the style of standard Transformer architectures.
Whether to use pre-norm or post-norm was chosen on a per-dataset basis, and depended on whether
the model overfit; recent results have shown that pre-norm architectures are more stable [15, 35], so
we used it on harder datasets with less overfitting. We note that we could have additionally inserted
MLP modules in between LSSL layers, in the style of Transformers [57], but did not experiment with
this.

Parameter count. The overall parameter count of an LSSL model is M ·H · (H +N).

We primarily used two model sizes in our experiments, which were chosen simply to produce round
numbers of parameters:

• LSSL small (≈ 200K parameters): 6 layers, H = 128, N = 128,M = 1.

• LSSL large (≈ 2M parameters): 4 layers, H = 256, N = 256,M = 4.

We did not search over additional sizes, but for some datasets reduced the model size for computational
reasons.

17

C LSSL Proofs

This section gives refinements of the statements in Section 3, additional results, and proofs of all
results.

Appendix C.1 has a more detailed (and self-contained) summary of basic methods in ODE approxi-
mation which will be used in the results and proofs.

Appendix C.2 give more general statements and proofs of Lemma 3.1 and Lemma 3.2 in Lemma C.1
and Theorem 4, respectively.

C.1 Approximations of ODEs

We consider the standard setting of a first-order initial value problem (IVP) ordinary differential
equation (ODE) for a continuous function f(t, x)

ẋ(t) = f(t, x(t))

x(t0) = x0
. (9)

This differential form has an equivalent integral form

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds. (10)

Appendices C.1.1 and C.1.2 overview the Picard theorem and first-order numerical integration
methods, which apply to any IVP (9). Appendix C.1.3 then shows how to specialize it to linear
systems as in equation (1).

At a high level, the basic approximation methods considered here use the integral form (10) and
approximate the integral in the right-hand side by simple techniques.

C.1.1 Picard Iteration

The Picard-Lindelöf Theorem gives sufficient conditions for the existence and uniqueness of
solutions to an IVP. As part of the proof, it provides an iteration scheme to compute this solution.

Theorem 3 (Picard-Lindelöf). In the IVP (9), if there is an interval around t0 such that f is Lipschitz
in its second argument, then there is an open interval I 3 t0 such that there exists a unique solution
x(t) to the IVP in I . Furthermore, the sequence of Picard iterates x(0), x(1), . . . defined by

x(0)(t) = x0

x(`)(t) = x0 +

∫ t

t0

f(s, x(`−1)(s)) ds

converges to x.

The Picard iteration can be viewed as approximating (10) by holding the previous estimate of the
solution x(`−1) fixed inside the RHS integral.

C.1.2 Numerical Integration Methods

Many methods for numerical integration of ODEs exist, which calculate discrete-time approximations
of the solution. We discuss a few of the simplest methods, which are first-order methods with local
error O(h2) [6].

These methods start by discretizing (10) into the form

x(tk)− x(tk−1) =

∫ tk

tk−1

f(s, x(s)) ds. (11)

Here we assume a sequence of discrete times t0, t1, t2, . . . is fixed. For convenience, let xk denote
x(tk) and let ∆tk := tk − tk−1. The goal is now to approximate the integral in the RHS of (11).

18

Euler method. The Euler method approximates (11) by holding the left endpoint constant through-
out the integral (i.e., the “rectangle rule” with left endpoint), f(s, x(s)) ≈ f(tk−1, x(tk−1)). The
discrete-time update becomes

xk − xk−1 = (tk − tk−1)f(tk−1, x(tk−1))

= ∆tkf(tk−1, xk−1).
(12)

Backward Euler method. The backward Euler method approximates (11) by holding the right
endpoint constant throughout the integral (i.e., the “rectangle rule” with right endpoint), f(s, x(s)) ≈
f(tk, x(tk)). The discrete-time update becomes

xk − xk−1 = (tk − tk−1)f(tk, x(tk))

= ∆tkf(tk, xk).
(13)

C.1.3 Discretization of State-Space Models

In the case of a linear system, the IVP is specialized to the case

f(t, x(t)) = Ax(t) +Bu(t).

Note that here u is treated as a fixed external input, which is constant from the point of view of this
ODE in x. Let uk denote the average value in each discrete time interval,

uk =
1

∆tk

∫ tk

tk−1

u(s) ds.

The integral equation (11) can be specialized to this case, and more generally a convex combination
of the left and right endpoints can be taken to approximate the integral, weighing them by 1− α and
α respectively. Note that the case α = 0, 1 are specializations of the forward and backward Euler
method, and the case α = 1

2 is the classic “trapezoid rule” for numerical integration.

x(tk)− x(tk−1) =

∫ tk

tk−1

Ax(s) ds+

∫ tk

tk−1

Bu(s) ds

=

∫ tk

tk−1

Ax(s) ds+ ∆tkBuk

≈ ∆tk [(1− α)Axk−1 + αAxk] + ∆tkBuk.

Rearranging yields

(I − α∆tk ·A)xk = (I + (1− α)∆tk ·A)xk−1 + ∆tk ·Buk
xk = (I − α∆tk ·A)−1(I + (1− α)∆tk ·A)xk−1 + (I − α∆tk ·A)−1∆tk ·Buk

This derives the generalized bilinear transform (GBT) [61]. The bilinear method is the case α =
1
2 of special significance, and was numerically found to be better than the forward and backward Euler
methods α = 0, 1 both in synthetic function approximation settings and in end-to-end experiments
[24, Figure 4].

C.2 RNNs are LSSLs: Proof of Results in Section 3.2

We provide more detailed statements of Lemmas 3.1 and 3.2 from Section 3.2. In summary, LSSLs
and popular families of RNN methods all approximate the same continuous-time dynamics

ẋ(t) = −x+ f(t, x(t)) (14)

by viewing them with a combination of two techniques.

We note that these results are about two of the most commonly used architecture modifications for
RNNs. First, the gating mechanism is ubiquitous in RNNs, and usually thought of as a heuristic
for smoothing optimization [28]. Second, many of the effective large-scale RNNs use linear (gated)
recurrences and deeper models, which is usually thought of as a heuristic for computational effi-
ciency [5]. Our results suggest that neither of these are heuristics after all, and arise from standard
ways to approximate ODEs.

To be more specific, we show that:

19

Table 6: A summary of the characteristics of popular RNN methods and their approximation mechanisms for
capturing the dynamics ẋ(t) = −x(t) + f(t, x(t)) (equation (14)). The LSSL entries are for the very specific
case with order N = 1 and A = −1, B = 1, C = 1, D = 0; LSSLs are more general.

Method RNN RNN LSSL LSSL
Variant Gated Gated, linear Discrete (4)+(5) Continuous (1)+(2)
Special cases LSTM [28], GRU [14] QRNN [5], SRU [33]

Deep? Single-layer Deep Deep Deep
Continuous? Discrete-time Discrete-time Discrete-time Continuous-time
Linear? Non-linear Linear Linear Linear

Approximation
Depth-wise - Picard iteration Picard iteration Picard iteration
Time-wise Backwards Euler GBT(α = 1) GBT(α = 1

2
) (i.e. Bilinear) -

• Non-linear RNNs discretize the dynamics (14) by applying backwards Euler discretiza-
tion to the linear term, which arises in the gating mechanism of RNNs (Appendix C.2.2,
Lemma C.1).

• A special case of LSSLs approximates the dynamics (14) (in continuous-time) by applying
Picard iteration to the non-linear term (Appendix C.2.3, Theorem 4).

• Deep linear RNNs approximate the dynamics (14) with both Picard iteration in the depth
direction to linearize the non-linear term, and discretization (gates) in the time direction to
discretize the equation (Appendix C.2.4, Corollary C.3).

A comparison is summarized in Table 6.

In the remainder of this section, we assume that there is an underlying function x(t) that satisfies
(14) on some interval for any initial condition, and that f is continuous and Lipschitz in its second
argument. Our goal is to show that several families of models approximate this in various ways.

C.2.1 Intuition / Proof Sketches

We sketch the idea of how LSSLs capture popular RNNs. More precisely, we will show how
approximating the dynamics (14) in various ways lead to types of RNNs and LSSLs.

The first step is to look at the simpler dynamics

ẋ(t) = −x(t) + u(t)

where there is some input u(t) that is independent of x. (In other words, in (14), the function f(t, x)
does not depend on the second argument.)

By directing applying the GBT discretization with α = 1, this leads to a gated recurrence
(Lemma 3.1).

The second step is that by applying the backwards Euler discretization more directly to (14), this
leads to a gated RNN where the input can depend on the state (Lemma C.1).

Alternatively, we can apply Picard iteration on (14), which says that the iteration

x(`)(t) = x0 +

∫ t

t0

−x(`−1)(s) ds+

∫ t

t0

f(s, x(`−1)(s)) ds

converges to the solution x(t).

However, the first integral term is simple and can be tightened. We can instead try to apply Picard
iteration on only the second term, leaving the first integral in terms of x(`). Intuitively this should
still converge to the right solution, since this is a weaker iteration; we’re only using the Picard
approximation on the second term.

x(`)(t) = x0 +

∫ t

t0

−x(`)(s) ds+

∫ t

t0

f(s, x(`−1)(s)) ds

20

Differentiating, this equation is the ODE

ẋ(`)(t) = −x(`)(t) + f(t, x(`−1)(t))

This implies that alternating point-wise functions with a simple linear ODE ẋ(`)(t) = −x(`)(t) +
u(`)(t) also captures the dynamics (14). But this is essentially what an LSSL is.

To move to discrete-time, this continuous-time layer can be discretized with gates as in Lemma 3.1,
leading to deep linear RNNs such as the QRNN, or with the bilinear discretization, leading to the
discrete-time LSSL. We note again that in the discrete-time LSSL, A and B play the role of the gates
σ, 1− σ.

C.2.2 Capturing gates through discretization

Lemma C.1. Consider an RNN of the form

xk = (1− σ(zk))xk−1 + σ(zk)f(k, xk−1), (15)

where f(k, x) is an arbitrary function that is Lipschitz in its second argument (e.g., it may depend on
an external input uk).

Then equation (15) is a discretization of the dynamics (14) with step sizes ∆tk = exp(zk), i.e.
xk ≈ x(tk) where tk =

∑k
i=1 ∆ti.

Proof. Apply the backwards Euler discretization (13) to equation (14) to get

xk − xk−1 = ∆tk [−xk + f(tk, xk)]

(1 + ∆tk)xk = xk−1 + ∆tkf(tk, xk)

xk =
1

1 + ∆tk
xk−1 +

∆tk
1 + ∆tk

f(tk, xk).

Note that ∆tk
1+∆tk

= ezk
1+ezk = 1

1+e−zk
and 1

1+∆tk
= 1− ∆tk

1+∆tk
, thus

xk = (1− σ(zk))xk−1 + σ(zk)f(k, xk−1).

Here we are denoting f(k, x) = f(tk, x) to be a discrete-time version of f evaluatable at the given
timesteps tk.

Note that a potential external input function u(t) or sequence uk is captured through the abstraction
f(t, x). For example, a basic RNN could define f(k, x) = f(tk, x) = tanh(Wx+ Uuk).

C.2.3 Capturing non-linearities through Picard iteration

The main result of this section is Theorem 4 showing that LSSLs can approximate the same dynamics
as the RNNs in the previous section. This follows from a technical lemma.
Lemma C.2. Let f(t, x) be any function that satisfies the conditions of the Picard-Lindelöf Theorem
(Theorem 3).

Define a sequence of functions x(`) by alternating the (point-wise) function f with solving an ODE

x(0)(t) = x0

u(`)(t) = f(t, x(`−1)(t))

ẋ(`)(t) = Ax(`)(t) + u(`)(t).

Then x(`) converges to a solution x(`)(t)→ x(t) of the IVP

ẋ(t) = Ax(t) + f(t, x(t))

x(t0) = x0.

Theorem 4. A (continuous-time) deep LSSL with order N = 1 and A = −1, B = 1, C = 1, D = 0
approximates the non-linear dynamics (14).

21

Proof. Applying the definition of an LSSL (equations (1)+(2)) with these parameters results in a
layer mapping u(t) 7→ y(t) where y is defined implicitly through the ODE

ẏ(t) = −y(t) + u(t).

This can be seen since the choice of C,D implies y(t) = x(t) and the choice of A,B gives the above
equation.

Consider the deep LSSL defined by alternating this LSSL with position-wise (in time) non-linear
functions

u(`)(t) = f(t, y(`−1)(t))

ẏ(`)(t) = −y(`)(t) + u(`)(t).

But this is exactly a special case of Lemma C.2, so that we know y(`)(t) → y(t) such that y(t)
satisfies

ẏ(t) = −y(t) + f(t, y(t))

as desired.

Proof of Lemma C.2. Let

z(t) = e−Atx(t)

(and z0 = z(t0) = x(t0) = x0). Note that

ż(t) = e−At [ẋ(t)−Ax(t)]

= e−Atf(t, x(t))

= e−Atf(t, eAtz(t)).

Since f satisfies the conditions of the Picard Theorem (i.e., is continuous in the first argument and
Lipschitz in the second), so does the function g where g(t, x) := e−Atf(t, eAtx) for some interval
around the initial time.

By Theorem 3, the iterates z(`) defined by

z(`)(t) = z0 +

∫ t

t0

e−Asf(s, eAsz(`−1)(s)) ds (16)

converges to z.

Define x(`)(t) = eAtz(`)(t). Differentiate (16) to get

ż(`)(t) = e−Atf(t, eAtz(`−1)(t))

= e−Atf(t, x(`−1)(t))

= e−Atu(`)(t).

But

ż(`)(t) = e−At
[
ẋ(`)(t)−Ax(`)(t)

]
,

so

ẋ(`)(t) = Ax(`)(t) + u(`)(t).

Since z(`) → z and x(`)(t) = eAtz(`)(t) and x(t) = eAtz(t), we have x(`) → x.

C.2.4 Capturing Deep, Linear, Gated RNNs

We finally note that several types of RNNs exist which were originally motivated by approximating
linearizing gated RNNs for speed. Although these were treated as a heuristic for efficiency reasons,
they are explained by combining our two main technical results.

22

Lemma C.1 shows that a single-layer, discrete-time, non-linear RNN approximates the dynamics (14)
through discretization, which arises in the gating mechanism.

Theorem 4 shows that a deep, continuous-time, linear RNN approximates (14) through Picard
iteration, where the non-linearity is moved to the depth direction.

Combining these two results leads to Corollary C.3, which says that a deep, discrete-time, linear
RNN can also approximate the same dynamics (14).
Corollary C.3. Consider a deep, linear RNN of the form

x
(`)
k = (1− σ(zk))x

(`)
k−1 + σ(zk)u

(`)
k

u
(`)
k = f(k, x

(`−1)
k).

This is a discretization of the dynamics (14) with step sizes ∆tk = exp(zk), i.e. xk ≈ x(tk) where
tk =

∑k
i=1 ∆ti.

Proof. By Lemma C.1, the first equation is a discretization of the continuous-time equation

ẋ(`)(t) = −x(`)(t) + u(`)(t)

where

u(`)(t) = f(t, x(`−1)(t))

uses the continuous-time version f of f . But by Lemma C.2, this is an approximation of the dynamics
(14) using Picard iteration.

Notable examples of this type of model include the Quasi-RNN or QRNN [5] and the Simple
Recurrent Unit (SRU) [33], which are among the most effective models in practice. We remark that
these are the closest models to the LSSL and suggest that their efficacy is a consequence of the results
of this section, which shows that they are not heuristics.

We note that there are many more RNN variants that use a combination of these gating and lineariza-
tion techniques that were not mentioned in this section, and can be explained similarly.

D LSSL Proofs and Algorithms

This section proves the results in Section 4.1, and is organized as follows:

• Appendix D.1 gives a self-contained synopsis of the HiPPO framework [24].
• Appendix D.2 proves Theorem 1, which shows that the hippo operators for any measure

lead to a simple linear ODE of the form of equation (1).
• Appendix D.3 proves Corollary 4.1, including a formal definition of quasiseparable matrices

(i.e., how LSSL matrices are defined) in Definition 4.

Notation This section is technically involved and we adopt notation to simplify reasoning about the
shapes of objects. In particular, we use bold capitals (e.g. A) to denote matrices and bold lowercase
(e.g. b) to denote vectors. For example, equation (1) becomes ẋ = Ax+ bu. These conventions are
adopted throughout Appendices D and E.

D.1 Preliminaries: HiPPO Framework and Recurrence Width

This section summarizes technical preliminaries taken directly from prior work. We include this
section so that this work is self-contained and uses consistent notation, which may deviate from prior
work. For example, we use modified notation from Gu et al. [24] in order to follow conventions in
control theory (e.g., we denote input by u and state by x as in (1)).

Appendix D.1.1 formally defines the HiPPO operator mathematically as in [24, Section 2.2], and
Appendix D.1.2 overviews the steps to derive the HiPPO operator as in [24, Appendix C]. Ap-
pendix D.1.3 defines the class of Low Recurrence Width (LRW) matrices, which is the class of
matrices that our generalization of the HiPPO results (Theorem 1) uses.

23

D.1.1 Definition of HiPPO Operator

Definition 1 ([24], Definition 1). Given a time-varying measure µ(t) supported on (−∞, t], an
N-dimensional subspace G of polynomials, and a continuous function u : R≥0 → R, HiPPO defines
a projection operator projt and a coefficient extraction operator coeft at every time t, with the
following properties:

1. projt takes a function u restricted up to time t, u≤t := u(x)|x≤t, and maps it to a polynomial
g(t) ∈ G, that minimizes the approximation error ‖u≤t − g(t)‖L2(µ(t)).

2. coeft : G → RN maps the polynomial g(t) to the coefficients c(t) ∈ RN of the basis of
orthogonal polynomials defined with respect to the measure µ(t).

The composition coeft ◦ projt is called hippo, which is an operator mapping a function u : R≥0 → R
to the optimal projection coefficients c : R≥0 → RN (i.e (hippo(u))(t) = coeft(projt(f)).

D.1.2 HiPPO Framework for Deriving the HiPPO Operator

The main ingredients of HiPPO consists of an approximation measure and an orthogonal polynomial
basis. We recall how they are defined in [24] (we note that compared to Gu et al. [24], our notation has
changed from input f(t) coefficients (state) c(t) to input u(t) and coefficients (state) x(t), following
conventions in controls).

Approximation Measures At every t, the approximation quality is defined with respect to a
measure µ(t) supported on (−∞, t]. We assume that the measures µ(t) have densities ω(t, Y) :=
dµ(t)

dY . Note that this implies that integrating with respect to dµ(t) is the same as integrating with
respect to ω(t, Y) dY .

Orthogonal Polynomial basis Let {P (t)
n }n∈N denote a sequence of orthogonal polynomials with

respect to some time-varying measure µ(t). Let p(t)
n be the normalized version of of orthogonal P (t)

n ,
and define

pn(t, Y) = p(t)
n (Y).

In particular, the above implies that∫ t

−∞
p(t)
n (Y) · p(t)

m (Y)ω(t, Y) dY = δm,n.

In the general framework, HiPPO does not require an orthogonal polynomial basis as the selected
basis. The choice of basis is generalized by tilting with χ.

Tilted measure and basis For any scaling function χ(t, Y), the functions pn(t, Y)χ(t, Y) are
orthogonal with respect to the density ω

χ2 at every time t. Define ν(t) to be the normalized measure

with density proportional to ω
χ2 , with normalization constant ζ(t) =

∫ t
0
ω(t,Y)
χ(t,Y)2 dx.

We express the coefficients xn(t) calculated by the HiPPO framework as:

xn(t) =
1√
ζ(t)

∫ t

0

u(Y)pn(t, Y)
ω(t, Y)

χ(t, Y)
dY. (17)

To use this to derive ẋn(t), let h(t, Y) = u(Y)pn(t, Y)ω(t, Y). We see that

24

ẋn(t) =
d

dt

∫ t

0

u(Y)pn(t, Y)ω(t, Y)dY

=
d

dt

∫ t

0

h(t, Y)dY

=

∫ t

0

∂

∂t
h(t, Y)dY + h(t, t)

=

∫ t

0

u(Y)

(
∂

∂t
pn (t, Y)

)
ω (t, Y) dY +

∫ t

0

f(Y)pn (t, Y)

(
∂

∂t
ω (t, Y)

)
dY

+ u(t)pn(t, t)ω(t, t).

This allows ẋn(t) to be written as

ẋn(t) = u(t)pn(t, t)ω(t, t) +

∫ t

0

u(Y)

(
∂

∂t
pn (t, Y)

)
ω (t, Y) dY

+

∫ t

0

f(Y)pn (t, Y)

(
∂

∂t
ω (t, Y)

)
dY. (18)

Although Gu et al. [24] describe the framework in the full generality above and use χ as another
degree of freedom, in their concrete derivations they always fix χ = ω. Our general results also use
this setting. For the remainder of this section, we assume the “full tilting” case χ = ω. In particular,
this means that in Eq. (18), we essentially substitute ω above with 1 and divide each term by the
inverse square root of our normalization constant, ζ, to get the coefficient dynamics that we will use
in our arguments:

ẋn(t) =
1√
ζ(t)

u(t)pn(t, t) +
1√
ζ(t)

∫ t

0

u(Y)

(
∂

∂t
pn (t, Y)

)
dY (19)

Now, if we can show that each of the integrated terms in (18) are linear combinations of xn(t),
this would be the same as saying that ẋn(t) = A(t)x(t) + b(t)u(t) for some A(t). Therefore,
the incremental update operation would be bounded by the runtime of the matrix-vector operation
A(t)x(t).

D.1.3 Recurrence Width

Our final goal is to show that ẋn(t) = A(t)x(t) + b(t)u(t) for some A(t) with constant recurrence
width (see Definition 2). This will show Theorem 1, and also imply that the MVM A(t)x(t) can be
computed in Õ(N) time. To build this argument, we borrow the fact that OPs all have recurrence
width 2 and results regarding matrix-vector multiplication of matrices with constant recurrence width
along with their inverses.
Definition 2 ([17]). An N × N matrix A has recurrence width t if the polynomials ai(X) =∑N−1
j=0 A[i, j]Xj satisfy deg(ai) ≤ i for i < t, and

ai(X) =

t∑
j=1

gi,j(X)ai−j(X)

for i ≥ t, where the polynomials gi,j ∈ R[X] have degree at most j.
Theorem 5 ([17], Theorem 4.4). For any N × N matrix A with constant recurrence width, any
vector x ∈ Rn, Ax can be computed with Õ(N) operations over R.
Theorem 6 ([17], Theorem 7.1). For any N × N matrix A with constant recurrence width, any
vector x ∈ Rn, A−1x can be computed with Õ(N) operations over R.

For the rest of the note we’ll assume that any operation over R can be done in constant time.
It would be useful for us to define P ∈ RN×N such that the coefficients of the OP pi(X), i.e.
pi(X) =

∑N−1
j=0 P[i, j]Xj .

25

D.2 Proof of Theorem 1

This section proves Theorem 1, which is restated formally in Corollary D.4. Appendix D.2.1 proves
some results relating orthogonal polynomials to recurrence width (Appendix D.1.3). Appendix D.2.2
proves Corollary D.4. Appendices D.2.3 and D.2.4 provides examples showing how Corollary D.4
can be specialized to exactly recover the HiPPO-LegT, HiPPO-LagT, HiPPO-LegS methods [24].

D.2.1 Relating Orthogonal Polynomials and Recurrence Width

Next we introduce the following lemma, which will be useful in our arguments:

Lemma D.1. For any n, there exists ordered sets of coefficients αn = {αn,i}, βn = {βn,i},

(i) p′n(Z) =
∑n−1
i=0 αn,ipi(Z)

(ii) Zp′n(Z) =
∑n−1
i=0 βn,ipi(Z)

Proof. Follows from the fact that pi(z) for 0 ≤ i < N forms a basis and the observation of the
degrees of the polynomials on the LHS.

The following matrices will aid in showing verifying that matrix vector multiplication with a given
matrix A can be computed in O(Ñ) time.

Definition 3. D1,D2 ∈ RN×N are the matrices such that

p′i(Z) =

N−1∑
j=0

D1[i, j]Zj , and Zp′i(Z) =

N−1∑
j=0

D2[i, j]Zj .

Let S be the “right shift" matrix, i.e. for any matrix M, MS has the columns of M shifted to right by
one. Note that ST corresponds to the “left shift" matrix.

We now note that:

Lemma D.2. D1 = P·diag(0, 1, . . . , N−1)·ST and D2 = P·diag(0, 1, . . . , N−1). In particular,
D1z and D2z can be computed in Õ(N) time for any z ∈ RN .

Proof. Recall that P has the coefficients of the OP polynomials p0(Z), . . . , pN−1(Z) as its rows.
Then note that

p′n(Z) =

n−1∑
i=0

i ·P[n, i] · Zi−1. (20)

The claim on D1 = P · diag(0, 1, . . . , N − 1) · ST follows from the above. Recall that D has
recurrence width of 2. The claim on the runtime of computing D1z then follows from Theorem 5
and the fact that both diag(0, 1, . . . , N − 1) and ST is n-sparse.

From Eq. (20), it is easy to see that

Zp′n(Z) =

n−1∑
i=0

i ·P[n, i] · Zi.

The claim on the structure of D2 then follows from the above expression. The claim on runtime of
computing D2z follows from essentially the same argument as for D1z.

Finally, we make the following observation:

Lemma D.3. Let A′ and B′ be defined such that A′[n, i] = αn,i and B′[n, i] = βn,i. Then both A′

and B′ are both products of three matrices: two of which have recurrence width at most 2 and the
third is the inverse of a matrix that has recurrence width 2.

26

Proof. We note that since P expresses the orthogonal polynomials in standard basis, P−1

changes from OP basis to standard basis. This along with Lemma D.2 implies that A =
P ·

(
diag(0, 1, . . . , N − 1) · ST

)
· P−1. It is easy to check that diag(0, 1, . . . , N − 1) · ST has

recurrence width 1 and the claim on A′ follows since P has recurrence width 2. A similar argument
proves the claim on B′.

D.2.2 HiPPO for General Measures

Let θ : R≥0 7→ R≥0 be a function such that for all t, θ(t) ≤ t and θ(t) is differentiable.

In what follows, define

z =
2(Y − t)
θ(t)

+ 1.

We note that
dz

dY
=

2

θ(t)
. (21)

Further, note that:

dz

dt
=

d

dt

(
2(Y − t)
θ(t)

+ 1

)
= − 2

θ(t)
− 2(Y − t)θ′(t)

θ2(t)

= − 2

θ2(t)
(θ(t) + (Y − t)θ′(t)) .

From the definition of z, we see that Y − t = (z−1)θ(t)
2 . Then

dz

dt
= − 2

θ(t)

(
1 +

(
z − 1

2

)
θ′(t)

)
= − 2

θ(t)
− (z − 1)θ′(t)

θ(t)
. (22)

Additionally, given a measure ω on [-1,1] and OP family p0(Y), p1(Y), . . . such that for all i 6= j,∫ 1

−1

pi(Y)pj(Y)ω(Y)dY = δi,j ,

define

ω(Y, t) =
2

θ(t)
ω(z) and pn(Y, t) = pn(z).

Then we can adjust (17) to:

xn(t) =

∫ t

t−θ(t)
u(Y)pn(z)

2

θ(t)
dY. (23)

The Leibniz integral rule states that

∂

∂t

∫ β(t)

α(t)

h(t, Y)dY =

∫ β(t)

α(t)

∂

∂t
h(t, Y)dY − α′(t)h(α(t), t) + β′(t)h(t, t).

If we let α(t) = t− θ(t) and β(t) = t, then applying the Leibniz rule to (23) we get:

27

ẋn(t) =

∫ t

t−θ(t)
u(Y)

∂

∂t

(
pn(z)

2

θ(t)

)
dY − (1− θ′(t))u(t− θ(t))pn(t− θ(t), t) 2

θ(t)

+ u(t)pn(t, t)
2

θ(t)

= −(1− θ′(t))u(t− θ(t))pn(−1)
2

θ(t)
+ u(t)pn(1)

2

θ(t)

+

∫ t

t−θ(t)
u(Y)

dz

dt
p′n(z)

2

θ(t)
dY − θ′(t)

θ(t)

∫ t

t−θ(t)
u(Y)pn(z)

2

θ(t)
dY.

From (22), it follows that

ẋn(t) = −2(1− θ′(t))u(t− θ(t))pn(−1)

θ(t)
+

2 · u(t)pn(1)

θ(t)
− 2

θ(t)

∫ t

t−θ(t)
u(Y)p′n(z)

2

θ(t)
dY−

θ′(t)

θ(t)

∫ t

t−θ(t)
u(Y)(z − 1)p′n(z)

2

θ(t)
dY − θ′(t)

θ(t)

∫ t

t−θ(t)
u(Y)pn(z)

2

θ(t)
dY. (24)

Because deg (p′n(z)) ≤ n− 1 and deg ((z − 1)p′n(z)) ≤ n, they can be written as a linear combina-
tion of {p′i}i≤n. Let us define {αn,j}, {βn,j} such that

p′n(z) =

n−1∑
j=0

αn,jpj(z) and (z − 1)p′n(z) =

n∑
j=0

βn,jpj(z). (25)

Then by using (25) in (24), we get:

ẋn(t) = −2(1− θ′(t))u(t+ θ(t))pn(−1)

θ(t)
+

2 · u(t)pn(1)

θ(t)

− 2

θ(t)

n−1∑
j=0

αn,j

∫ t

t−θ(t)
u(Y)pj(z)

2

θ(t)
dY

− θ′(t)

θ(t)

n∑
j=0

βn,j

∫ t

t−θ(t)
u(Y)pj(z)

2

θ(t)
dY − θ′(t)

θ(t)

∫ t

t−θ(t)
u(Y)pn(z)

2

θ(t)
dY

= −2(1− θ′(t))u(t+ θ(t))pn(−1)

θ(t)
+

2 · u(t)pn(1)

θ(t)

− 2

θ(t)

n−1∑
j=0

αn,jxj(t)−
θ′(t)

θ(t)

n∑
j=0

βn,jxj(t)−
θ′(t)

θ(t)
xn(t).

Thus, in vector form we get
Theorem 7.

ẋn(t) = − 1

θ(t)
A1(t)x(t)− 2

θ(t)
(1− θ′(t))u(t− θ(t))

...

pn(−1)
...

+
2

θ(t)
u(t)

...

pn(1)
...

where A1(t)[n, k] =

2αn,k + θ′(t)βn,k if k < n

θ′(t)βn,n + θ′(t) if k = n

0 otherwise
for αn,k,βn,k as defined in (25).

Corollary D.4. The matrix A1 in Theorem 7 can be re-written as
A1 = 2 ·A′ + θ′(t) ·B′ + θ′(t) · I. (26)

In particular, both A′ and B′ both products of three matrices: two of which have recurrence width at
most 2 and the third is the inverse of a matrix that has recurrence width 2.

28

Proof. Eq. (26) follows from Theorem 7 and defining A′ and B′ to contain the αn,k and βn,k
coefficients.

D.2.3 Translated HiPPO (Sliding Windows)

The case when θ(t) = θ for all t represents a constant-size sliding window, which Gu et al. [24]
denote as the “Translated HiPPO” case with instantiations such as HiPPO-LegT (Translated Legendre)
and HiPPO-LagT (Translated Laguerre).

We now state a corollary of Theorem 7 for the case of θ(t) = θ for all t.

Corollary D.5. Let θ(t) = θ for all t. Then

ẋn(t) = −1

θ
A1x(t)− 2

θ
u(t− θ)

...

pn(−1)
...

+
2

θ
u(t)

...

pn(1)
...

 .

where A1[n, j] =

{
2αn,k if k < n

0 otherwise
.

Next, we use the approximation

u(x) ≈
N−1∑
k=0

xk(t)pk(z).

to handle the u(t− θ) term in Corollary D.5.

Corollary D.6. Let θ(t) = θ for all t. Then

ẋn(t) ≈ −1

θ
Ax(t) +

2

θ
u(t)

...

pn(1)
...

where A = A1 + 2A2 for A1 as defined in Corollary D.5 and A2[n, k] = pn(−1)pk(−1).

Proof. To approximate u(t− θ), we note that when Y = t− θ, z = −1. Then

u(t− θ) ≈
N−1∑
k=0

xk(t)pk(−1).

Then by Corollary D.5,

ẋn(t) ≈ −1

θ
A1x(t)− 2

θ

(
N−1∑
k=0

xk(t)pk(−1)

)
...

pn(−1)
...

+
2

θ
u(t)

...

pn(−1)
...

 . (27)

Let us define a matrix, A2 ∈ RN×N matrix such that A2[n, k] = pn(−1)pk(−1). Then the claim
follows.

We now show that the special case of Corollary D.6 for Legendre matches the results from [24].

29

Corollary D.7. Let pn(z) =
(

2n+1
2

)1/2
Pn(z) where Pn(z) are the Legendre polynomials. Then

ẋn(t) ≈ 1

θ
Ax(t) +

2

θ
bu(t)

where

A[n, k] = (2n+ 1)
1
2 (2k + 1)

1
2

{
1 if k ≤ n
(−1)n−k if k ≥ n ,

and b[n] =
(

2n+1
2

) 1
2 .

Proof. From Corollary D.6,

ẋn(t) ≈ −1

θ
Ax(t) +

2

θ
u(t)

...

pn(1)
...

where A = A1 + 2A2 for A1 as defined in Corollary D.5 and A2[n, k] = pn(−1)pk(−1).

It is known from (7.21.1) and in [53] that

pn(−1) =

(
2n+ 1

2

) 1
2

Pn(−1) and Pn(−1) = (−1)n. (28)

Further,

pn(1) =

(
2n+ 1

2

) 1
2

Pn(1) and Pn(1) = 1. (29)

Then b[n] =
(

2n+1
2

) 1
2 follows from Corollary D.6 and (29).

From the following recurrence relations [1, Chapter 12]:

(2n+ 1)Pn(z) = P ′n+1(z) + P ′n−1(z)

implies that

P ′n+1(z) = (2n+ 1)Pn(z) + (2n+ 1)Pn−2(z) + · · ·+,

which in turn implies

P ′n = (2n− 1)Pn−1(z) + (2n− 5)Pn−3(z) +

Then

p′n(z) =

(
2n+ 1

2

) 1
2

· P ′n(z)

=

(
2n+ 1

2

) 1
2

(
(2n− 1)

(
2

2n− 1

) 1
2

Pn−1(z) + (2n− 5)

(
2

2n− 5

) 1
2

Pn−3(z) + . . .

)
= (2n+ 1)

1
2

(
(2n− 1)

1
2 Pn−1(z) + (2n− 5)

1
2 Pn−3(z) + . . .

)
.

Thus, we have

αn,k =

{
(2n+ 1)

1
2 (2k + 1)

1
2 if k < n and n− k is odd,

0 is otherwise.
,

30

Recalling that A1[n, k] = 2αn,k.

We note that from (28), A2[n, k] =
(

2n+1
2

) 1
2
(

2k+1
2

) 1
2 (−1)n(−1)k = (2n+1)

1
2 (2k+1)

1
2

2 (−1)n−k.

Recalling A = A1 + 2A2, we get:

A[n, k] = (2n+ 1)
1
2 (2k + 1)

1
2

2 + (−1)n−k if k < n and n− k is odd
0 + (−1)n−k if k < n and n− k is even
(−1)n−k if k ≥ n

.

Note that the above is the same as:

A[n, k] = (2n+ 1)
1
2 (2k + 1)

1
2

{
1 if k ≤ n
(−1)n−k if k ≥ n ,

which completes our claim.

D.2.4 Scaled HiPPO: Recovering HiPPO-LegS

We now use Theorem 7 to recover the HiPPO-LegS instantiation for the “Scaled Legendre” measure,
the main method from Gu et al. [24].

Corollary D.8. Let pn(z) =
(

2n+1
2

)1/2
Pn(z) where Pn(z) are the Legendre polynomials and let

δ(t) = t for all t. Then

ẋn(t) =
1

t
Ax(t) +

2

t
bu(t)

where

A[n, k] =

(2n+ 1)

1
2 (2k + 1)

1
2 if k < n

n+ 1 if k = n

0 if k > n

,

and b[n] =
(

2n+1
2

) 1
2 .

Proof. Let θ(t) = t. By Theorem 7 and noting that θ(t) = 1, we get:

ẋn(t) = −1

t
A1x(t) +

2

t
u(t)

...

pn(1)
...

where

A1(t)[n, k] =

2αn,k + βn,k if k < n

βn,n + 1 if k = n

0 otherwise
(30)

for αn,k,βn,k as defined in (25).

Using the same arguments as in the proof of Corollary D.7, b[n] =
(

2n+1
2

) 1
2 follows from Corollary

D.6 and (29). Also using similar arguments as the proof of Corollary D.7, we have

αn,k =

{
(2n+ 1)

1
2 (2k + 1)

1
2 if k < n and n− k is odd,

0 is otherwise.
.

From (8) in [24], we know that

(z + 1)P ′n(z) = nPn(z) + (2n+ 1)Pn−1(z) + (2n− 3)Pn−2(z) +

31

Including the normalization constant (2n+ 1)
1
2 , we note that (z−1)p′n(z) = (z+ 1)p′n(z)−2p′n(z).

Then we get

(z + 1)p′n(z) = npn(z)− (2n+ 1)
1
2 (2n− 1)

1
2 pn−1(z) + (2n+ 1)

1
2 (2n− 3)

1
2 pn−2(z)−

In other words,

βn,k =

−(2n+ 1)

1
2 (2k + 1)

1
2 if k < n and n− k is odd,

(2n+ 1)
1
2 (2k + 1)

1
2 if k < n and n− k is even

n if n = k

0 otherwise.

.

Recalling that the definition for A1 from (30), we get:

A[n, k] =

(2n+ 1)

1
2 (2k + 1)

1
2 if k < n

n+ 1 if k = n

0 if k > n

,

which completes our claim.

D.3 Proof of Corollary 4.1: HiPPO for Classical Orthogonal Polynomials

This section proves Corollary 4.1, showing that the HiPPO matrices for measures corresponding to
classical families of orthogonal polynomials [11] are quasiseparable. We define quasi-separability
in Appendix D.3.1. Theorem 8 proves the claimed result for Jacobi polynomials and Lemma D.11
proves the claimed result for Laguerre polynomials.

We note that there is a third family of classical OPs, the Hermite polynomials [11], which have a
two-sided infinite measure. However, since HiPPO is about continuous-time memorization of a
function’s history, it requires a one-sided measure and therefore the Hermite polynomials are not
appropriate.

D.3.1 Quasiseparable Matrices

Definition 4 (from [19]). A matrix R ∈ RN×N is (p, q)-quasiseparable if

• Every matrix contained strictly above the diagonal has rank at most p.

• Every matrix contained strictly below the diagonal has rank at most q.

A (q, q)-quasiseparable matrix is called q-quasiseparable.

We are interested in showing the A matrices for a broad class of OPs in Corollary D.6 are O(1)-
quasiseperable. We now state some properties of q-quasiseparable matrices:
Lemma D.9. Let Q be q-quasiseparable. Then:

(i) For any q′-quasiseparable matrix Q′ ∈ RN×N , Q±Q′ is (q + q′)-quasiseparable.

(ii) For any E ∈ RN×N , E is r-quasiseparable where r = rank(E).

(iii) For any two diagonal matrices D1, D2 ∈ RN×N , D1QD2 is q-quasiseparable.

Proof. We argue each point separately:

(i) Any submatrix contained strictly below or above the diagonal in Q has rank ≤ q and its
corresponding submatrix in Q′ also has rank ≤ q′. This implies that the corresponding
submatrix in Q±Q′ has rank ≤ q + q′. Therefore Q±Q′ is (q + q′)-quasiseparable.

(ii) Let the r = rank(E). Thus any submatrix in E has rank ≤ r. Then E is r-quasiseparable.

32

(iii) Multiplication by diagonal matrices only scales the rows and columns, leaving the rank of
each submatrix unchanged.

D.3.2 Jacobi Polynomials

The Jacobi polynomial of degree n with parameters α, β > −1 will be denoted Jα,βn (z). The Jacobi
polynomials are orthogonal with respect to measure ω(z) = (1 − z)α(1 + z)β . In particular, it is
known from (eq. (4.3.3) from [53]) that

∫ 1

−1

Jα,βn (z) Jα,βm (z)ω(z)dz =
2α+β+1

2n+ α+ β + 1
· Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!
δn,m,

where Γ(·) is the gamma function. Let

λα,βn =

(
2α+β+1

2n+ α+ β + 1
· Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!

) 1
2

be our normalization constant. We note that the normalized Jacobi polynomials

pα,βn (z) =
Jα,βn (z)

λα,βn
(31)

form an orthonormal OP family.

We now discuss some useful properties of Jacobi polynomials. It is known that ([50], eq. (3.100)):

Jα,βn (z) =
1

n+ α+ β

[
(n+ β)Jα,β−1

n (z) + (n+ α)Jα−1,β
n (z)

]
. (32)

From (4.21.7) in [53], it is known that the derivative of Jα,βn (z) is proportional to Jα+1,β+1
n−1 (z):

∂

∂z
Jα,βn (z) =

1

2
(n+ α+ β + 1)Jα+1,β+1

n−1 (z) . (33)

From (32) and (33), it follows that

∂

∂z
Jα,βn (z) =

1

2
·
(

(n+ β)Jα+1,β
n−1 (z) + (n+ α)Jα,β+1

n−1 (z)
)
. (34)

Additionally, the Jacobi polynomials Jα+1,β
n−1 (z) and Jα,β+1

n−1 (z) can be written as sums of Jα,βn−1 (z)
polynomials. In particular from [50] (3.112) and (3.115),

Jα+1,β
n−1 (z) =

Γ(n+ β)

Γ(n+ α+ β + 1)
·
n−1∑
k=0

(2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + β + 1)
Jα,βk (z) , (35)

and

Jα,β+1
n−1 (z) =

Γ(n+ α)

Γ(n+ α+ β + 1)
·
n−1∑
k=0

(−1)n−k−1 (2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + α+ 1)
Jα,βk (z) .

(36)

Using (35) and (36) in (34) allows us to write ∂
∂zJ

α,β
n (z) as a sum of

{
Jα,βk (z)

}
k≤n

as follows:

33

∂

∂z
Jα,βn (z) =

n+ β

2

(
Γ(n+ β)

Γ(n+ α+ β + 1)

n−1∑
k=0

(2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + β + 1)
Jα,βk (z)

)

− n+ α

2

(
Γ(n+ α)

Γ(n+ α+ β + 1)

n−1∑
k=0

(−1)n−k
(2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + α+ 1)
Jα,βk (z)

)
.

(37)

We use these properties to write ∂
∂zp

α,β
n (z) as a sum of

{
pα,βk (z)

}
k≤n

:

Corollary D.10. Let pα,βn (z) and λα,βn be as defined in (31).

Then
∂

∂z
λα,βn pα,βn (z) =

(n+ β)

2
·(

Γ(n+ β)

Γ(n+ α+ β + 1)

n−1∑
k=0

(2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + β + 1)
λα,βk pα,βk (z)

)

− (n+ α)

2
·(

Γ(n+ α)

Γ(n+ α+ β + 1)

n−1∑
k=0

(−1)n−k
(2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + β + 1)
λα,βk pα,βk (z)

)

Proof. Recall that Jα,βn (z) = λα,βn pα,βn . Then the claim follows from (37).

D.3.3 HiPPO for Jacobi Polynomials

Theorem 8. Let pα,βn (z) be defined as in (31) and ω(z) = (1− z)α(1 + z)β . Then

ẋn(t) ≈ −1

θ
Ax(t) +

2

θ
bu(t)

where A is 3-quasiseperable.

Proof. From Corollary D.6,

ẋn(t) ≈ −1

θ
Ax(t) +

2

θ
u(t)

...

pα,βn (1)
...

where A = A1 + 2A2 for A1 as defined in Corollary D.5 and A2[n, k] = pα,βn (−1)pα,βn (−1).

From Corollary D.10, we observe that

A1[n, k] = 2 ·

(n+β)

2 λα,βn
· Γ(n+β)

Γ(n+α+β+1) ·
(

(2k+α+β+1)Γ(k+α+β+1)
Γ(k+β+1) λα,βk

)
−

(n+α)

2 λα,βn
· Γ(n+α)

Γ(n+α+β+1) ·
(

(−1)n−k (2k+α+β+1)Γ(k+α+β+1)
Γ(k+α+1) λα,βk

)
if k < n

0 otherwise

.

(38)

Then we note that,
A1 = D11Q1D12 −D21Q1D22, (39)

34

where D11,D12,D21,D22 are the diagonal matrices such that

D11[n, n] =
1

λα,βn
· Γ(n+ β + 1)

Γ(n+ α+ β + 1)
,

D12[k, k] =
(2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + β + 1)
λα,βk ,

D21[n, n] = (−1)n · (1

λα,βn
· Γ(n+ α+ 1)

Γ(n+ α+ β + 1)

D22[k, k] = (−1)k · (2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + α+ 1)
λα,βk ,

and

Q1[n, k] =

{
1 if k < n

0 otherwise.
.

(39) makes use of the fact that (−1)n+k = (−1)n−k along with the definitions above.

Any submatrix of Q1 below the diagonal contains all 1s, and submatrix of Q1 above the diagonal
contains all 0s. Then any submatrix above or below the diagonal has rank 1. Therefore Q1 is 1-
quasiseparable. Since Q1 is 1-quasiseparable and D11,D12,D21,D22 are all diagonal matrices, part
(iii) of Lemma D.9 implies that the matrices D11Q1D12 and D21Q1D22 are both 1-quasiseparable.
Therefore part (i) of Lemma D.9 implies that A1 is 2-quasiseparable.

From (4.1.1) and (4.1.4) in [53], it is known that

pα,βn (1) =
1

λα,βn

(
n+ α

n

)
and pα,βn (1) =

(−1)n

λα,βn

(
n+ β

n

)
where (

z

n

)
=

{
Γ(z+1)

Γ(n+1)Γ(z−n+1) if n ≥ 0

0 if n < 0
.

Then A2 can be written D3Q2D4 where D3,D4 are the diagonal matrices such that

D3[n, n] =
(−1)n

λα,βn

(
n+ β

n

)
, D4[k, k] =

(−1)k

λα,βk

(
k + β

k

)
,

where Q2[n, k] = 1 for all 0 ≤ n, k < N . Q2 has rank 1, and D3,D4 are diagonal matrices. Hence
by part (ii) and (iii) Lemma D.9, A2 is 1-quasiseparable.

Since A1 is 2-quasiseparable and A2 is 1-quasiseparable, part (i) of Lemma D.9 implies that
A = A1 + 2A2 is 3-quasiseparable and the claim follows.

D.3.4 HiPPO-LagT

The Laguerre polynomial of degree n with parameters α > −1 will be denoted Lαn (z). The Laguerre
polynomials are orthogonal with respect to measure zαe−z . In particular, from (5.1.1) in [53] we
know that ∫ ∞

−1

Lαn (z)Lαm (z) zαe−zdz =
Γ(n+ α+ 1)!

Γ(n+ 1)
δn,m.

Let λn =
(

Γ(n+1)
Γ(n+α+1)

) 1
2

be our normalization constant. We note that the normalized Laguerre
polynomials

pn (z) = λnL
α
n(t− Y) (40)

35

form an orthonormal OP family with respect to measure ω = (t− Y)αe−(t−Y)
1(−∞,t) for a fixed α

and tilting χ = (t− Y)α exp
(
− 1−β

2 (t− Y)
)
1(−∞,t) for a fixed β.

We use the following result from [24]:
Theorem 9. Let pn(z) be defined as in (40). Then

ẋn(t) = −Ax(t) + bu(t)

where

A[n, k] =

1+β

2 if k = n

1 if k < n

0 otherwise
,

b[n] = λn

(
n+ α

n

)
,

We now show that A as defined in Theorem 9 is 1-quasiseperable.
Lemma D.11. Let A be defined as in Theorem 9. Then A is 1-quasiseperable.

Proof. From Theorem 9, we know that

A[n, k] =

1+β

2 if k = n

1 if k < n

0 otherwise
,

b[n] = λn

(
n+ α

n

)
.

Below the diagonal, all entries A[n, k] = 1. Then any submatrix below the diagonal has rank 1.
Similarly, above the diagonal, all entries A[n, k] = 0. Then any submatrix above the diagonal also
has rank 1. Then by Definition 4, the claim follows.

E LSSL Algorithms

• Appendix E.1 proves Theorem 2, providing an algorithm to compute the Krylov function
efficiently for LSSLs.

• Appendix E.2 shows a further simplification of Corollary 4.1, presenting an even simpler
class of structured matrices that we use in our implementation of LSSL.

• Appendix E.3 provides technical details of the implementation of LSSL, in particular for
computing the MVM black box (multiplication by A) and for computing gradients during
backpropagation.

E.1 Proof of Theorem 2

This section addresses the computational aspects of the LSSL. In particular, we prove Theorem 2
for the computational speed of computing the Krylov function (7) for quasiseparable matrices A, by
providing a concrete algorithm in Appendix E.1.1.

We restate the Krylov function (7) here for convenience. Recall that L is the length of the input
sequence and N is the order of the LSSL internate state, e.g. A ∈ RN×N .

KL(A,B,C) =
(
CAiB

)
i∈[L]

∈ RL = (CB,CAB, . . . , CAL−1B)

Remark E.1. We call (7) the Krylov function following the notation of [17], since it can be written
K(A,B)TC where K(A,B) is the Krylov matrix defined in (8). Alternative naming suggestions are
welcome.

36

E.1.1 The Algorithm

We follow the similar problem of [17, Lemma 6.6] but track the dependence on L and the log factors
more precisely, and optimize it in the case of stronger structure than quasiseparability, which holds in
our setting (particularly Theorem 11).

The first step is to observe that the Krylov function KL(A,B,C) is actually the coefficient vector
of C(I −Ax)−1B (mod xL) as a polynomial in x. (Note that Ax means simply multiplying every
entry in A by a scalar variable x.) This follows from expanding the power series (I − Ax)−1 =
I +Ax+A2x2 + Thus we first compute C(I −Ax)−1B, which is a rational function of degree
at most N in the numerator and denominator (which can be seen by the standard adjoint formula for
the matrix inverse).

The second step is simply inverting the denominator of this rational function (mod xL) and multi-
plying by the numerator, both of which are operations that need L log(L) time by standard results for
polynomial arithmetic [51].

For the remainder of this section, we focus on computing the first part. We make two notational
changes: First, we transpose C to make it have the same shape as B. We consider the more general
setting where B and C have multiple columns; this can be viewed as handling a “batch” problem
with several queries for B,C at the same time.
Lemma E.2. Let A be a q-quasiseparable matrix. Then

CT (I−Ax)−1B where A ∈ RN×N B,C ∈ RN×k

is a k × k matrix of rational functions of degree at most N , which can be computed in O(q3 log4N)
operations.

The main idea is that quasiseparable matrices are recursively “self-similar”, in that the principal
submatrices are also quasiseparable, which leads to a divide-and-conquer algorithm. In particular,

divide A =

[
A00 A01

A10 A11

]
into quadrants. Then by Definition 4, A00,A11 are both q-quasiseparable

and A01,A10 are rank q. Therefore the strategy is to view I −Ax as a low-rank perturbation of
smaller quasiseparable matrices and reduce the problem to a simpler one.
Proposition 10 (Binomial Inverse Theorem or Woodbury matrix identity [23, 60]). Over a commu-
tative ringR, let A ∈ RN×N and U,V ∈ RN×p. Suppose A and A + UVT are invertible. Then
Ip + VTA−1U ∈ Rp×p is invertible and

(A + UVT)−1 = A−1 −A−1U(Ip + VTA−1U)−1VTA−1

For our purposes,R will be the ring of rational functions over R.

Proof of Lemma E.2. Since A is q-quasiseparable, we can write A10 = ULV
T
L and A01 = UUV

T
U

where U·,V· ∈ FN×q . Notice that we can write I−Ax as

I−Ax =

[
I−A00x 0

0 I−A11x

]
+

[
0 UU

UL 0

] [
VL 0
0 VU

]T
x.

Suppose we know the expansions of each of

M1 ∈ Rk×k = CT

[
I−A00x 0

0 I−A11x

]−1

B (41)

M2 ∈ Rk×2q = CT

[
I−A00x 0

0 I−A11x

]−1 [
0 UU

UL 0

]
(42)

M3 ∈ R2q×2q =

[
VL 0
0 VU

]T [
I−A00x 0

0 I−A11x

]−1 [
0 UU

UL 0

]
(43)

M4 ∈ R2q×k =

[
VL 0
0 VU

]T [
I−A00x 0

0 I−A11x

]−1

B. (44)

37

By Proposition 10, the desired answer is

CT (X −A)−1B = M1 −M2(I2q + M3)−1M4.

Then the final result can be computed by inverting I2t+M3 (O(q3N log(N)) operations), multiplying
by M2,M4 (O((kq2 + k2q)N log(N)) operations), and subtracting from M1 (O(k2N log(N))
operations). This is a total of O((q3 + kq2 + k2q)N log(N)) operations. Note that when k =
O(q logN), this becomes O(q3N log3N); we will use this in the analysis shortly.

To compute M1,M2,M3,M4, it suffices to compute the following:

CT
1 (I−A00x)−1B0 CT

1 (I−A11x)−1B1

CT
0 (I−A00x)−1UU CT

1 (I−A11x)−1UL

VT
L(I−A00x)−1UU VT

U (I−A11x)−1UL

VT
L(I−A00x)−1B0 VT

U (I−A11x)−1B1.

(45)

But to compute those, it suffices to compute the following (k + t)× (k + t) matrices:

[C0 VL]
T

(I−A00x)−1 [B0 UU]

[C1 VU]
T

(I−A11x)−1 [B1 UL]
(46)

Since A00 and A11 have the same form as A, this is two recursive calls of half the size. Notice that
the size of the other input (dimensions of B,C) is growing, but when the initial input is k = 1, it
never exceeds 1 + q logN (since they increase by q every time we go down a level). Earlier, we
noticed that when k = O(q logN), the reduction step has complexity O(q3N log3(N)) for any
recursive call. The recursion adds an additional logN multiplicative factor on top of this.

Corollary E.3. Suppose that A is semiseparable instead of quasiseparable, and suppose q is a small
constant. Then the cost of Lemma E.2 is O(N log2(N)) operations.

This follows from the fact that in the recursion (45) and (46), the U,V matrices do not have to be
appended if they already exist in B,C. For intuition, this happens in the case when A is tridiagonal,
so that U, V have the structure (1, 0, . . . , 0), or the case when the off-diagonal part of A is all 1 (such
as the HiPPO-LegT matrix). The matrices in Appendix D.3 and Appendix E.2 (Theorems 8, 9 and 11)
actually satisfy this stronger structure, so Corollary E.3 applies.

Combining everything, this proves Theorem 2 with the exact boundN log2(N)+L log(L) operations.
The memory claim follows similarly, and the depth of the algorithm is log2(N) + log(L) from the
divide-and-conquer recursions.

E.1.2 Summary of Computation Speed for LSSLs and other Mechanisms

We provide a summary of complexity requirements for various sequence model mechanisms, includ-
ing several versions of the LSSL. Note that these are over exact arithmetic as in Theorem 2.

First, the self-attention mechanism is another common sequence model that has an L2 dependence on
the length of the sequence, so it is not suitable for the very long sequences we consider here. (We do
note that there is an active line of work on reducing this complexity.)

Second, we include additional variants of the LSSL. In Table 7, LSSL-naive denotes learning A and
∆t for unstructured A; LSSL-fixed denotes not learning A,∆t (see Appendix B for details); LSSL
denotes the learning A and ∆t for the structured class A.

We include brief explanations of these complexities for the LSSL variants.

LSSL-naive

• Parameters: O(HN) in the matrices B,C and O(N2) in the matrix A.

• Training: O(HN3) to invert compute the matrix A for all H features. O(LHN2) to
compute the Krylov matrix C,CA, O(BL log(L)HN to multiply by B and convolve
with u.

38

Table 7: Complexity of various sequence models in terms of length (L), batch size (B), and hidden dimension
(H). Measures are parameter count, training computation, memory requirement, and inference computation for 1
sample and time-step.

Convolution RNN

Parameters LH2 H2

Training BLH2 + L log(L)(H2 +BH) BLH2

Memory BLH + LH2 BLH
Parallel Yes No
Inference LH2 H2

Attention LSSL-naive

Parameters H2 HN +N2

Training B(L2H + LH2) HN3 + LHN2 +BL log(L)HN
Memory B(L2 +HL) HN2 + LHN +BLH
Parallel Yes Yes
Inference L2H +H2L HN2

LSSL-fixed LSSL

Parameters HN HN
Training BL log(L)HN BH(N log2N + L logL) +BL log(L)H
Memory LHN +BLH BHL
Parallel Yes Yes
Inference HN2 HN

• Memory: O(HN2) to store A. O(LHN) to store the Krylov matrix. O(BLH) to store the
inputs/outputs

• Inference: O(HN2) to for MVM by A.

LSSL-fixed

• Parameters: O(HN) in the matrices C.

• Training: O(BL log(L)H) to convolve with u.

• Memory: O(LHN) to store the Krylov matrix (but cached, so no backprop). O(BLH) for
inputs/outputs.

• Inference: O(HN2) to for MVM by A.

LSSL

• Parameters: O(HN) for A,B,C,∆t.

• Training: BH · Õ(N + L) to compute Krylov, O(BL log(L)H) for the convolution.

• Memory: O(BHL) to store Krylov (and inputs/outputs).

• Inference: O(HN) to multiply xt[H,N] by A[H,N,N]

E.2 Further Simplification with Tridiagonal Matrices

The algorithm for Theorem 2 for general quasiseparable matrices is still difficult to implement in
practice, and we make a further simplification using a particular subclass of quasiseparable matrices.

Theorem 11. The class of N × N matrices SN = {P (D + T−1)Q} with diagonal D,P,Q and
tridiagonal T includes the original HiPPO-LegS, HiPPO-LegT, and HiPPO-LagT matrices [24].

Theorem 11 shows that a simple representation involving tridiagonal and diagonal matrices captures
all of the original HiPPO matrices. In particular, our LSSL implementation initializes A to be the
HiPPO-LegS matrix (Appendix B) and learns within the class defined by Theorem 11.

39

We note that the matrices in Theorem 11 are all 1-quasiseparable and in particular also contain
the HiPPO matrices for Gegenbauer and generalized Laguerre orthogonal polynomials derived
in Theorem 9. In fact, the notion of semiseparability, which is closely related to (and actually
is the predecessor of) quasiseparability, was originally motivated precisely to capture inverses of
tridiagonal matrices. Thus the structured class in Theorem 11 can be viewed as an approximation
of 3-quasiseparable matrices (Corollary 4.1) to 1-quasiseparable, which still contains many of the
HiPPO families of interest.

Proof. We simply show that each of these specific matrices can be represented in the proposed form.

HiPPO-LegT.

Let A denote the HiPPO-LegT transition matrix. Up to row/column scaling (i.e. left- and right-
multiplication by diagonal P and Q), we can write

Ank =

{
(−1)n−k if n ≤ k
1 if n ≥ k .

The main observation is that

A−1 =
1

2

1 1 0 . . . 0 0 0
−1 0 1 . . . 0 0 0
0 −1 0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 1 0
0 0 0 . . . −1 0 1
0 0 0 . . . 0 −1 1

HiPPO-LegS. The HiPPO-LegS matrix is

Ank = −

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

.

This can be written as −PA′Q where P = Q = diag((2n+ 1)
1
2) and

A′nk =

1 if n > k

0 if n < k

1− n
2n+1 if n = k

.

Finally, A′ = D + T−1 where D = −diag(n
2n+1) and T is the matrix with 1 on the main diagonal

and −1 on the subdiagonal.

HiPPO-LagT. The HiPPO-LagT matrix is

Ank = −

1 if n > k

0 if n < k
1
2 if n = k

.

This can be written as−P (D+T−1)Q where P = Q = I , D = − 1
2I , and T is the same tridiagonal

matrix as in the HiPPO-LegS case.

E.3 Implementation Details

In this section we provide several implementation details that are useful for implementing LSSLs in
practice.

Recall that one of the main primitives of LSSLs is the matrix-vector multiplication y = Ax (Sec-
tion 3.1, Appendix B), where A is the state matrix A discretized with step size ∆t using the bilinear

40

method (Appendix C.1.3). In Appendix E.3.1, we describe how this MVM can be performed with
simpler MVM primitives which we call the “forward difference” and “backward difference”.

However, if these MVM primitives are implemented in a specialized way for particular classes
of A matrices (i.e., not using atoms in a standard autograd framework), then we also need to
calculate several additional gradients by hand. Appendix E.3.2 shows that calculating gradients to
A,∆t, x during backpropagation can actually be reduced to those same forward/backward difference
primitives.

Finally, in the case whenA is the structured class of matrices in Theorem 11, Appendix E.2 shows how
to efficiently calculate those primitives using a black-box tridiagonal solver. Our code2 implements
all the algorithms in this section, with bindings to the cuSPARSE library for efficient tridiagonal
solving on GPU.

E.3.1 Matrix-vector Multiplication by the Bilinear Discretization

Bilinear Discretization The discrete state-space system is given by (4) and (5), re-written here for
convenience

xt = Axt−1 +But
yt = Cxt +Dut

where A is a function of A, δt and A is a function of A,B, δt. In particular, we define A to be
the matrix discretized using the bilinear method (Appendix C.1.3), and the system can be written
explicitly:

xt =

(
I − ∆tA

2

)−1((
I +

∆tA

2

)
xt−1 + ∆tBut

)
yt = Cxt +Dut

Thus it suffices to compute the maps

F (A,∆t, x) := (I + ∆tA)x

and

B(A,∆t, x) := (I + ∆tA)−1x.

We will call these functions the forward difference and backward difference maps, respectively. (The
Euler and backward Euler discretizations (Appendix C.1.2) are also known as the “forward difference”
and “backward difference” methods, which in the case of linear systems reduces down to the maps F
and B.)

E.3.2 Gradients through the Forward/Backward Difference Primitives

In this section we will let y = F (A,∆t, x) or y = B(A,∆t, x) denote the computation of interest,
L(y) denote a generic loss function, and dx, dy, . . . denote gradients to x, y, . . . (e.g., dx = ∂L(y)

∂x).

Derivatives of backward difference. First we have the standard ∂L(y)
∂x = ∂L(y)

∂y
∂y
∂x = ∂L(y)

∂y (I +

∆tA)−1. This corresponds to matrix-vector multiplication by (I + ∆A)−T . In other words, it can be
computed by the primitive B(AT ,∆t, dy).

Similarly, in order to compute ∂L(y)
∂∆t we require ∂y

∂∆t . We need the result ∂Y
−1

∂x = −Y −1 ∂Y
∂x Y

−1for
an invertible matrix Y [41, equation (59)]. Then

∂y

∂∆t
=
∂(I + ∆tA)−1

∂∆t
x

= −(I + ∆tA)−1 ∂(I + ∆tA)

∂∆t
(I + ∆tA)−1x

= −(I + ∆tA)−1A(I + ∆tA)−1x

2Available at https://github.com/HazyResearch/state-spaces

41

https://github.com/HazyResearch/state-spaces

and

∂L(y)

∂∆t
=
∂L(y)

∂y

∂y

∂∆t

= −
[
∂L(y)

∂y
(I + ∆tA)−1

]
A
[
(I + ∆tA)−1x

]
We can summarize this as follows. Let y = B(A,∆t, x) = (I + ∆tA)−1x and dy = ∂L(y)/∂y (as
a column vector). Then

y = B(A,∆t, x)

dx = B(AT ,∆t, dy)

d∆t = −dxTAy.

Derivatives of forward difference. The forward case is simpler. Let y = F (A,∆t, x) = (I +

∆tA)x. Then ∂y
∂x = I + ∆tA and ∂y

∂∆t = Ax. Thus

y = F (A,∆t, x)

dx = (I + ∆tA)T dy = F (AT ,∆t, dy)

d∆t = dyTAx.

E.3.3 Computing the Forward/Backward Difference for Tridiagonal Inverse Matrices

Theorem 11 uses the classes of matrices A = P (D + T−1)Q for diagonal D,P,Q and tridiagonal
T . We describe how the forward and backward difference MVMs can be performed efficiently for
this class of matrices by reducing to a black-box tridiagonal solver.

Forward difference. It is straightforward to compute

F (A,∆t, x) = (I + ∆t · P (D + T−1)Q)x = x+ ∆t · PDQx+ ∆t · PT−1Qx

in terms of multiplication by diagonal matrices x 7→ Dx and tridiagonal solving x 7→ T−1x.

Backward difference. We will explicitly rewrite the inverse of the matrix G = I + ∆t · P (D +
T−1)Q.

The core observation is to multiply G by a choice selection of matrices to cancel out the T−1 term:

TP−1GQ−1 = TP−1Q−1 + ∆tTD + ∆tI.

Rearranging yields

G−1 = Q−1(TP−1Q−1 + ∆tTD + ∆tI)−1TP−1.

Now note that the matrix in the middle is tridiagonal. Hence we have reduced MVM by G−1, i.e. the
backward difference problem, to a series of diagonal and tridiagonal MVMs (easy), and a tridiagonal
inverse MVM (a.k.a. a tridiagonal solve).

F Additional Experiments and Experiment Details

We provide additional experiments and ablations in Appendix F.1. Appendix F.2 describes our
training methodology in more detail for each dataset. The hyperparameters for all reported results are
in Table 11.

F.1 Additional Experiments

Missing Data on CharacterTrajectories. Table 8 has results for a setting considered in previous
work involving irregularly-sampled time series. LSSL is competitive with the best prior methods,
some of which were specialized to handle this setting.

42

Table 8: Test accuracies for irregularly sampled time series on the CharacterTrajectories dataset. p% denotes
percent of data that was randomly dropped.

Model 0% 30% 50% 70%

GRU-ODE [16] - 92.6 86.7 89.9
GRU-∆t [31] - 93.6 91.3 90.4
GRU-D [9] - 94.2 90.2 91.9
ODE-RNN [45] - 95.4 96.0 95.3
NCDE [31] - 98.7 98.8 98.6
CKCNN [44] 99.53 98.83 98.60 98.14
LSSL 99.30 98.83 98.83 98.37

Table 9: A and ∆t ablations on sCIFAR.

Learn ∆t Fixed ∆t

Learn A 82.70 80.34
Fixed A 80.61 80.18

Table 10: A and ∆t ablations on SC-Raw.

Learn ∆t Fixed ∆t

Learn A 96.07 95.20
Fixed A 91.59 90.51

A and ∆t ablations. Tables 9 and 10 show results on SpeechCommands-Raw and a smaller model
on sCIFAR, ablating that learning either the A or ∆t parameters provides a consistent performance
increase.

Finally, Fig. 2 plots the ∆t values at the beginning and end of training on the SpeechCommands-Raw
dataset, confirming that training ∆t does noticeably change their values to better model the data. In
particular, the ∆t values spread over time to cover a larger range of timescales.

F.2 Methodology

We describe our training procedure on each dataset for our model and any relevant baselines.

General All models and datasets used the Adam optimizer with a LR decay scheduler that reduced
LR by 5x upon validation plateau for 10 or 20 epochs. We fixed the batch size to 50 for the
MNIST/CIFAR datasets and 32 for other datasets, reducing if necessary to fit in memory.

For all models, we chose the hyperparameters that achieved the highest validation accuracy/RMSE
(values in Table 11).

Error Bars We note that the results in Section 5 do not include standard deviations for formatting
reasons, since most of the baselines were best results reported in previous papers without error bars.
As Section 6 noted, the LSSL was actually quite stable in performance and not particularly sensitive
to hyperparameters. We note that for every result in Section 5, the LSSL with error bars was at least
one standard deviation above the baseline results.

F.2.1 Sequential and Permuted MNIST

The model architecture of LSSL(-f) was fixed to the small architecture with 200K parameters
(Appendix B). Following [44], we fixed the learning rate scheduler to decay on plateau by with a
factor of 0.2, and the number of epochs to 200. We searched hyperparameters over the product of the
following learning rate values: {0.001, 0.002, 0.004, 0.01}, and dropout values: {0.1, 0.2}.

43

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

St
ar

t
Fin

al

Large Timescales

14000

16000

18000

20000

22000

24000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

St
ar

t
Fin

al
Small Timescales

500

600

700

800

Figure 2: We visualize the 32 largest and smallest ∆t values at the start and end of training for the first layer of
our state-of-the-art LSSL model on the Speech Commands Raw dataset. The plots visualize 1

∆t
, which can be

interpreted as the timescale at which they operate (Section 2). The plots confirm that LSSL does modify the dt
values in order to more appropriately model the speech data.

F.2.2 Sequential CIFAR

The model architecture of LSSL(-f) was fixed to the large architecture with 2M param-
eters (Appendix B). We searched over the product of the following learning rate values:
{0.001, 0.002, 0.004, 0.01, 0.02}, and dropout values: {0.2, 0.3, 0.4}.

F.2.3 BIDMC Healthcare

The BIDMC tasks aim at predicting three vital signs of a patient, respiratory rate (RR), heart rate
(HR), and oxygen saturation (SpO2), based on PPG and ECG signals. The clinical data is provided
by the Beth Israel Deaconess Medical Center. The PPG and ECG signals were sampled at 125Hz and
have a sequence length of 4000.

For this dataset, we fixed the small LSSL(-f) model (Appendix B). Following [47], we changed the
scheduler to a multistep scheduler that decays on fixed epochs, and trained for 500 epochs.

For our methods, we searched over the product of the following learning rate values:
{0.004, 0.01, 0.02}, and dropout values: {0.1, 0.2}.

Baseline parameters. For CKConv, we searched over ω0 ∈ [10, 50] following the guidelines of
Romero et al. [44] (best value ω0 = 20). Since we tuned the sensitive ω0, we fixed the learning rate
to 0.001 and dropout to 0.1 which was the default used in [44].

The transformer model we used was a vanilla transformer with a hidden dimension of 256, 8 attention
heads, 4 layers, and a feedforward dimension of 1024. We used a learning rate of 0.001 and a dropout
of 0. We tried a few variants, but no transformer model was effective at all.

44

F.2.4 CelebA

For these larger datasets, we reduced the size of the orderN and did not tie it toH . These experiments
were computationally heavy and we did not do any tuning (i.e., Table 11 are the only runs). The
model size was picked to train in a reasonable amount of time, and the learning rate for the first
attribute was picked based on general best hyperparameters for other datasets, and then reduced for
subsequent experiments on the other attributes.

Baseline parameters. For ResNet-18, we used the standard implementation with a learning rate of
0.001.

F.2.5 Speech Commands

For Speech Commands, we use the same dataset and preprocessing code from Kidger et al. [31],
Romero et al. [44]. We consider the two settings from Kidger et al. [31]: SC-Raw uses very long
time-series raw speech signals of 16000 timesteps each, while SC-MFCC uses standard MFCC
features of 161 timesteps.

For our models trained over the raw data, we searched over the product of the following learn-
ing rate values: {0.002, 0.004, 0.01}, and dropout values: {0.1, 0.2}. For our models trained
over the MFCC features, we searched over the product of the following learning rate values:
{0.0001, 0.001, 0.002, 0.004, 0.01}, and dropout values: {0.1, 0.2, 0.3, 0.4}.
Baseline parameters. To get more results for the strongest baselines on very long sequences in the
literature, we ran the UniCORNN [47] baseline on both Raw and MFCC variants, and the Neural
Rough Differential Equations [37] baseline on the Raw variant.

For UniCORNN trained over the raw data, we searched over multiple hyperparameters. Specifically,
we searched over alpha: {0, 10, 20, 30, 40}, ∆t values: {0.00001, 0.0001, 0.001, 0.01}, and learning
rate values: {0.0001, 0.0004, 0.001, 0.004}. However, since the method was not able to generalize to
the validation set for any hyperparameter combination, we used the authors’ reported hyperparameters
for the Eigenworms dataset as it also contains very long sequences (≈ 18000). In particular, we used
a learning rate of 0.02, hidden dimension of 256, 3 layers with dt values [0.0000281, 0.0343, 0.0343],
dropout of 0.1, and alpha of 0.

For UniCORNN trained over the MFCC features, we used the authors’ reported hyperparameters for
the MNIST dataset (again due to similarly sized sequence lengths), and further tuned the learning
rate over the values: {0.0001, 0.001, 0.005, 0.01, 0.02}, ∆t values: {0.01, 0.1}, and alpha values:
{10, 20, 30}.
The best model used a learning rate of 0.02, hidden dimension of 256, 3 layers with dt values of 0.19,
dropout of 0.1, and alpha of 30.65.

For NRDE on SC-Raw, we used depth 2, step size 4, hidden dimension 32, and 3 layers. Our results
were better than unofficial numbers reported in correspondence with the authors, so we did not tune
further.

F.2.6 Convergence Speed (Table 5)

The convergence table compared against logs directly from the corresponding baseline’s SoTA models
[44, 47], which were either released publicly or found in direct correspondence with the authors. To
generate the wall clock numbers, we ran the baseline models on the same hardware as our models
and extrapolated to the target epoch.

F.3 Hyperparameters

Best hyperparameters for all datasets are reported in Table 11.

45

Table 11: The values of the best hyperparameters found for each dataset.

Dataset Hyperparameters
Learning Rate Dropout Batch Size Epochs Depth Hidden Size H Order N Channels M

sMNIST 0.004 0.2 50 200 6 128 128 1
pMNIST 0.001 0.2 50 200 6 128 128 1
sCIFAR 0.02 0.3 50 200 4 256 256 4
BIDMC-RR 0.004 0.1 32 500 6 128 128 1
BIDMC-HR 0.01 0.2 32 500 6 128 128 1
BIDMC-SpO2 0.01 0.1 32 500 6 128 128 1
SC Raw 0.01 0.2 16 50 4 256 128 2
SC MFCC 0.004 0.4 32 100 6 128 128 1
sCelebA-Att. 0.002 0.1 32 200 3 256 128 4
sCelebA-MSO 0.002 0.1 32 200 3 256 128 4
sCelebA-Smil. 0.01 0.1 32 200 3 256 128 4
sCelebA-WL 0.002 0.1 32 200 3 256 128 4

46

