NAS-Bench-Suite-Zero:
Accelerating Research on Zero Cost Proxies

Arjun Krishnakumar®, Colin White*2, Arber Zela*', Renbo Tu*?,
Mahmoud Safari', Frank Hutter'*

LUniversity of Freiburg, 2Abacus.Al, 3University of Toronto,
4Bosch Center for Artificial Intelligence

Abstract

Zero-cost proxies (ZC proxies) are a recent architecture performance prediction
technique aiming to significantly speed up algorithms for neural architecture search
(NAS). Recent work has shown that these techniques show great promise, but cer-
tain aspects, such as evaluating and exploiting their complementary strengths, are
under-studied. In this work, we create NAS-Bench-Suite-Zero: we evaluate 13
ZC proxies across 28 tasks, creating by far the largest dataset (and unified codebase)
for ZC proxies, enabling orders-of-magnitude faster experiments on ZC proxies,
while avoiding confounding factors stemming from different implementations.
To demonstrate the usefulness of NAS-Bench-Suite-Zero, we run a large-scale
analysis of ZC proxies, including a bias analysis, and the first information-theoretic
analysis which concludes that ZC proxies capture substantial complementary infor-
mation. Motivated by these findings, we present a procedure to improve the perfor-
mance of ZC proxies by reducing biases such as cell size, and we also show that
incorporating all 13 ZC proxies into the surrogate models used by NAS algorithms
can improve their predictive performance by up to 42%. Our code and datasets are
available at https://github. com/automl/naslib/tree/zerocost|

1 Introduction

Algorithms for neural architecture search (NAS) seek to automate the design of high-performing
neural architectures for a given dataset. NAS has successfully been used to discover architectures
with better accuracy/latency tradeoffs than the best human-designed architectures [5, 9} 28] 138]). Since
early NAS algorithms were prohibitively expensive to run [58]], a long line of recent work has focused
on improving the runtime and efficiency of NAS methods (see [9} 49| for recent surveys).

A recent thread of research within NAS focuses on zero-cost proxies (ZC proxies) [IL, 23]. These
novel techniques aim to give an estimate of the (relative) performance of neural architectures from
just a single minibatch of data. Often taking just five seconds to run, these techniques are essentially
“zero cost” compared to training an architecture or to any other method of predicting the performance
of neural architectures [48]]. Since the initial ZC proxy was introduced [23|], there have been many
follow-up methods [[1,[16]. However, several recent works have shown that simple baselines such
as “number of parameters” and “FLOPS” are competitive with all existing ZC proxies across most
settings, and that most ZC proxies do not generalize well across different benchmarks, thus requiring
broader large-scale evaluations in order to assess their strengths [2, [25]]. A recent landscape overview
concluded that ZC proxies show great promise, but certain aspects are under-studied and their true

*Equal contribution. Work done while RT was part-time at Abacus.AlL Email to:
{krishnan, zelaa, fh}Ocs.uni-freiburg.de, colin@abacus.ai, renbo.tu@mail.utoronto.ca,
safarim@informatik.uni-freiburg.de.

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://github.com/automl/naslib/tree/zerocost

Examples: Examples: . q
Jacob. Cov. NAS-Bench-101 [Generahzatlon] [Mutual Info.]

EPE-NAS TransNAS-Bench-101
NAS-Bench-360 ooooo

Zen-Score

H(y | Zin'--vzik)
23 Benchmarks I:>

\%’ [Arch. Biases][NAS Integration]

[

[1.5M total evaluations]

Figure 1: Overview of NAS-Bench-Suite-Zero. We implement and pre-compute 13 ZC proxies on
28 tasks in a unified framework, and then use this dataset to analyze the generalizability, complemen-
tary information, biases, and NAS integration of ZC proxies.

potential has not been realized thus far [45]]. In particular, it is still largely unknown whether ZC
proxies can be effectively combined, and how best to integrate ZC proxies into NAS algorithms.

In this work, we introduce NAS-Bench-Suite-Zero: a unified and extensible collection of 13
ZC proxies, accessible through a unified interface, which can be evaluated on a suite of 28 tasks
through NASLib [30] (see Figure[I). In addition to the codebase itself, we release precomputed
ZC proxy scores across all 13 ZC proxies and 28 tasks, which can be used to speed up ZC proxy
experiments. Specifically, we show that the runtime of ZC proxy experiments such as NAS analyses
and bias analyses are shortened by a factor of at least 10% when using the precomputed ZC proxies in
NAS-Bench-Suite-Zero. By providing a unified framework with ready-to-use scripts to run large-
scale experiments, NAS-Bench-Suite-Zero eliminates the overhead for researchers to compare
against many other methods and across all popular NAS benchmark search spaces, helping the
community to rapidly increase the speed of research in this promising direction. Our benchmark
suite was very recently used successfully in the Zero Cost NAS Competition at AutoML-Conf 2022.
See Appendix |F for more details. In Appendix |Bl we give detailed documentation, including a
datasheet [[10], license, author responsibility, code of conduct, and maintenance plan. We welcome
contributions from the community and hope to grow the repository and benchmark suite as more ZC
proxies and NAS benchmarks are released.

To demonstrate the usefulness of NAS-Bench-Suite-Zero, we run a large-scale analysis of ZC
proxies: we give a thorough study of generalizability and biases, and we give the first information-
theoretic analysis. Interestingly, based on the bias study, we present a concrete method for
improving the performance of a ZC proxy by reducing biases (such as the tendency to favor larger
architectures or architectures with more conv operations). This may have important consequences
for the future design of ZC proxies. Furthermore, based on the information-theoretic analysis, we
find that there is high information gain of the validation accuracy when conditioned on multiple
ZC proxies, suggesting that ZC proxies do indeed compute substantial complementary information.
Motivated by these findings, we incorporate all 13 proxies into the surrogate models used by NAS
algorithms [44, 47], showing that the Spearman rank correlation of the surrogate predictions can
increase by up to 42%. We show that this results in improved performance for two predictor-based
NAS algorithms: BANANAS [47] and NPENAS [44].

Our contributions. We summarize our main contributions below.

* We release NAS-Bench-Suite-Zero, a collection of benchmarks and ZC proxies that unifies
and accelerates research on ZC proxies — a promising new sub-field of NAS — by enabling
orders-of-magnitude faster evaluations on a large suite of diverse benchmarks.

* We run a large-scale analysis of 13 ZC proxies across 28 different combinations of search spaces
and tasks by studying the generalizability, bias, and mutual information among ZC proxies.

* Motivated by our analysis, we present a procedure to improve the performance of ZC proxies by
reducing biases, and we show that the complementary information of ZC proxies can significantly
improve the predictive power of surrogate models commonly used for NAS.

Table 1: List of ZC proxies in NAS-Bench-Suite-Zero. Note that “neuron-wise” denotes whether
the total score is a sum of individual weights.

Name Data-dependent Neuron-wise Type In NAS-Bench-Suite-Zero
epe-nas [21] X Jacobian
fisher [42] Pruning-at-init
flops [25] Baseline
grad-norm [1] Pruning-at-init
grasp [43] Pruning-at-init
12-norm [1] X X Baseline
jacov [23] X Jacobian
nwot [23] X Jacobian
params [25] X Baseline
plain [1] Baseline
snip [14] Pruning-at-init
synflow [39] X Pruning-at-init
zen-score [16] X X Piece. Lin.

2 Background and Related Work

Given a dataset and a search space — a large set of neural architectures — NAS seeks to find the
architecture with the highest validation accuracy (or the best application-specific trade-off among
accuracy, latency, size, and so on) on the dataset. NAS has been studied since the late 1980s [24, 40]]
and has seen a resurgence in the last few years [18} 58], with over 1000 papers on NAS in the last
two years alone. For a survey of the different techniques used for NAS, see [9,49].

Many NAS methods make use of performance prediction. A performance prediction method is
any function which predicts the (relative) performance of architectures, without fully training the
architectures [48]. BRP-NAS [8]], BONAS [34], and BANANAS [47] are all examples of NAS
methods that make use of performance prediction. While performance prediction speeds up NAS
algorithms by avoiding fully training neural networks, many still require non-trivial computation time.
On the other hand, a recently-proposed line of techniques, zero-cost proxies (ZC proxies) require just
a single forward pass through the network, often taking just five seconds [23]].

Zero-cost proxies. The original ZC proxy estimated the separability of the minibatch of data into
different linear regions of the output space [23]]. Many other ZC proxies have been proposed since
then, including data-independent ZC proxies [1} [15} 16, 139], ZC proxies inspired by pruning-at-
initialization techniques [1, 14} |39} 43]], and ZC proxies inspired by neural tangent kernels [4, [35]].
See Table([T]for a full list of the ZC proxies we use in this paper. We describe theoretical ZC proxy

results in Appendix

Search spaces and tasks. In our experiments, we make use of several different NAS benchmark
search spaces and tasks. NAS-Bench-101 [54] is a popular cell-based search space for NAS research.
It consists of 423 624 architectures trained on CIFAR-10. The cell-based search space is designed
to model ResNet-like and Inception-like cells [12}137]. NAS-Bench-201 [[6] is a cell-based search
space consisting of 15 625 architectures (6 466 non-isomorphic) trained on CIFAR-10, CIFAR-100,
and ImageNet16-120. NAS-Bench-301 [560] is a surrogate NAS benchmark for the DARTS search
space [[19]. The search space consists of normal cell and reduction cells, with 10*® total architectures.
TransNAS-Bench-101 [7] is a NAS benchmark consisting of two different search spaces: a “micro”
(cell-based) search space of size 4 096, and a macro search space of size 3 256. The architectures are
trained on seven different tasks from the Taskonomy dataset [55)]. NAS-Bench-Suite [22] collects
these search spaces and tasks within the unified framework of NASLib [30]. In this work, we extend
this collection by adding two datasets from NAS-Bench-360 [41], SVHN, and four datasets from
Taskonomy. NAS-Bench-360 is a collection of diverse tasks that are ready-to-use for NAS research.

Large-scale studies of ZC proxies. A few recent works [2,[25]145]/48]] investigated the performance
of ZC proxies in ranking architectures over different NAS benchmarks, showing that the relative
performance highly depends on the search space, but none study more than 12 total tasks, and none
make the ZC proxy values publicly available. Two predictor-based NAS methods have recently
been introduced: OMNI [48] and ProxyBO [33]]. However, OMNI only uses a single ZC proxy, and

Table 2: Overview of ZC proxy evaluations in NAS-Bench-Suite-Zero. * Note that EPE-NAS is
only defined for classification tasks [21]].

Search space Tasks Num. ZC proxies Num. architectures Total ZC proxy evaluations
NAS-Bench-101 1 13 10000 130000
NAS-Bench-201 3 13 15625 609 375
NAS-Bench-301 1 13 11221 145873
TransNAS-Bench-101-Micro 7 12* 3256 273504
TransNAS-Bench-101-Macro 7 12* 4096 344 064
Add’l. 201, 301, TNB-Micro 9 13 600 23400
Total 28 13 44798 1526216

while ProxyBO uses three, the algorithm dynamically chooses one in each iteration (so individual
predictions are made using a single ZC proxy at a time). Recently, NAS-Bench-Zero was introduced
[2]], a new benchmark based on popular computer vision models ResNet [[12] and MobileNetV2
[31], which includes 10 ZC proxies. However, the NAS-Bench-Zero dataset is currently not publicly
available. For more related work details, see Appendix [C|

Only two prior works combine the information of multiple ZC proxies together in architecture
predictions [1 2] and both only use the voting strategy to combine at most four ZC proxies. Our
work is the first to publicly release ZC proxy values, combine ZC proxies in a nontrivial way, and
exploit the complementary information of 13 ZC proxies simultaneously.

3 Overview of NAS-Bench-Suite-Zero

In this section, we give an overview of the NAS-Bench-Suite-Zero codebase and dataset, which
allows researchers to quickly develop ZC proxies, compare against existing ZC proxies across diverse
datasets, and integrate them into NAS algorithms, as shown in Sections E] and@

We implement all ZC proxies from Table in the same codebase (NASLib [30Q]). For all ZC proxies,
we use the default implementation from the original work. While this list covers 13 ZC proxies,
the majority of ZC proxies released to date, we did not yet include a few other ZC proxies, for
example, due to requiring a trained supernetwork to make evaluations [4}, 35] (therefore needing to
implement a supernetwork on 28 benchmarks), implementation in TensorFlow rather than PyTorch
[26]], or unreleased code. Our modular framework easily allows additional ZC proxies to be added to
NAS-Bench-Suite-Zero in the future.

To build NAS-Bench-Suite-Zero, we extend the collection of NASLib’s publicly available bench-
marks, known as NAS-Bench-Suite [22]]. This allows us to evaluate and fairly compare all ZC
proxies in the same framework without confounding factors stemming from different implemen-
tations, software versions or training pipelines. Specifically, for the search spaces and tasks, we
use NAS-Bench-101 (CIFAR-10), NAS-Bench-201 (CIFAR-10, CIFAR-100, and ImageNet16-120),
NAS-Bench-301 (CIFAR-10), and TransNAS-Bench-101 Micro and Macro (Jigsaw, Object Classifi-
cation, Scene Classification, Autoencoder) from NAS-Bench-Suite. We add the remaining tasks from
TransNAS-Bench-101 (Room Layout, Surface Normal, Semantic Segmentation), and three tasks each
for NAS-Bench-201, NAS-Bench-301, and TransNAS-Bench-101-Micro: Spherical-CIFAR-100,
NinaPro, and SVHN. This yields a total of 28 benchmarks in our analysis. For all NAS-Bench-201
and TransNAS-Bench-101 tasks, we evaluate all ZC proxy values and the respective runtimes, for
all architectures. For NAS-Bench-301, we evaluate on all 11221 randomly sampled architectures
from the NAS-Bench-301 dataset, due to the computational infeasibility of exhaustively evaluating
the full set of 10'® architectures. Similarly, we evaluate 10000 architectures from NAS-Bench-101.
Finally, for Spherical-CIFAR-100, NinaPro, and SVHN, we evaluate 200 architectures per search
space, since only 200 architectures are fully trained for each of these tasks. See Table 2]

We run all ZC proxies from Table 1| on Intel Xeon Gold 6242 CPUs and save their evaluations in
order to create a queryable table with these pre-computed values. We use a batch size of 64 for all ZC
proxy evaluations, except for the case of TransNAS-Bench-101: due to the extreme memory usage of
the Taskonomy tasks (> 30GB memory), we used a batch size of 32. The total computation time for
all 1.5M evaluations was 1100 CPU hours.

Spearman rank correlations between ZC proxy values and validation accuracies

plain
grasp
fisher
epe_nas . -0.1 -0. X . 0.00 0.01 X
grad_norm | -0. -0.! 0.31 m 0.
snip . b -0. B8 0.20 -0.14
synflow . . -0. . . 0.00 0.27
12 _norm H 0.08 = -0.03 N i -020 0.28
params [REX 0.16 -0.00 A . -0.18 0.32
zen b 0.10 -0.04 ¥ I -0.01 0.27
jacov L 0.07 0.08) 0.45 0.19
flops [EUK 0.79 0.48 . . 0.76 0.85
nwot \ 0.83 0.63) 0.67 0.89

< o » N o \3) » " N\ % < \3 o o
G o o @‘* P @\,\@ R g@@ e S
o™ % G 0 @ N (@07 @ 0 F ¢ oV 0 oV o™ o g o8 @8
O G e SR WG G w8 o o e @ KL
AW o o - ~ AQ> oD W @5” o> o> o> ()2 o) Sla
JECEIC SR JRCSR PR I e ey o

Figure 2: Spearman rank correlation coefficient between ZC proxy values and validation accuracies,
for each ZC proxy and benchmark. The rows and columns are ordered based on the mean scores
across columns and rows, respectively.

Speedups and recommended usage. The average time to compute a ZC proxy across all tasks is
2.6 seconds, and the maximum time (computing grasp on TNB-Macro Autoencoder) is 205 seconds,
compared to 10~° seconds when instead querying the NAS-Bench-Suite-ZeroAPI.

When researchers evaluate ZC proxy-based NAS algorithms using queryable NAS benchmarks, the
bottleneck is often (ironically) the ZC proxy evaluations. For example, for OMNI [48] or ProxyBO
[33] running for 100 iterations and 100 candidates per iteration, the total evaluation time is roughly 9
hours, yet they can be run on NAS-Bench-Suite-Zero in under one minute. Across all experiments
done in this paper (mutual information study, bias study, NAS study, etc.), we calculate that using
NAS-Bench-Suite-Zero decreases the computation time by at least three orders of magnitude. See
Appendix [D.4] for more details.

Since NAS-Bench-Suite-Zero reduces the runtime of experiments by at least three orders
of magnitude (on queryable NAS benchmarks), we recommend researchers take advantage of
NAS-Bench-Suite-Zero to (i) run hundreds of trials of ZC proxy-based NAS algorithms, to reach
statistically significant conclusions, (ii) run extensive ablation studies, including the type and usage
of ZC proxies, and (iii) increase the total number of ZC proxies evaluated in the NAS algorithm.
Finally, when using NAS-Bench-Suite-Zero, researchers should report the real-world time NAS
algorithms would take, by adding the time to run each ZC proxy evaluation (which can be queried in
NAS-Bench-Suite-Zero) to the total runtime of the NAS algorithm.

4 Generalizability, Mutual Information, and Bias of ZC Proxies

In this section, we use NAS-Bench-Suite-Zero to study concrete research questions relating to the
generalizability, complementary information, and bias of ZC proxies.

4.1 RQ 1: How well do ZC proxies generalize across different benchmarks?

In Figure 2] for each ZC proxy and each benchmark, we compute the Spearman rank correlation
between the ZC proxy values and the validation accuracies over a set of 1000 randomly drawn
architectures (see Appendix [D]for the full results on all benchmarks). Out of all the ZC proxies, nwot
and flops have the highest rank correlations across all benchmarks. On some of the benchmarks,
such as TransNAS-Bench-101-Micro Autoencoder and Room Layout, all of the ZC proxies exhibit
poor performance on average, while on the widely used NAS-Bench-201 benchmarks, almost all of
them perform well. Several methods, such as snip and grasp, perform well on the NAS-Bench-201
tasks, but on average are outperformed by params and f1lops on the other benchmarks.

Although no ZC proxy performs consistently across all benchmarks, we may ask a related question:
is the performance of all ZC proxies across benchmarks correlated enough to capture similarities
among benchmarks? In other words, can we use ZC proxies as a tool to assess the similarities among
tasks. This is particularly important in meta-learning or transfer learning, where a meta-algorithm
aims to learn and transfer knowledge across a set of similar tasks. To answer this question, we

compute the Pearson correlation of the ZC proxy scores on each pair of benchmarks. See Figure 3]
As expected, benchmarks that are based on the same or similar search spaces are highly correlated
with respect to the ZC proxy scores. For example, we see clusters of high correlation for the
Trans-NAS-Bench-101-Macro benchmarks, and the NAS-Bench-201 benchmarks.

Answer to RQ 1: Only a few ZC proxies generalize well across most benchmarks and tasks. However,
ZC proxies can be used to assess similarities across benchmarks. This suggests the potential future
direction of incorporating them as task features in a meta-learning setting [20].

4.2 RQ 2: Are ZC proxies complementary with respect to explaining validation accuracy?

While Figure [2] shows the

perfor}nance of each indi- Correlation between benchmarks based on ZC proxy values

vidual ZC Proxy, now we P 0.33 041 093 P 0.45 029 0.16 061 0.57 0.50
consider the combined per- \\w\g& 32 1.00 0.99 092 0.49 041 0.38 [0.14 HU 34 0.38 051 044 0.35
formance of mu]tip]e 7C ,\%@XG@Q 99 1.00 0.96 051 0.3 0.37 0.12 EELRGNE] 0.35 040 051 0.44 0.34
prox1es. If ZC pI'OXlCS mea- ‘\\a’lﬁy < 0.96 1.00 0.58 0.21 0.36 '0.10 0 46 048 0.55 047 0.35
. . O
sure different characteris- \\\9‘5\'& © 0.51 058 1.00 NENGETE 0.45 047 038 0.68 062 0.55
. . &
tics of architectures, then a & BREIOZIEYT) oo 057 00| 070 [080) 065 | 0:64 048 055 052
. . o .
NAS algorlthm can e)fpl()lt &« > © 036 087 1.00 095 082 55 0.57 0.40 046 0.42
their complementary infor- @& o
. . N o 090 095 1.00 0.94 [0.42]0.48 0.47 0.37 0.46 0.45
mation in order to yield — @ &
. . RO RN R SRR] 0.79 082 0.94 1.00 (0481 032 030 023 033 0,57
improved results. While % o
prior work [[Zl, com- /\(‘@@X}.\x P\\@@\L 030 0.12 0.18 1.00 0.33 0.19 0.52 0.46 0.50
putes the correlation among @‘”‘mk ‘\st“‘“» ! 046 066 055 048 032 1.00 0.9 0.57 049
. . N> ’
palrs Of ZC pl‘OXlGS, H our B\d ngs@ (,\A@“ 0.48 0.38 0.64 057 047 030 0.19 0.96 0.43 0.35
true goal is to assess the “\%\x‘“"@;&xﬁ"w\ 0.51 055 068 049 040 0.37 0.23 0.52 0.51 0.39 100 097 095 092 061 068
complementary information & ‘m@“’x o 044 0.47 062 0.55 0.46 046 0.33 046 0.57 043 0.9 0 099 0.90 056 0.72
. . o s
of ZC proxies with respect < N V&Qe& 0.34 035 055 052 042 045 0.37 050 049 0. 99 1.00 0.92 056 0.67
pOT @)

to explaining the ground- — ~%

truth validation accuracy. & &
. X3

Furthermore, we wish to F

041 043 059 0.26 0.17 0.150.07 O. 043 0. 092 1.00 0.73 0.71

0.36 0.38 0.20 0.32 0.26 0.19 0.12 0. 0.46 0. 0.61 0.56 0.56 0.73 1.00 0.80 0.89

Psg&’ o ¥ . 0.46 0.52 0.42 0.56 0.51 0.42 0.26 0. 0.84 0. 0.68 0.72 0.67 0.71 0.80 1.00 0.93
measure the complementary ¥ "
. . < ‘,&LV\“ & 0.12 0.37 0.38 0.45 0.35 0.50 0.39 0.32 0.22 0.30 0.73 0.69 0.72 0.72 0.69 0.79 0.89 0.93 1.00
information of more than &% o . S— 5 S .
just two ZC proxies at a ST 0% o o T o e A e
] P A~ o ‘eﬂ“ 8> »@\ & 0 0 0 ® x@* o v& 02 07 (80 0 \,\P.L o oY Q
. F h ® W W eF W W XL%\‘\:\X\’\AXL& o @L ,»(} \A\’S’% }\\x \,\“L o "S}\, \N*(' \‘&
time. or this, we turn to “\%@ P ‘\%@ /\\\‘aﬂ%@x/ $@ \@Bx ‘\%@ e “\‘a %@x \@m o

information theoretic mea-
sures: by treating the valida-
tion accuracy and ZC proxy
values as random variables,
we can measure the entropy
of the validation accuracy conditioned on one or more ZC proxies, which intuitively tells us the
information that one or more ZC proxies reveal about the validation accuracy.

Figure 3: Pearson correlation coefficient between ZC proxy scores on
pairs of benchmarks. The entries in the plot are ordered based on the
mean score across each row and column.

Formally, given a search space .9, let) denote the uniform distribution of validation accuracies over
the search space, and let y denote a random sample from). Similarly, for a ZC proxy ¢ from 1 to 13,
let Z; denote the uniform distribution of the ZC proxy values, and let z; denote a random sample
from Z,. Let H(-) denote the entropy function. For all pairs z;, z; of ZC proxies, we compute the
conditional entropy H(y | z;,2;), as well as the information gain H(y | z;) — H(y | zi,2;). See
Figure[d] The entropy computations are based on 1000 randomly sampled architectures, using 24-bin
histograms for density smoothing (see Appendix D] for more details). We see that synflow and
plain together give the most information about the ground truth validation accuracies, due to their
substantial complementary information.

Now we can ask the same question for k tuples of ZC proxies. Given an ordered list of & ZC proxies
Ziys Zigs - - - %iy,» We define the information gain of z;, conditioned on y as follows:

IG(z:,) = H(y | ziyy -y 2ip_y) —HW | Ziyy- oy 2ip)- (1)
Intuitively, IG computes the marginal information we learn about y when z;, is revealed, assuming
we already knew the values of z;,,...,2;, ,. We compare the conditional entropy vs. number of

2For completeness, we re-run that experiment and include the results in Appendix@

Pairwise conditional entropy on NB301-CF10 Information gain on NB301-CF10

epe_nas [KEVE 198 210 190 1.84 185 1. . i 252 255 epe_nas -0. 4 131 152 157
synflow 1. KXLN 217 205 210 208 2. PN 236 238 255 258 synflow -0.f 123 135 130 1
plain 2.)i 33 5 5 5 2) . 265 2. plain
nwot 1. i RN 3.24 |21 . . . 5 .40 248 2. nwot
zen 1. X X 51 3.25 ¥ ¥ 5 39 246 2. zen
flops 1. ! 3 g 2 . . L K 248y 2. flops
12_norm 1.87 208 2.14 X] . 40 248 2. 12_norm
params 1. X ! 324 (PR 40 2.47 params
snip |2 ; 16 215 217 2.16 B 273 2. snip
grad_norm) X X s 8 .03 3.46 273) 2. grad_norm
fisher (X E I X X : 2 2 . 86 344 293 fisher
grasp [. I X X X X . X X 343 3 grasp

jacov P& . 2 L ki E 8 2 e E 3.10 3 jacov

% a0V @ (O et IR P R O 0 oV 2® ooV 0 GO e ° @8 0 RN
0@ Q0% 30" O 4% (o o e G (@ o @ Q0% 3B O 468 qof® o O (@ o
o2 o © oS & g""dy WS o2 o © oS & g‘"’é:\ R
NB301-CF10 NB201-CF100 TNB101_MACRO-autoencoder
35 3.0
—— random ordering —— random ordering 35 —— random ordering
33'0 ~—— greedy ordering 225 —— greedy ordering 230 ~——— greedy ordering
225 —— minimum k-tuple) —— minimum k-tuple 2 —— minimum k-tuple
€ €20 25
o 2.0 o o
= = T 20
c £15 e
£18 2 g5
210 210 210
3 8 st
0.5 05 05
0.0 0.0
123 45 6 7 8 9 10111213 1.2 3 45 6 7 8 9 10 111213 12 3 4 5 6 7 8 9 10 11 12
Number of ZC proxies Number of ZC proxies Number of ZC proxies

Figure 4: Given a ZC proxy pair (3, j), we compute the conditional entropy H (y | 2;, z;) (top left),
and information gain H(y | z;) — H(y | i, z;) (top right). Conditional entropy H(y | zi,, ..., 2i,)
vs. k, where the ordering z;,, ..., %;, is selected using three different strategies. The minimum
k-tuple and greedy ordering significantly overlap in the first two figures (bottom).

ZC proxies for three different orderings of the ZC proxies. The first is a random ordering (averaged
over 100 random trials), which tells us the average information gain when iteratively adding more
ZC proxies. The second is a greedy ordering, computed by iteratively selecting the ZC proxy that
maximizes IG(z;,), for k from 1 to 13. The final plot exhaustively searches through (1,5’) sets to find
the k proxies which minimize H (y | z;,, - . . 2,), for k from 1 to 13 (note that this may not define a
valid ordering). See Figure[d] and Appendix [D|for the complete results. We see that there is very
substantial information gain when iteratively adding ZC proxies, even if the ZC proxies are randomly
chosen. Optimizing the order of adding ZC proxies yields much higher IG in certain benchmarks
(e.g., NB201-CF100), and a greedy approach is shown to be not far from the optimum.

Answer to RQ 2: In some benchmarks, we see substantial complementary information among ZC
proxies. However, the degree of complementary information depends heavily on the NAS benchmark
at hand. This suggests that we cannot always expect ZC proxies to yield complementary information,
but a machine learning model might be able to identify useful combinations of ZC proxies.

4.3 RQ 3: Do ZC proxies contain biases, such as a bias toward certain operations or sizes,
and can we mitigate these biases?

Identifying biases in ZC proxies can help explain weaknesses and facilitate the development of
higher-performing ZC proxies. We define bias metrics and study ZC proxy scores for thousands
of architectures for their correlation with biases. This systematic approach yields generalizable
conclusions and avoids the noise from assessing singular architectures. We consider the following
biases: conv:pool (the numerical advantage of convolution to pooling operations in the cell), cell size
(the number of non-zero operations in the cell), num. skip connections, and num. parameters.

For each search space, ZC proxy, and bias, we compute the Pearson correlation coefficient between
the ZC proxy values and the bias values. We consider all 44K architectures referenced in Table 2]
See Table [3]and Appendix D] for the full results. We find that many ZC proxies exhibit biases to

Table 3: Pearson correlation coefficients between predictors and bias metrics (in bold) on different
datasets. For example, for Cell size on NB201-CF100, snip has a correlation of -0.04 (indicating
very little bias), while synflow has a correlation of 0.57 (meaning it favors larger architectures).

Name Conv:pool Cell size Num. skip connections Num. parameters
NB201-CF10 | NB301-CF10 | NB201-CF100 | NB201-IM | NB301-CF10 | NB201-CF100 | NB101-CF10 | NB301-CF10

epe-nas 0.05 -0.02 0.35 0.35 0.01 0.09 -0.02 -0.01
fisher 0.05 0.01 -0.03 -0.05 -0.15 -0.03 0.11 0.17
flops 0.59 0.70 0.30 0.30 -0.35 -0.30 1.00 0.99
grad-norm 0.35 0.27 -0.04 -0.05 -0.26 -0.26 0.30 0.51
grasp 0.01 0.28 -0.01 0.01 0.03 0.00 -0.03 0.24
12-norm 0.87 0.76 0.41 0.41 -0.33 -0.41 0.62 0.99
jacov 0.05 -0.11 0.35 0.35 0.08 0.09 -0.18 -0.10
nwot 0.06 0.78 0.28 0.28 -0.21 0.06 0.74 0.95
params 0.61 0.78 0.29 0.29 -0.32 -0.29 1.00 1.00
plain -0.33 -0.45 0.14 0.14 0.02 0.02 0.03 -0.45
snip 0.37 0.27 -0.04 -0.04 -0.28 -0.28 0.44 0.50
synflow 0.53 0.41 0.57 0.58 -0.20 -0.14 0.57 0.62
zen-score 0.05 0.75 0.35 0.35 -0.33 0.09 0.68 0.99
val-acc | 0.36 | 0.45 | 0.35 | 0.43 | 0.13 | -0.06 | 0.09 | 0.47

various degrees. Interestingly, some biases are consistent across search spaces, while others are not.
For example, 12-norm has a conv:pool bias on both NB201-C10 and NB301-C10, while nwot has a
strong conv:pool bias on NB301-C10 and almost no bias on NB201-C10. While validation accuracy
does not correlate with number of skip connections, most ZC proxies in the benchmark exhibit a
negative bias towards this metric.

Next, we present a procedure for removing these biases. For this study, we use ZC proxies that had
large biases in Table[3] and we attempt to answer the following questions: (/) can we remove these
biases, and (2) if we can remove the biases, does the performance of ZC proxies improve?

Given a search space of architectures A, let f : A — R denote a ZC proxy (a function that takes as
input an architecture, and outputs a real number). Furthermore, let b : A — R denote a bias measure
such as “cell size”. Recall that Table [3]showed that the correlation between a ZC proxy f and a bias
measure b may be high. For example, the correlation between synflow and “cell size” is high, which
means using synflow would favor larger architectures. To reduce bias, we use a simple heuristic:

1

f/(a):f(a)'m- 2

In this expression, C' is a constant that we can tune. In deciding on a strategy to tune C', we make two
observations. First, for most bias measures, the bias of val_acc is not zero, which means completely
de-biasing ZC proxies could hurt performance. Second, depending on the application, we may want
to fully remove the bias of a ZC proxy, or else remove bias only insofar as it improves performance.

Therefore, we test three different strategies to tune C by brute force: (/) “minimize”, to minimize
bias, (2) “equalize”, to match the bias with the bias of val_acc, and (3) “performance”, to optimize
the performance (Pearson correlation). See Table E] for the results.

We find that using the “performance” strategy, we are able to increase the performance of ZC proxies
by reducing their bias. Furthermore, the “equalize” strategy sometimes provide good results on par
with the “performance” strategy. This suggests a good bias mitigation strategy when we do not know
the ground truth but have information on how the ground truth correlations with bias. This may have
important consequences for the future design of ZC proxies.

Answer to RQ 3: Many ZC proxies do exhibit different types of biases to various degrees, but the
biases can be mitigated, thereby improving performance.

5 Integration into NAS

The findings in Section showed that ZC proxies contain substantial complementary information,
conditioned on the ground-truth validation accuracies. However, no prior work has combined more
than four ZC proxies, or used a combination strategy other than a simple vote. In this section, we
combine and integrate all 13 ZC proxies into predictor-based NAS algorithms by adding the ZC
proxies directly as features into the surrogate (predictor) models.

Table 4: Bias mitigation strategies tested on the ZC proxies with the most biases. We test three
different strategies by tuning C' from Equation [2|for different objectives: minimize (tune C' to mini-
mize bias), equalize (tune C' to match ground truth’s correlation with bias metric), and performance
(tune C' to maximize correlation with ground truth). Bias and performance are Pearson correlation
coefficients of the proxy score with the bias metric and with the ground truth accuracy, respectively.
C is searched between -10 and 1000.
bias original original new new
metric bias perf. bias perf.
0.00 0.10 minimize
12-norm NB201-CF10 conv:pool 0.87 0.42 0.37 0.11 equalize
0.70 044 performance
0.00 0.03 minimize
nwot NB301-CF10 conv:pool 0.78 0.49 0.29 0.14 equalize
0.78 0.49 performance
0.01 0.64 minimize
synflow NB201-CF100 cell size 0.57 0.68 0.35 0.71 equalize
0.35 0.71 performance
0.01 0.62 minimize
synflow NB201-IM cell size 0.58 0.76 043 0.76 equalize
046 0.76 performance
-0.01 0.06 minimize
flops NB301-CF10 num. skip -0.35 0.43 0.12 -0.05 equalize
-0.35 043 performance

ZC proxy dataset strategy

We run experiments on two common predictor-based NAS algorithms: BANANAS, based on Bayesian
optimization [47], and NPENAS, based on evolution [44]. Both algorithms use a model-based
performance predictor: a model that takes in an architecture encoding as features (e.g., the adjacency
matrix encoding [46]), and outputs a prediction of that architecture’s validation accuracy. The model
is retrained throughout the search algorithm, as more and more architectures are fully trained. Recent
work has shown that boosted trees such as XGBoost achieve strong performance in NAS [48] 156].

Experimental setup. For both algorithms, we use the NASLib implementation [30] and default
parameters reported in prior work [48]]. First, we assess the standalone performance of XGBoost
when ZC proxies are added as features in addition to the architecture encoding, by randomly
sampling 100 training architectures and 1000 disjoint test architectures, and computing the Spearman
rank correlation coefficient between the set of predicted validation accuracies and the ground-truth
accuracies. On NAS-Bench-201 CIFAR-100, averaged over 100 trials, the Spearman rank correlation
(£ std. dev.) improves from 0.640 + 0.0420 to 0.908 4+ 0.012 with the addition of ZC proxies,
representing an improvement of 41.7%. Even more surprisingly, using the ZC proxies alone as
features without the architecture, results in a Spearman rank correlation of 0.907 £ 0.013, implying
that the ZC proxies subsume nearly all information contained in the architecture encoding itself.
We present the full results in Appendix [E] These results show that an ensemble of ZC proxies can
substantially increase the performance of model-based predictors.

Similar to the previous experiment, we run both NAS algorithms three different ways: using only the
encoding, only the ZC proxies, and both, as features of the predictor. Each algorithm is given 200
architecture evaluations, and we plot performance over time, averaged over 400 trials. See Figure[3]
for the results of BANANAS, and Appendix [E] for the full results. We find that the ZC proxies give
the NAS algorithms a boost in performance, especially in the early stages of the search.

6 Conclusions, Limitations, and Broader Impact

In this work, we created NAS-Bench-Suite-Zero: an extensible collection of 13 ZC proxies
(covering the majority that currently exist), accessible through a unified interface, which can be
evaluated on a suite of 28 NAS benchmark tasks. In addition to the codebase, we release precomputed
ZC proxy scores across all 13 ZC proxies and 28 tasks, giving 1.5 million total ZC proxy evaluations.
This dataset can be used to speed up ZC proxy-based NAS experiments, e.g., from 9 hours to 4

NB201 CF100 NB201 IMGNT NB301 CF10

47.0
— Encoding — Encoding 94.4{ — Encoding

725 zcps 165 zCPs zcps
s —— Encoding + ZCPs s —— Encoding + ZCPs Seasl — Encoding + ZCPs
< 720 < 46,0 <
> > >

9.2

& 715 & 455 3
s e e
3 =1 3
[} o O 941
O 71.0 O 45.0 O
< < <<

705 445 24.0

70.0 44.0 93.9

10° 10° 10° 10°
Time (s) Time (s) Time (s)

Figure 5: Performance of BANANAS with and without ZC proxies as additional features in the
surrogate model. Each curve shows the mean and standard error across 400 trials.

minutes (see Section [3). Overall, NAS-Bench-Suite-Zero eliminates the overhead in ZC proxy
research, with respect to comparing against different methods and across a diverse set of tasks.

To motivate the usefulness of NAS-Bench-Suite-Zero, we conducted a large-scale analysis of
the generalizability, bias, and the first information-theoretic analysis of ZC proxies. Our empirical
analysis showed substantial complementary information of ZC proxies conditioned on validation
accuracy, motivating us to ensemble all 13 into predictor-based NAS algorithms. We show that using
several ZC proxies together significantly improves the performance of the surrogate models used in
NAS, as well as improving the NAS algorithms themselves.

Limitations and future work. Although our work makes substantial progress towards motivating
and increasing the speed of ZC proxy research, there are still some limitations of our analysis. First,
our work is limited to empirical analysis. However, we discuss existing theoretical results in Appendix
[C.1] Furthermore, there are some benchmarks on which we did not give a comprehensive evaluation.
For example, on NAS-Bench-301, we only computed ZC proxies on 11 000 architectures, since the
full space of 10'® architectures is computationally infeasible. In the future, a surrogate model [53} [56]]
could be trained to predict the performance of ZC proxies on the remaining architectures. Finally,
there is very recent work on applying ZC proxies to one-shot NAS methods [52], which tested one
ZC proxy at a time with one-shot models. Since our work motivates the ensembling of ZC proxies,
an exciting problem for future work is to incorporate 13 ZC proxies into the one-shot framework.

Broader impact. The goal of our work is to make it faster and easier for researchers to run
reproducible, generalizable ZC proxy experiments and to motivate further study on exploiting the
complementary strengths of ZC proxies. By pre-computing ZC proxies across many benchmarks,
researchers can run many trials of NAS experiments cheaply on a CPU, reducing the carbon footprint
of the experiments [[L1}27]. Due to the notoriously high GPU consumption of prior research in NAS
[28. 158]], this reduction in CO2 emissions is especially worthwhile. Furthermore, our hope is that
our work will have a positive impact in the NAS and automated machine learning communities by
showing which ZC proxies are useful in which settings, and showing how to most effectively combine
ZC proxies to achieve the best predictive performance. By open-sourcing all of our code and datasets,
AutoML researchers can use our library to further test and develop ZC proxies for NAS.

Acknowledgments and Disclosure of Funding

This research was supported by the following sources: Robert Bosch GmbH is acknowledged for
financial support; the German Federal Ministry of Education and Research (BMBF, grant Renormal-
izedFlows 01IS19077C); TAILOR, a project funded by EU Horizon 2020 research and innovation
programme under GA No 952215; the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under grant number 417962828; the European Research Council (ERC) Consolidator
Grant “Deep Learning 2.0” (grant no. 101045765). Funded by the European Union. Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or the ERC. Neither the European Union nor the ERC can be held responsible for

them.
Funded by
the European Union

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Mohamed S Abdelfattah, Abhinav Mehrotra, Lukasz Dudziak, and Nicholas Donald Lane.
Zero-cost proxies for lightweight nas. In Proceedings of the International Conference on
Learning Representations (ICLR), 2021.

Hanlin Chen, Ming Lin, Xiuyu Sun, and Hao Li. Nas-bench-zero: A large scale
dataset for understanding zero-shot neural architecture search. Openreview preprint
https://openreview.net/forum?id=hP-SILoczR, 2021.

Tianqgi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of

the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785-794, 2016.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet
in four gpu hours: A theoretically inspired perspective. In Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei, Kan Chen,
Yuandong Tian, Matthew Yu, Peter Vajda, et al. Fbnetv3: Joint architecture-recipe search using
predictor pretraining. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16276-16285, 2021.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. In Proceedings of the International Conference on Learning Representations
(ICLR), 2020.

Yawen Duan, Xin Chen, Hang Xu, Zewei Chen, Xiaodan Liang, Tong Zhang, and Zhenguo
Li. Transnas-bench-101: Improving transferability and generalizability of cross-task neural
architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5251-5260, 2021.

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas
Lane. Brp-nas: Prediction-based nas using gcns. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 10480-10490. Curran Associates, Inc., 2020.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
In JMLR, 2019.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna
Wallach, Hal Daumé Tii, and Kate Crawford. Datasheets for datasets. Communications of the
ACM, 64(12):86-92, 2021.

Karen Hao. Training a single ai model can emit as much carbon as five cars in their lifetimes.
MIT Technology Review, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

Mojan Javaheripi, Shital Shah, Subhabrata Mukherjee, Tomasz L Religa, Caio CT Mendes,
Gustavo H de Rosa, Sebastien Bubeck, Farinaz Koushanfar, and Debadeepta Dey. Litetransform-
ersearch: Training-free on-device search for efficient autoregressive language models. arXiv
preprint arXiv:2203.02094, 2022.

Nambhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-shot network pruning
based on connection sensitivity. In Proceedings of the International Conference on Learning
Representations (ICLR), 2019.

Yuhong Li, Cong Hao, Pan Li, Jinjun Xiong, and Deming Chen. Generic neural architecture

search via regression. Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 34, 2021.

11

[16] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong
Jin. Zen-nas: A zero-shot nas for high-performance image recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 347-356, 2021.

[17] Marius Lindauer and Frank Hutter. Best practices for scientific research on neural architecture
search. In JMLR, 2020.

[18] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 19-34, 2018.

[19] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
Proceedings of the International Conference on Learning Representations (ICLR), 2019.

[20] Zhengying Liu, Adrien Pavao, Zhen Xu, Sergio Escalera, Fabio Ferreira, Isabelle Guyon,
Sirui Hong, Frank Hutter, Rongrong Ji, Julio C. S. Jacques Junior, Ge Li, Marius Lindauer,
Zhipeng Luo, Meysam Madadi, Thomas Nierhoff, Kangning Niu, Chunguang Pan, Danny Stoll,
Sebastien Treguer, Jin Wang, Peng Wang, Chenglin Wu, Youcheng Xiong, Arbér Zela, and
Yang Zhang. Winning solutions and post-challenge analyses of the chalearn autodl challenge
2019. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9):3108-3125,
2021.

[21] Vasco Lopes, Saeid Alirezazadeh, and Luis A Alexandre. Epe-nas: Efficient performance
estimation without training for neural architecture search. In International Conference on
Artificial Neural Networks, pages 552-563. Springer, 2021.

[22] Yash Mehta, Colin White, Arber Zela, Arjun Krishnakumar, Guri Zabergja, Shakiba Moradian,
Mahmoud Safari, Kaicheng Yu, and Frank Hutter. Nas-bench-suite: Nas evaluation is (now)
surprisingly easy. In International Conference on Learning Representations, 2022.

[23] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search without
training. In Proceedings of the International Conference on Machine Learning (ICML), 2021.

[24] Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. Designing neural networks using
genetic algorithms. In ICGA, volume 89, pages 379-384, 1989.

[25] Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan Zhou, Shuang Liang, Huazhong Yang,
and Yu Wang. Evaluating efficient performance estimators of neural architectures. Advances in
Neural Information Processing Systems, 34, 2021.

[26] Daniel S Park, Jachoon Lee, Daiyi Peng, Yuan Cao, and Jascha Sohl-Dickstein. Towards
nngp-guided neural architecture search. arXiv preprint arXiv:2011.06006, 2020.

[27] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network
training. arXiv preprint arXiv:2104.10350, 2021.

[28] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2019.

[29] Robin Ru, Clare Lyle, Lisa Schut, Miroslav Fil, Mark van der Wilk, and Yarin Gal. Speedy
performance estimation for neural architecture search. Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurIPS), 34, 2021.

[30] Michael Ruchte, Arber Zela, Julien Siems, Josif Grabocka, and Frank Hutter. Naslib: A modular
and flexible neural architecture search library. https://github. com/automl/NASLib, 2020.

[31] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510-4520, 2018.

[32] David W Scott. Sturges’ rule. Wiley Interdisciplinary Reviews: Computational Statistics,
1(3):303-306, 2009.

12

https://github.com/automl/NASLib

[33] Yu Shen, Yang Li, Jian Zheng, Wentao Zhang, Peng Yao, Jixiang Li, Sen Yang, Ji Liu, and Cui
Bin. Proxybo: Accelerating neural architecture search via bayesian optimization with zero-cost
proxies. arXiv preprint arXiv:2110.10423, 2021.

[34] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and Tong Zhang. Bridging the gap
between sample-based and one-shot neural architecture search with bonas. Advances in Neural
Information Processing Systems, 33, 2020.

[35] Yao Shu, Shaofeng Cai, Zhongxiang Dai, Beng Chin Ooi, and Bryan Kian Hsiang Low. Nasi:
Label-and data-agnostic neural architecture search at initialization. In Proceedings of the
International Conference on Learning Representations (ICLR), 2022.

[36] Yao Shu, Zhongxiang Dai, Zhaoxuan Wu, and Kian Hsiang Low. Unifying and boosting
gradient-based training-free neural architecture search. ArXiv, abs/2201.09785, 2022.

[37] Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818-2826, 2016.

[38] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In Proceedings of the International Conference on Machine Learning (ICML), 2019.

[39] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurlPS), 33:6377-6389, 2020.

[40] Manoel Tenorio and Wei-Tsih Lee. Self organizing neural networks for the identification
problem. Advances in Neural Information Processing Systems, 1, 1988.

[41] Renbo Tu, Mikhail Khodak, Nicholas Carl Roberts, Nina Balcan, and Ameet Talwalkar. Nas-
bench-360: Benchmarking diverse tasks for neural architecture search. Openreview submission,
2021.

[42] Jack Turner, Elliot J Crowley, Michael O’Boyle, Amos Storkey, and Gavin Gray. Blockswap:
Fisher-guided block substitution for network compression on a budget. In Proceedings of the
International Conference on Learning Representations (ICLR), 2020.

[43] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

[44] Chen Wei, Chuang Niu, Yiping Tang, Yue Wang, Haihong Hu, and Jimin Liang. Npenas:
Neural predictor guided evolution for neural architecture search. IEEE Transactions on Neural
Networks and Learning Systems, 2022.

[45] Colin White, Mikhail Khodak, Renbo Tu, Shital Shah, Sébastien Bubeck, and Debadeepta
Dey. A deeper look at zero-cost proxies for lightweight nas. In ICLR Blog Track, 2022.
https://iclr-blog-track.github.i0/2022/03/25/zero-cost-proxies/.

[46] Colin White, Willie Neiswanger, Sam Nolen, and Yash Savani. A study on encodings for neural
architecture search. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 2020.

[47] Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2021.

[48] Colin White, Arber Zela, Robin Ru, Yang Liu, and Frank Hutter. How powerful are performance
predictors in neural architecture search? In Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS), volume 34, 2021.

[49] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A survey on neural architecture
search. arXiv preprint arXiv:1905.01392, 2019.

13

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong
Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10734-10742, 2019.

Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir Gho-
laminejad, Joseph Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero parameter alternative to
spatial convolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 9127-9135, 2018.

Lichuan Xiang, Lukasz Dudziak, Mohamed S Abdelfattah, Thomas Chau, Nicholas D Lane,
and Hongkai Wen. Zero-cost proxies meet differentiable architecture search. arXiv preprint
arXiv:2106.06799, 2021.

Shen Yan, Colin White, Yash Savani, and Frank Hutter. Nas-bench-x11 and the power of
learning curves. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 2021.

Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In Proceedings of the International
Conference on Machine Learning (ICML), 2019.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3712-3722, 2018.

Arber Zela, Julien Niklas Siems, Lucas Zimmer, Jovita Lukasik, Margret Keuper, and Frank
Hutter. Surrogate nas benchmarks: Going beyond the limited search spaces of tabular nas
benchmarks. In Proceedings of the International Conference on Learning Representations
(ICLR), 2022.

Qingin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li, Xing Sun, Yonghong Tian, Jie Chen, and
Rongrong Ji. Training-free transformer architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10894—10903, 2022.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In
Proceedings of the International Conference on Learning Representations (ICLR), 2017.

ChecKklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] [The main claims in the abstract and introduction reflect
the paper’s contributions and scope.]

(b) Did you describe the limitations of your work? [Yes] [See Section|[6]]

(c) Did you discuss any potential negative societal impacts of your work? [Yes] [See
Section [6}]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] [We read the ethics review guidelines and ensured our paper conforms to
them.]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] [We did not
include theoretical results.]

(b) Did you include complete proofs of all theoretical results? [N/A] [We did not include
theoretical results.]

3. If you ran experiments (e.g. for benchmarks)...

14

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] [We in-
clude the code, data, and instructions needed to reproduce the results here: https:
//github.com/automl/naslib/tree/zerocost.]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] [We discuss all experimental details in Sections 4| and @ and
Appendices [D]and [E]]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] [We report error bars in Sections E] and E}]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] [We include the compute and
resources used in Section[3}]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] [We cited the creators
of all benchmarks we used in Section [2}]

(b) Did you mention the license of the assets? [N/A] [We mention the licenses in Appendix
[B}]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
[We include a new dataset, available at https://github.com/automl/naslib/
tree/zerocost!]

(d) Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [N/A] [Our asset does not include data based on people.]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [IN/A] [Our asset does not include data based on

people.]
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] [We did not conduct research with human subjects.]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] [We did not conduct research with human
subjects.]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] [We did not conduct research with human
subjects.]

15

https://github.com/automl/naslib/tree/zerocost
https://github.com/automl/naslib/tree/zerocost
https://github.com/automl/naslib/tree/zerocost
https://github.com/automl/naslib/tree/zerocost

A NAS Best Practices Checklist

We now describe how we addressed the individual points of the NAS best practice checklist [[17].

1. Best Practices for Releasing Code
For all experiments you report:

(a) Did you release code for the training pipeline used to evaluate the final architectures?
[Yes] Since we used NAS benchmarks, we did not evaluate the architectures ourselves.
The code for the training pipelines of these benchmarks is publicly available.

(b) Did you release code for the search space [Yes] Since we used NAS benchmarks, this
is already publicly available.

(c) Did you release the hyperparameters used for the final evaluation pipeline, as well as
random seeds? [Yes] Since we used NAS benchmarks, the final evaluation pipeline is
fixed. We released our code, including the seeds used.

(d) Did you release code for your NAS method? [Yes] The code for our NAS method is
available at https://github.com/automl/naslib/tree/zerocostl

(e) Did you release hyperparameters for your NAS method, as well as random seeds? [Yes]
The hyperparameters used are also available at the above link.
2. Best practices for comparing NAS methods

(a) For all NAS methods you compare, did you use exactly the same NAS benchmark,
including the same dataset (with the same training-test split), search space and code
for training the architectures and hyperparameters for that code? [Yes] Since we used
NAS benchmarks, the training details are fixed.

(b) Did you control for confounding factors (different hardware, versions of DL libraries,
different runtimes for the different methods)? [Yes] Since we used NAS Benchmarks,
these details are fixed automatically.

(c) Did you run ablation studies? [Yes] We included NAS experiments with only the
encoding, only the ZC proxies, and the encoding with 13 ZC proxies.

(d) Did you use the same evaluation protocol for the methods being compared? [Yes] We
used NAS Benchmarks, which keep this fixed.

(e) Did you compare performance over time? [Yes] Our experiments in Section [5] and
Appendix [E|compare performance over time.

(f) Did you compare to random search? We used baselines that are better than random
search: the original NAS algorithms without ZC proxies.

(g) Did you perform multiple runs of your experiments and report seeds? [Yes] All of our
experiments are averaged across many trials. The seeds are reported in our code files.

(h) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] All of our
experiments use queryable benchmarks.
3. Best practices for reporting important details

(a) Did you report how you tuned hyperparameters, and what time and resources this re-
quired? [Yes] We used the default hyperparameters from the respective NAS algorithms
and ZC proxies. Our addition of ZC proxies did not add any new hyperparameters.

(b) Did you report the time for the entire end-to-end NAS method (rather than, e.g., only
for the search phase)? [Yes] Our plots include the end-to-end time.

(c) Did you report all the details of your experimental setup? [Yes] We included all the
details in Section[5|and Appendix [E]

B Dataset Documentation

Here, we give an overview of our dataset documentation. For the full details, including links to the
dataset, usage, and tutorials, see https://github.com/automl/NASLib/tree/zerocost.

16

https://github.com/automl/naslib/tree/zerocost
https://github.com/automl/NASLib/tree/zerocost

Table 5: Licenses for the datasets that we use.

Dataset License URL
NAS-Bench-101 Apache 2.0 | https://github.com/google-research/nasbench
NAS-Bench-201 MIT https://github.com/D-X-Y/NAS-Bench-201
NAS-Bench-301 Apache 2.0 https://github.com/automl/nasbench301
TransNAS-Bench-101 MIT https://github.com/yawen-d/TransNASBench
NAS-Bench-360 MIT https://github.com/rtu715/NAS-Bench-360

B.1 Author responsibility and license

We, the authors, bear all responsibility in case of violation of rights. The license of our dataset and
repository is the Apache License 2.0. For more information, see https://github.com/automl/
NASLib/blob/Develop/LICENSE.

In addition, we include the licenses of the datasets we used in Table[5]

B.2 Maintenance plan

The data is available on GitHub at https://github.com/automl/NASLib/tree/zerocost. We
plan to actively maintain the repository, and we also welcome contributions from the community. For
more information, see https://github.com/automl/NASLib/tree/zerocost,

B.3 Code of conduct

Our Code of Conduct is from the Contributor Covenant, version 2.0. See
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
The policy is copied below.

“We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality,
personal appearance, race, caste, color, religion, or sexual identity and orientation.”

B.4 Datasheet

We include a datasheet [[10] for NAS-Bench-Suite-Zero.

Motivation For Datasheet Creation

*Why was the datasheet created? (e.g., was there a specific task in mind? was there a specific gap
that needed to be filled?) The goal of our work is to make it easier and faster for researchers to run
generalizable, reproducible ZC proxy experiments, and to motivate further study on exploiting the
complementary strengths of ZC proxies. By pre-computing ZC proxies across many benchmarks,
users can run many trials of NAS experiments cheaply on a CPU, reducing their carbon footprint
[L1,127]. Since prior research in NAS has notoriously high GPU consumption [28} 58], this reduction
in CO2 emissions is worthwhile.

*Has the dataset been used already? If so, where are the results so others can compare (e.g., links to
published papers)? The dataset has only been used in this paper. See Sections 4] and [5]and Appendix
Dland[El

17

https://github.com/google-research/nasbench
https://github.com/D-X-Y/NAS-Bench-201
https://github.com/automl/nasbench301
https://github.com/yawen-d/TransNASBench
https://github.com/rtu715/NAS-Bench-360
https://github.com/automl/NASLib/blob/Develop/LICENSE
https://github.com/automl/NASLib/blob/Develop/LICENSE
https://github.com/automl/NASLib/tree/zerocost
https://github.com/automl/NASLib/tree/zerocost
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html

*What (other) tasks could the dataset be used for? Since the dataset only contains values of ZC
proxies on existing NAS benchmarks, we are not aware of any tasks this dataset can be used for,
besides analyzing ZC proxies and speeding up ZC proxy-based NAS algorithms.

*Who funded the creation dataset? This dataset was created by researchers at the University of
Freiburg, Abacus.Al, the University of Toronto, and the Bosch Center for Artificial Intelligence.
Funding for the dataset computation itself is from the University of Freiburg.

*Any other comment? None.

Datasheet Composition

*What are the instances?(that is, examples; e.g., documents, images, people, countries) Are there
multiple types of instances? (e.g., movies, users, ratings; people, interactions between them; nodes,
edges) For each NAS benchmark, each instance is a tuple of an architecture hash, the name of a ZC
proxy, and the value and runtime of the ZC proxy evaluated on that architecture.

*How many instances are there in total (of each type, if appropriate)? See Table[2]for a full breakdown
of the number of instances for each NAS benchmark.

*What data does each instance consist of ? “Raw” data (e.g., unprocessed text or images)? Fea-
tures/attributes? Is there a label/target associated with instances? If the instances related to people,
are subpopulations identified (e.g., by age, gender, etc.) and what is their distribution? Each instance
is a tuple of an architecture hash, the name of a ZC proxy, and the value and runtime of the ZC proxy
evaluated on that architecture. These will most-often be used to speed up NAS experiments or run
analysis on ZC proxies, in which case they are not used as features/labels.

*Is any information missing from individual instances? If so, please provide a description, explaining
why this information is missing (e.g., because it was unavailable). This does not include intentionally
removed information, but might include, e.g., redacted text. There is no missing information from
individual instances.

*Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit. There are no
relationships between individual instances.

*Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances
from a larger set? If the dataset is a sample, then what is the larger set? Is the sample representative
of the larger set (e.g., geographic coverage)? If so, please describe how this representativeness was
validated/verified. If it is not representative of the larger set, please describe why not (e.g., to cover
a more diverse range of instances, because instances were withheld or unavailable). NAS-Bench-
201 and TransNAS-Bench-101-Micro and Macro contain all possible instances. NAS-Bench-101,
NAS-Bench-301, and the additional architectures evaluated on spherical-cifar, SVHN, and NinaPro
are samples. All samples are drawn uniformly at random from the respective search space. This
is ensured because the code used to draw architectures uniformly at random is from the respective
original repositories that introduced the NAS benchmarks.

18

*Are there recommended data splits (e.g., training, development/validation, testing)? If so, please
provide a description of these splits, explaining the rationale behind them. The main usage of this
dataset is to speed up NAS experiments, for which there are no data splits. For experiments involving
architecture prediction (such as the standalone predictor experiments in Section[5] we do not give
recommended data splits but instead recommended running at least 100 trials, where each trial
randomly samples train and (disjoint) test sets.

*Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description. There are no known errors, sources of noise, or redundancies.

*Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites,
tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees that they
will exist, and remain constant, over time; b) are there official archival versions of the complete
dataset (i.e., including the external resources as they existed at the time the dataset was created);
c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources that
might apply to a future user? Please provide descriptions of all external resources and any restrictions
associated with them, as well as links or other access points, as appropriate. The dataset does rely on
the code from the respective existing NAS benchmarks to reconstruct the architecture itself from the
hash provided in our dataset. Furthermore, a user will often want access to the validation accuracies
of the architectures in our dataset, which also comes from the existing NAS benchmarks. Since these
NAS benchmarks serve similar goals as our dataset (to accelerate and simplify research in NAS) and
are hosted similarly to ours (on Google Drive and GitHub), we are confident that these benchmarks
will exist and remain constant over time. In some cases, we have also created our own versions of the
NAS benchmarks, so all of the data can be downloaded at one time. Licenses and links are described
in Table

Any other comments? None.

Collection Process

*What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or sensor,
manual human curation, software program, software API)? How were these mechanisms or procedures
validated? The data was created with a software program (available at https://github.com/
automl/NASLib/tree/zerocost). The ZC proxy code were taken from their original repositories.
All ZC proxies from Table I] were run on an Intel Xeon Gold 6242 CPU, using a batch size of 64,
except for the case of TransNAS-Bench-101: due to the extreme memory usage of the Taskonomy
tasks (> 30GB memory), we used a batch size of 32.

*How was the data associated with each instance acquired? Was the data directly observable (e.g.,
raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived
from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was
reported by subjects or indirectly inferred/derived from other data, was the data validated/verified?
If so, please describe how. As described, all data was created with a publicly available software
program.

*If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)? As described earlier, the sampling was done
uniformly at random.

19

https://github.com/automl/NASLib/tree/zerocost
https://github.com/automl/NASLib/tree/zerocost

*Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how
were they compensated (e.g., how much were crowdworkers paid)? The data collection process (e.g.,
running the code) was done by the authors of this work.

*Qver what timeframe was the data collected? Does this timeframe match the creation timeframe of
the data associated with the instances (e.g., recent crawl of old news articles)? If not, please describe
the timeframe in which the data associated with the instances was created. The total computation
time for all 1.5M evaluations was 1100 CPU hours on Intel Xeon Gold 6242 CPUs (using up to 20
CPUs and 150 cores in parallel). The timeframe was May 15, 2022 to June 1, 2022.

Data Preprocessing
*Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokeniza-
tion, part-of-speech tagging, SIFT feature extraction, removal of instances, processing of missing

values)? If so, please provide a description. If not, you may skip the remainder of the questions in
this section. There was no preprocessing that needed to be done.

*Does this dataset collection/processing procedure achieve the motivation for creating the dataset
stated in the first section of this datasheet? If not, what are the limitations? Yes, the dataset collection
procedure achieves our motivation. See Table [§] for a list of the speedups in NAS experiments
achieved when using our dataset.

*Any other comments None.

Dataset Distribution

*How will the dataset be distributed? (e.g., tarball on website, API, GitHub; does the data have a
DOI and is it archived redundantly?) The dataset is on Google Drive, with a DOL.

*When will the dataset be released/first distributed? What license (if any) is it distributed under? The
dataset is public as of June 8, 2022, distributed under the Apache License 2.0.

*Are there any copyrights on the data? There are no copyrights on the data.

*Are there any fees or access/export restrictions? There are no fees or restrictions.

* Any other comments? None.

Dataset Maintenance

*Who is supporting/hosting/maintaining the dataset? The authors of this work are support-
ing/hosting/maintaining the dataset.

20

*Will the dataset be updated? If so, how often and by whom? If new NAS benchmarks are created
in the NAS research community, the authors of this work may update NAS-Bench-Suite-Zero to
include ZC proxy values for the new benchmarks. Similarly, if new ZC proxies are relased, the
authors may update NAS-Bench-Suite-Zero to include the new ZC proxies.

*How will updates be communicated? (e.g., mailing list, GitHub) Updates will be communicated on
the GitHub README of this project.

*If the dataset becomes obsolete how will this be communicated? If the dataset becomes obsolete, it
will be communicated on the GitHub README of this project.

*If others want to extend/augment/build on this dataset, is there a mechanism for them to do so? If
S0, is there a process for tracking/assessing the quality of those contributions. What is the process
for communicating/distributing these contributions to users? Others can create a pull request or
raise an issue on GitHub with possible extensions/augmentations to our dataset, which will be
approved in a case-by-case basis. For example, an author of a new ZC proxy may create a PR in
our codebase with the new ZC proxy, and then we will evaluate the ZC proxy on all architectures in
NAS-Bench-Suite-Zero and update the dataset. These updates will again be communicated on the
GitHub README.

Legal and Ethical Considerations

*Were any ethical review processes conducted (e.g., by an institutional review board)? If so, please
provide a description of these review processes, including the outcomes, as well as a link or other
access point to any supporting documentation. There was no ethical review process. We note that
our dataset was created by simply by running ZC proxy computations on architectures of existing
NAS benchmarks, in some cases using publicly available, licensed datasets such as CIFAR-10 or
CIFAR-100.

*Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctorpatient confidentiality, data that includes the content of individuals
non-public communications)? If so, please provide a description. The dataset does not contain any
confidential data.

*Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why None of the data might be offensive,
insulting, threatening, or otherwise cause anxiety.

*Does the dataset relate to people? If not, you may skip the remaining questions in this section. The
dataset does not relate to people.

* Any other comments? None.

C Related Work Continued

In this section, we give additional details on related work, continued from Section@

21

Multiple recent works have investigated the performance of ZC proxies in ranking architectures
over different NAS benchmarks. [25] provides rank correlations and pairwise correlations of 10 ZC
proxies across 7 tasks, and concludes that the relative performance of different ZC proxies highly
depends on the search space. They further analyze how ZC proxies have improper biases. [48]]
compares 6 ZC proxies across four tasks, and further shows how jacov can be used to accelerate
the search in predictor-based NAS. In particular, OMNI [48]] combines jacov with sum of training
losses [29] in the surrogate models of BANANAS and predictor-guided evolution. However, the
predictor-based NAS experiments are restricted to NAS-Bench-201 and a single ZC proxy. Similar
to [48]], ProxyBO [33]] introduces a NAS framework based on BO which uses ZC proxies to speed
up NAS. It dynamically chooses whether to use a Gaussian process, snip, jacov, or synflow
as the surrogate model in BO. Experiments were done on five tasks. Note that although the NAS
method makes use of three different ZC proxies, each are used separately to make predictions on the
performance of architectures.

Recently, NAS-Bench-Zero was introduced [2]], a new benchmark based on popular computer vision
models ResNet [12]] and MobileNetV2 [31]], and examined different characteristics of 10 ZC proxies
across these search space as well as three existing search spaces. The study shows in particular that
individual ZC proxies do not transfer across NAS benchmarks. They also show that voting among
synflow, zen, snip and synflow is the optimal voting ZC proxy strategy. A recent overview of ZC
proxies [45] computes rank correlation, pairwise correlation, and performance plots for 8 ZC proxies
across 12 tasks.

Only two prior works combine the information of multiple ZC proxies together in architecture
predictions [1, 2] and both only use the voting strategy to combine three or four ZC proxies. Our
work is the first to combine ZC proxies in a nontrivial way, and the first to combine 13 ZC proxies.
We also conduct analysis on the largest set of ZC proxies and benchmarks to date.

C.1 Theoretical results for ZC proxies

While ZC proxies are starting to be used more widely today [1} 13} 45} 571, still relatively little is
known about them from a theoretical standpoint. However, there have been a few works that do give
theoretical results. In this section, we survey the existing theoretical results for ZC proxies.

Ning et al. gave a theoretical preference analysis for synflow, proving that it favors larger archi-
tectures (Section B.3 in [23])). Specifically, they prove that given an architecture, introducing a new
fully-connected layer into an MLP architecture causes the synflow value to increase. The core of
their argument is to prove the following statement: “when introducing a new fully-connected layer,
the expected loss gradients with respect to the existing parameters increases.” The authors also claim
that the intuition for this argument should extend to convolutional neural networks. Finally, we note
that our empirical results from Table [3|confirm their theoretical finding.

Shu et al. [36] attempted to give a unified, general theory for multiple ZC proxies. First, the authors
prove that ZC proxy values are asymptotically similar. Specifically, they show that assuming the
loss function of the neural network is -Lipschitz continuous, and ~-Lipschitz smooth, then with
high-priority, then the values of grad_norm, snip, and grasp are all asymptotically similar up to
constants (i.e., the same under big-Oh notation) to the trace norm of the NTK matrix at initialization.
This result implies that the values of these ZC proxies are highly correlated.

Next, Shu et al. establish generalization bounds for DNNs in terms of the ZC proxies. Specifically,
they show that the generalization error of a DNN is at most the sum of the training error of the DNN
and O (x/M), where M can be set to grad_norm, snip, or grasp, and k is the condition number
of the NTK matrix at initialization, i.e., given the NTK matrix O¢, £ = Amax(©0)/Amin(©0)-

As a corollary, they also bound the generalization error in terms of the ZC proxy value and other
fixed constants of the neural network, without the training error term.

Other than these results, a few works have derived new ZC proxies via a theoretical analysis or
inspired by existing theories of deep learning. Shu et al. [35]] introduce NASI by giving a theoretical
analysis that shows the trace norm of the NTK has a similar form to gradient flow. Other theory-
inspired ZC proxies include TE-NAS [4]], which uses the spectrum of the NTK and the number of
linear regions in the input space, and NNGP-NAS [26]], which approximates the Neural Network
Gaussian Process using Monte-Carlo methods.

22

Table 6: Spearman rank correlation for 100 architectures randomly drawn from the FBNet search
space on various ZC proxies.

ZCProxy fisher flops grad_norm grasp jacov params snip synflow
Spearman | 0.2574 | 0.6484 | 0.4278 | -0.262 | -0.0895 | 0.3762 | 0.5102 | 0.4954

As ZC proxies gain in popularity, a further theoretical analysis is an important step in understanding
their robustness on different datasets, and in designing higher-performing ZC proxies.

D Details from Section 4]

In this section, we give additional details from Section 4]

D.1 Details from Sectiond.1} generalization

We give the full extensions of the experiments from Section[4.1] In Figure[6] for each ZC proxy and
each benchmark, we compute the Spearman rank correlation (see Sectiond). This is the full version
of Figure[2]

In Figure /] we compute the Pearson correlation coefficient between ZC proxy scores on pairs of
benchmarks. This is the full version of Figure 3]

Next, we recompute Figure 2 using different metrics: Precision@K and BestRanking@K [22, [25]].
Let M denote the number of architectures, and for each architecture a; from ¢ € [1, M|, denote the
rankings of the ground truth and ZC proxy-estimated scores are r; and n;, respectively. Given K,
define Ay = {a; | n; < KM}. The definitions are as follows:

#{Z|T1<K/\TLZ<K}
K
BestRanking@K = argmin,, . 4, 7i/M

Precision@QK =

In Figure [8] we recompute Figure [2] using Precision@K, for K = 5,25,100. In Figure 0] we
recompute Figure 2| using BestRanking@K, for K = 5,25, 100. Overall, we see similar trends to
Figure 2] but we note that Precision@K and BestRanking @K may be more useful than Spearman in
terms of NAS, since the goal of NAS is to find the very best architectures.

D.1.1 [Initial results with FBNet

While NAS-Bench-Suite-Zero contains 28 tasks, the majority of search spaces used were designed
for research. Now, in contrast, we give initial results for FBNet [50] as a search space that has been
used to achieve state-of-the-art results.

The FBNet search space consists of 22 searchable layers, with 9 operation choices each (3 filters and
3 kernel sizes), for a total of 9?2 = 102! architectures in the search space. The block structure is
inspired by MobileNetV2 [31] and ShiftNet [S1].

See Table[6|for the Spearman rank correlation values of the validation accuracy of 100 randomly drawn
architectures compared to ZC proxies. Even though the FBNet search space is size 102!, some of the
ZC proxies perform surprisingly well, such as snip, synflow, and flops. The highest-performing
ZC proxy is flops.

D.2 Details from Sectiond.2} information theory

In this section, we give details from Section d.2] We start with more details on the conditionial
entropy, including why we chose this metric, how it is computed, and how to interpret the results.

23

e Why do we choose conditional entropy as the metric?
The conditional entropy of a random variable Y given another random variable X is

H(Y|X) = B[~ logp(yle)] = — S p(zy)log p;fj) 7 0
TEX YEY

for two support sets X',). If we assume entropy to be a measure of information, in other words
uncertainty within a random variable, conditional entropy essentially captures what is left of the
uncertainty after conditioning. H (Y| X) also has certain desirable properties: (1). H(Y|X) =0
if and only if X completely determines the value of Y; (2). H(Y|X) = H(Y) if and only if X
and Y are completely independent; and (3). H(Y | X1, Xo) = H(Y, X1, X3) — H(X1, X3). We
can then easily calculate conditional entropy when conditioning on multiple random variables,
and use it as a metric for uncertain information.

* Discretization of ZC proxy scores and ground-truth accuracies.
Calculating conditional entropy as prescribed above requires that all random variables be discrete,
which is not the case for raw validation accuracies and ZC proxy scores. Implementation wise,
we discretize all the float values and use Sturge’s rule [32] as a heuristic to choose the number of
bins for discretization:

Tpins = round(1 + 3.322 x log(NV))), where N is the sample size. 4

Therefore, information about Y does not reveal the exact validation accuracy but rather the interval
in which the value falls.

e [nterpreting the information gain heatmap.

The information gain heatmap shows how much the conditional entropy of y|z;, decreases
to y|zi,, zi, as the scores of ZC proxy on each column (z;,) is revealed, given that we al-
ready know the scores of ZC proxy on each row (z;,). For instance, on Figure @] (top
right), the value 1.42 on the second row, first column shows that H (y|scores(synflow) —
H (y|scores(synflow), scores(epe_nas)) = 1.42. Note that (1). all values on the diagonal
are 0.0 because no information is gained when we add a copy of the existing ZC proxy scores; (2).
The heatmap is not symmetric like pairwise conditional entropy. The order in which conditioning
is applied affects the amount of information gain, i.e. IG(y|z;,, zi,) # IG(y|zi,, 2i,); 3). IG
measures how much one ZC proxy’s information complements that of another for determining
the ground-truth accuracy. It does not serve as a direct indicator of the quality of individual ZC
proxy themselves.

e Interpreting the entropy vs. number of ZC proxies plot.

Conditional entropy monotonically decreases as we condition the validation accuracy, ¥, on an
increasing amount of ZC proxy scores, z;, , . . . 2;, , which always brings in additional information.
In most cases, marginal IG drastically decreases as the amount of ZC proxies k reaches 4, but
this is only true if the proxies are chosen strategically, using either a greedy or a brute-force
minimization approach. For the majority of benchmarks, the less computationally intensive greedy
strategy matches up to the brute-force strategy. On the other hand, randomly choosing the ZC
proxies does not have stable performance and could be suboptimal, such as on NAS-Bench-201 +
CIFAR-100 in Figure] (bottom middle).

For completion, in Figure[T0} we plot the average pairwise correlation for all pairs of ZC proxies.

In Figures[TT] [T2] [13] [14] [[3] we show all the conditional entropy and information gain heatmaps,
in addition to the entropy vs. number of ZC proxies plots for all benchmark, dataset pairs. Note
that for TransNAS-Bench-101, there are no results for epe_nas because it is not defined on non-
classification tasks. Similarly, synflow returns 0.0 for certain non-classification tasks such as the
ones in TransNAS-Bench-101, so we also removed synflow from the TransNAS-Bench-101 plots.

While the conditional entropy and information gain plots from Figure] was computed using Equation
M) to compute the number of bins, we also run the same experiment using a different discretization
strategy: the bin dividers are computed based on percentages of the data. See Figure[I6|(top). While
the scales differ, we see largely the same trends. For example, there is still a cluster among nwot,
flops, 12_norm, zen, and params. This suggests that this analysis is robust to the two different
discretization strategies. Next, we also re-run the experiment on conditional entropy vs. k from
Figure] using the top 1000 architectures only, which may be important in the context of NAS, since
NAS is concerned with finding the best architectures. See Figure |16[(bottom). We find that the
random ordering performs comparatively better, predictably implying that it is harder to distinguish
architectures that are in the top 1000 vs. randomly drawn architectures.

24

Table 7: Pearson correlation coefficients between predictors and bias metrics (in bold) on different
datasets, for the most and least biased ZC proxies on each search space and task. For example, for the
Conv:pool bias on NB201-CF10, synflow is most biased, with a correlation of 0.76, while grasp is
least biased (in terms of absolute value), with a correlation of -0.01.

Name Conv:pool Cell size Num. skip connections Num. parameters
Most biased | Least biased | Most biased | Least biased | Most biased | Least Biased | Most biased | Least biased

. synflow grasp nwot epe_nas
NB101-CF10 0.76 2001 n/a n/a n/a n/a 0.74 0,02
N 12_norm grasp synflow grasp 12_norm grasp 12_norm grasp
NB201-CF10 0.87 0.01 0.57 2002 041 20,01 0.70 0.00
12_norm grasp synflow grasp 12_norm grasp 12_norm fisher
NB201-CF100 0.87 0.01 0.57 20.01 20.41 20,01 0.70 0.01
NB201-TIM 12_norm grasp synflow grasp 12_norm grasp 12_norm grasp
- 0.87 0.01 0.58 0.01 -0.41 -0.01 0.70 0.01
- params fisher flops epe_nas zen epe_nas
NB301-CF10 0.78 0.01 n/a n/a 035 0.01 0.99 -0.01
B : g 12_norm grasp plain grasp 12_norm grasp
TNB101_MICRO-JIGSAW wa wa 0.70 20.02 050 ~0.01 0.64 0.02
TNB101_MICRO-SCENE wa Wa 12_norm fisher plain grasp snip grasp
0.70 0.07 0.49 -0.10 0.64 -0.04
TNB101_MICRO-O0BJECT wa wa 12_norm fisher plain grasp 12_norm grasp
0.70 -0.08 0.49 -0.06 0.64 -0.02
TNB101_MICRO-AUTOENC wa wa 12_norm grasp grad_norm grasp 12_norm grasp
0.70 -0.02 -0.46 -0.03 0.64 0.02
TNB101_MICRO-NORMAL wa wa 12_norm plain snip grasp 12_norm plain
0.70 0.01 -0.45 -0.01 0.64 0.00
TNB101_MICRO-ROOM wa Wa 12_norm fisher plain jacov 12_norm grasp
0.70 0.10 0.45 0.14 0.64 -0.01
TNB101_MICRO-SEGMENT wa Wa 12_norm grasp grad_norm grasp 12_norm grasp
0.70 0.00 -0.43 0.01 0.64 -0.01
TNB101_MACRO-JIGSAW 12_norm plain
n/a n/a n/a n/a n/a n/a 0.89 0.04
TNB101_MACRO-SCENE : g ’ ’ ’ ’ 12_norm plain
n/a n/a n/a n/a n/a n/a 0.90 0.05
TNB101_MACRO-0BJECT 5 12_norm plain
n/a n/a n/a n/a n/a n/a 0.89 0.05
TNB101_MACRO-AUTOENC 12_norm plain
n/a n/a n/a n/a n/a n/a 0.89 0.01
TNB101_MACRO-NORMAL 12_norm grasp
n/a n/a n/a n/a n/a n/a 0.89 20.02
TNB101_MACRO-ROOM : g . ’ ’ ’ 12_norm grasp
n/a n/a n/a n/a n/a n/a 0.89 0.00
TNB10_MACRO-SEGMENT 12_norm plain
n/a n/a n/a n/a n/a n/a 0.89 0.00

D.3 Details from Section 4.3t biases

In this section, we give details from Section@ In Table |Z|, for each bias metric we assess, we show
the ZC proxies with the highest and lowest absolute correlation for each search space and dataset,
if applicable. For the number of parameters bias, we do not consider the ZC proxies of params
and flops since they trivially have 1.00 correlation. Note that operation biases are not available in
TransNASBench101-Macro because the search space is architecture-level. This is an extension of
Table[3]

D.4 NAS-Bench-Suite-Zero Speedup Details

Here we show statistics on how our benchmark speeds up NAS experiments previously done with
NAS-Bench-Suite by orders of magnitude. See Table|[]

25

Table 8: Runtimes (on an Intel Xeon Gold 6242 CPU) for all types of experiments done in this
paper, with and without NAS-Bench-Suite-Zero. The runtimes of the experiments with NBSuite
are computed by using the average training times for randomly drawn architectures from each search
space in NBSuite.

Experiment With NBSuite (approx.) With NBSuite + NBSuite-Zero Speedup
Mutual information study 158.2 hours 124.1 seconds 4592
Architecture bias study 6956 hours 14.8 seconds 1776003 x
Standalone XGBoost+ZC, 100 trials 1033 hours 100 seconds 37180
BANANAS+ZC, 100 trials 4694 hours 4260 seconds 3967 x
NPENAS+ZC, 100 trials 1033 hours 3470 seconds 1071 x

Table 9: Average Spearman rank correlations between XGBoost predictions and validation accuracies,
for each benchmark, across three different experiments: Encoding uses only the encoding of the
model, ZC uses only the ZC features, and Both concatenates ZC features to the encoding of the model.
100 models were used to train XGBoost.

Features Encoding ZC Both % Improvement (ZC) % Improvement (Both)
Benchmark

NB101-CF10 0.546 0.708 0.718 29.67 31.50
NB201-CF10 0.622 0.905 0.906 45.50 45.66
NB201-CF100 0.640 0.907 0.908 41.71 41.87
NB201-IMGNT 0.683 0.879 0.883 28.70 29.28
NB301-CF10 0.314 0.405 0.465 28.98 48.09
TNB101_MACRO-AUTOENC 0.673 0.831 0.837 23.48 24.37
TNB101_MACRO-JIGSAW 0.809 0.706 0.809 -12.73 0.00
TNB101_MACRO-NORMAL 0.617 0.710 0.716 15.07 16.05
TNB101_MACRO-OBJECT 0.736 0.840 0.843 14.13 14.54
TNB101_MACRO-ROOM 0.683 0.589 0.707 -13.76 3.51
TNB101_MACRO-SCENE 0.832 0.891 0.899 7.09 8.05
TNB101_MACRO-SEGMENT 0.900 0.807 0.876 -10.33 -2.67
TNB101_MICRO-AUTOENC 0.714 0.754 0.803 5.60 12.46
TNB101_MICRO-JIGSAW 0.585 0.730 0.743 24.79 27.01
TNB101_MICRO-NORMAL 0.657 0.801 0.809 21.92 23.14
TNB101_MICRO-OBJECT 0.637 0.733 0.752 15.07 18.05
TNB101_MICRO-ROOM 0.582 0.843 0.844 44.85 45.02
TNB101_MICRO-SCENE 0.710 0.849 0.866 19.58 21.97
TNB101_MICRO-SEGMENT 0.767 0.886 0.897 15.51 16.95

E Details from Section 3

In this section, we give the full details from Section 5]

We start by presenting the complete standalone predictor experiments. In Section[5} we mentioned that
on NAS-Bench-201 CIFAR-100, the Spearman rank correlation of XGBoost predictions trained on
100 randomly sampled architectures and averaged over 100 trials, improves from 0.640 to 0.908 when
13 ZC proxies are added. Now, we present the results of this same experiment for all benchmarks.
See Table[0] We see that the large improvement is consistent across the board. We also run the same
experiment when XGBoost is trained on 1000 randomly sampled architectures. See Table [I0] Even
though the predictions with the original XGBoost already have high rank correlation, we show that
ZC proxies improve the performance even more.

E.1 Feature importances of ZC proxies

In this section, we train an XGBoost surrogate model on 100 and 1000 randomly drawn architectures
using the ZC proxies as features, and then we plot feature importances for each feature. The feature
importance is calculated by the the number of times a feature is used to split the data across all trees
(the default feature importance method in the XGBoost library [3]). See Figures [20]and 2] for the
results with a training set size of 100 and 1000, respectively.

26

Table 10: Average Spearman rank correlations between XGBoost predictions and validation accura-
cies, for each benchmark, across three different experiments: Encoding uses only the encoding of
the model, ZC uses only the ZC features, and Both concatenates ZC features to the encoding of the
model. 1000 models were used to train XGBoost.

Features Encoding ZC Both % Improvement (ZC) % Improvement (Both)
Benchmark

NB101-CF10 0.748 0.811 0.851 8.42 13.77
NB201-CF10 0.890 0.954 0.961 7.19 7.98
NB201-CF100 0.906 0.953 0.959 5.19 5.85
NB201-IMGNT 0.922 0.948 0.957 2.82 3.80
NB301-CF10 0.678 0.496 0.705 -26.84 3.98
TNB101_MACRO-AUTOENC 0.890 0.903 0917 1.46 3.03
TNB101_MACRO-JIGSAW 0.812 0.801 0.856 -1.35 542
TNB101_MACRO-NORMAL 0.692 0.759 0.764 9.68 10.40
TNB101_MACRO-OBJECT 0.846 0.880 0.888 4.02 4.96
TNB101_MACRO-ROOM 0.741 0.731 0.793 -1.35 7.02
TNB101_MACRO-SCENE 0.936 0.936 0.953 0.00 1.82
TNB101_MACRO-SEGMENT 0.951 0.920 0.952 -3.26 0.11
TNB101_MICRO-AUTOENC 0.838 0.815 0.861 -2.74 2.74
TNB101_MICRO-JIGSAW 0.768 0.827 0.833 7.68 8.46
TNB101_MICRO-NORMAL 0.816 0.850 0.864 4.17 5.88
TNB101_MICRO-OBJECT 0.806 0.841 0.858 4.34 6.45
TNB101_MICRO-ROOM 0.874 0.943 0.947 7.89 8.35
TNB101_MICRO-SCENE 0.862 0.929 0.943 7.77 9.40
TNB101_MICRO-SEGMENT 0.921 0.934 0.948 1.41 2.93

E.2 Ablation study on the number of ZC proxies

Next, we give an ablation study on the number of ZC proxies as features, for an XGBoost surrogate
model trained on 1000 randomly drawn architectures. The ordering of ZC proxies is computed via
the greedy method from Section[4.3] See Figure We find that on all tasks, the best performance
is achieved with all 13 ZC proxies (in some cases, there are ties). However, after 6-8 ZC proxies,
there is only a small improvement up to the full 13 ZC proxies. This is consistent with our mutual
information study from Section[4.3]

E.3 Additional NAS results

Finally, we present more NAS results, extending the NAS results from Section[5} In Figure[I8] we
run BANANAS in the same setting as Section[5} on 11 benchmarks. We see that ZC proxies improve
performance across the board. In Figure we run the same experiment with NPENAS instead of
BANANAS. Note that since NPENAS requires a mutation step, we are only able to run it on complete
benchmarks: NAS-Bench-201 and TransNAS-Bench-101 (in particular, not NAS-Bench-101 or
NAS-Bench-301).

F ZC Proxy Competition

NAS-Bench-Suite-Zero was used successfully in the Zero Cost NAS Competition at AutoML-
Conf 2022. During the competition, participants developed new, better versions of ZC proxies in the
NAS-Bench-Suite-Zero codebase. The challenge was as follows: given /N models, the participant’s
ZC proxy will be used to rank the models for a specified task. The Kendall-Tau rank correlation is
used to score the metric, averaged across three benchmarks in the test phase of the competition. The
tasks in the development phase of the competition were NB201 with Ninapro and SVHN, NB301 with
Ninapro and SVHN, and TNB101-Micro with Ninapro, SVHN, and Spherical-CIFAR100. The tasks
in the final test phase of the competition were NB101 with CIFAR10, NB201 with ImageNet16x120,
NB301 with CIFAR10, TNB101-Macro with Object Classification, and TNB101-Micro with Object
Classification. The winning teams used a normalized version of synflow, a normalized version
of fisher, and a product of grad_norm and params. For more information, see the competition
homepage. E]

*See https://sites.google.com/view/zero- cost-nas-competition/homel

27

https://sites.google.com/view/zero-cost-nas-competition/home

N>

& W NI N N > > e
R\ TR R S s S O S L R

) O (® N N RPN { SN VP48 L% N o W

N N R R AR IR B 0 N S W S AW 7 A0V (B & o5

A D G D 0 OV O D g g7 (O G N Lo oW o8 (@ T o N T o A AR Lo
GO A0 ey B I N I S SO 1 O W A ¢ \o%vv 5O \(,%w\« AN Y e
RN & v \%mw v¢0 v¢\w v\v\\v AW %A«u N o G° wwm\v &3 \v/@ Q%v &3 ?A«u RSN V\V\\v & @ @8 o¢\w

790 090 f ‘0 ¢¥0 ¥90 8€0 8.0 ‘0 LF0 680 2190 i ‘0 €90 €8°0(¢00- 200 900 Jomu

6.0 S9°0 69°0 A ‘0 G¥'0 890 8€0 9.0 0€0 ‘0 270 S8°0 910 f ‘0 870 6.°0[CL0- 600- €L0- sdoy4
L0 GL°0 080 f ‘0 95970 feiAlug O¥°'0 0S50 0¥°0 ‘0 #¥0°0- 6L°0 S¥'0 i '0 800 L00 E €L°0 620 nodef
190 2¢L0 190 i ‘0 S0 890 Z¥'0 8€0 8€0 ‘0 €¥'0 420 100 i ‘0 ¥0'0- OL'0 €2°0 600- GL'O usz

6.0 ¥9°0 890 d ‘0 ¥#'0 0.0 9€°0 0€0 0€0 ‘0 9¥'0 2€0 8L 0 K ‘0 000- 9L°0 #L°0- 2L0°0- LL'O- sweded
€6'0 €90 870 i ‘0 G€°0 040 9¢°0 0€0 8L0O ‘0 S¥'0 82¢0 i ‘0 €0°0- 80°0 00°0- £0°0- 200 wiou 21
6.0 ¢/0 000 il ‘0 /¥'0 0S'0 S¥'0 000 0€0 ‘0 8L°0 Z¢'0 000 i ‘0 L00- ¢L'0 €L°0 £0°0- c00 Mo Juhs
920 040 89°0 i ‘0 PO 8€°0 ¢v'0 S¥0 ¢€0 ‘0 S0°0- #L°0- 0C°0 f g@o.o. 0L°0- drus

¢L’0 S90 090 i ‘0 9¢°0 ¢¥'0 O¥'0 SE€0 SC0 ‘0 ¥0°0- LE0 80°0- wiou peub
620 1SS0 ‘0 000 i ‘0 91°0 80°0- 6L°0 000 O¥0 ‘0 000 ‘0 000 00°0 000 ‘0 00°0- ¢0°0- LL°0- 100 i seu ads
2.0 990 cLo A ‘0 00 GO0 ¢¥'0 SL'O 0g0 P ‘0- 6L°0- 7 F 200 LL°O- A 49ysT4
€0°0- 000 ‘0 ¢L°0- 8L0 S0°0- ¢0°0- v€ ¢0'0- /20 i or.o-Ero. - ¥0'0 L0'0- dseub
60°0- ¥2'0 ¢0'0- ¥€'0 €00 S€0 €L0- ¢20 ¥00- 9¢'0 000 oL0- €L°0 8L°0- 0L'0 900 uteyd
S$810BINOOE UONEPI|EA pUe sanjeA Axold D7 usam}aq SUONR|a.1I00 Yuel uewleadsg

ies,

ion of Figure 2]

10N O

t between ZC proxy values and validation accurac
28

ien
This is the full vers

Spearman rank correlation coeffic

for each ZC proxy and benchmark. The rows and columns are ordered based on the mean scores

across columns and rows, respectively.

Figure 6

NB101-CF10
NB201-CF10
NB201-CF100
NB201-IMGNT
NB301-CF10

TNB101 MICRO-JIGSAW
TNB101 MICRO-SCENE
TNB101 MICRO-OBJECT
TNB101 MICRO-ROOM
TNB101 MICRO-AUTOENC
TNB101 MICRO-NORMAL
TNB101 MICRO-SEGMENT
TNB101 MACRO-JIGSAW
TNB101 MACRO-SCENE
TNB101 MACRO-OBJECT
TNB101 MACRO-ROOM
TNB101 MACRO-AUTOENC
TNB101 MACRO-NORMAL
TNB101 MACRO-SEGMENT
NB201-SCIFAR100
NB201-SVHN
NB201-NINAPRO
NB301-SCIFAR100
NB301-SVHN
NB301-NINAPRO

TNB101 MICRO-SCIFAR100
TNB101 MICRO-SVHN

TNB101 MICRO-NINAPRO

-0.05-0.10
-0.02 -0.09 -0.03
0.34 0.46
0.38 0.48
0.51 0.55
0.44 0.47
0.35 0.35
0.43
0.38
0.20 0.52
0.12 0.37

0.13 0.92 0.95

0.45

0.90

0.43 0.30 0.23 0.29

0.78 0.32 0.39 0.47

0.41

-0.11

0.15 0.64 0.67 0.70

0.08 0.60 0.62 0.62

-0.04 0.23 0.26 0.28 -0.06/ 0.90 0.97

WO (@ P \'S"“ C?@ (f:“‘\ (,@\E 36‘/\0 v&“\‘\ e@‘(‘

-0.01
0.31 -0.00
0.47 0.19
0.39

0.78 0.24

-0.03 -0.02

0.23 0.71

0.12 0.73

Correlation between benchmarks based on ZC proxy values

-0.03 -0.08 0.45 0.29

0.38 0.14 -0.05 -0.02
0.37 0.12 -0.10 -0.09

0.36 0.10 -0.03

-0.13 0.45
0.90 9 0.30
0.95

1.00

0.55
0.57

40
0.46
0.42
0.17
0.26
0.51
0.39
-0.13
0.30
0.03 0.03 0.02 0.82
0.24 0.14 -0.10 0.06
0.55
0.87

0.71 0.46 0.61

0.93 0.79 0.57 0.53

0.93 0.79 -0.05 0.52

0.16

0.53

0.61

0.51

0.51

0.55

0.68

0.51

0.13

0.46

0.41

0.37

0.57

0.45

\k@(\ G‘N (.@\E 36'/\

0.50 0.45 -0.03 0.20 0.12

0.42 0.42 0.37

0.41 0.46 0.38

0.43 0.52 0.45

0.59 0.42
0.26 0.56
0.17 0.51
0.15 0.42
0.07 0.26
0.44 0.15

9 043 0.84

0.35 0.13

RUEE] 0.92

Rl 0.95

0.90

0.10 0.31

-0.01 -0.00

-0.13 0.30

-0.06 0.02

0.24

9 ﬁ 0.34

0.67
0.71
0.80
0.71 0.80 1.00

9 0.79 0.89 0.93

0.24 0.31 0.38
0.40 0.21 0.16
0.22 -0.07 -0.08 0.03
0.35 0.11 0.43 0.22

0.27 0.13 -0.01 0.25

0.23 0.33 0.61 0.43
0.17 0.28 0.53 0.36

0.40 0.13 0.21 0.50 0.37

< \Y
& & Qs& \@‘ & ,,\\V\

-0.06 0.28

-0.05 0.22

9 -0.07 0.12

1.00

m -

0.43 0.41 0.78 -0.11 0.15
0.64
0.67
0.70
-0.03 0.23
-0.02 0.71

RUE] 0.24 0.87

RUE) 0.14 0.71
-0.42 -0.107 0.46
0.60 0.06 0.55
0.07 0.41 0.06 0.61
-0.08 0.39 -0.07 0.66
0.17 0.51 0.13 0.46
0.16 0.53 0.10 0.48
0.18 0.43 0.16 0.38
0.22 0.35 0.27 0.23
-0.07 0.11 0.13 0.33
-0.08 0.43 -0.01 0.61
0.03 0.22 0.25 0.43

0.16 0.43

-0.0ZW 0.29 ﬂ 0.64

-0.13 -0.12

58

-0.02/ 1.00 0.41 -0.05 0.53 -0.02 -0.01

0.16 m 0.41 1.00 [0.05 0.65 QIRSVEIEE]

0.43 0.29 -0.05 0.05 1.00 46

-0.13 0.64

-0.12 0.58

=0.02B1k:1] 0.46 EOXZY 1.00

R Lk) -0.59 (VY4 -0.48

=0:07 B0l 0.30 EkI 0.83

0.87 1.00

p‘é :,\\V\ < 93,“% o

\\‘* < < o™
A B L S o P 0 e s 0" c'$c'c?*>v "G C\ oY
W T Y W "G;x"‘xi\“&; e XC*Q \\«S“ XC*Q \»t“ e\Pi v“; a 6*1\\ ‘*‘,\‘x@%@xﬁ \\ng ‘\\\?;5 xﬁ o ‘,\xt
\\%@ “\g,\ \\%\?’ /,\\\Q> %xg\ \\%@ %@\ ?’@ “\g, \\%@ /,\‘\% %@\ \\@2‘\;\@/ & R W 2

Figure 7: Pearson correlation coefficient between ZC proxy scores on pairs of benchmarks. The
entries in the plot are ordered based on the mean score across each row and column. This is the full
version of Figure 3]

29

Precision @ k=5
fisher 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.000 0.000 0.000 - 0.000 0.000 - 0000 0.000 0.000
grasp 0.000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.000 - 0.000 - 0000 0000 0.000
plain 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
snip 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.000 0.000 0.000 0.000
grad norm 0.000 0.000 0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

12 norm 0000 0000 0000 0000 0000 0.000 0.000 - 0000 0000 0.000 0.000 [IFREN)
0.000 JOREN)

params 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0.000
jacov 0000 0000 0000 0000 0000 0.000 - 0.000 - 0.000
zen 0000 0000 0000 0000 0000 0000 0.000 - 0.000
flops 0000 0000 0000 0000 0000 0000 0000 0.000 0.000
nwot 0000 0000 0000 0000 0000 0000 0000 0000 0.000

0.000 0.000 0.200

0.000 0.000 0.120
0.000 0.000 . & 0.120

® ® N) < < < N N © ¢ © © © v v & X} N
P g B (o o o @ o @ o @ @ o o
N 0o D 0 o W 0% & (& S I e e N £ 0P o
© N o (S (S [& W © & 20 N N\ o (S & [& {©
W KNS NS S S & & AW kS W AN KNS W S W S
AYT ASY v N “g& “g& ISR @77 A A8Y - A v
AT T (@ Rt < W @ @ &

Precision @ k=25
0008 0032 0000 0000 0008 0024 0000 0000 0032 0016 0000 0040
0024 0064 0000 0000 0048 0056 0016 0000 0024 0032 0048 0056
plain 0032 0072 0008 0008 0000 0.000 0000 0000 0024 0040 0008 0008 0024 0000 0024 0024 0008 0056
grad norn 0.000 0000 0.000 0.000 0000 0008 0000 0016 0024 0000 0000 0032 0.064
snip 0000 0000 0024 0000 0000 0008 0000 0016 0024 0000 0000 0032 0072
jacov 0016 0000 0000 0056 0016 0048 0.024 - 0.000 - 0048 0064 0032

2.norn 0000 0040 0072 0056 _ 0.008 0.056 0.064 0176 0.208

params 0.000 0.040 0064 0.048 0.040 0.040 0.040 0232 0.184 0.176

zen 0.000 0.056 E_ 0016 0.008 0.008 0.008 ORI 0.216

nwot 0.000 0016 0.032 0.056 0.048 0.024 0.016 0.048 0.200 0.360
flops 0.000 0.040 0.064 0.040 0.040 0.040 0.032 0.216 0.256 0.256 0.192 0.368

fisher 0.000 0.000 0.000 0.000 0.000 0.000
grasp 0.000 0.016 0.000 0.000 0.000 0.032

T N S N N Sy ¢ a® o v oS S ¢
O @ @ 2 o @ a6 o o o o g @ o @ e (o

K\ o o & N3 0 & > S o 0" o> o> o o B 8 o W
ISR AR W& N W IR o WS o @ @ RCARC I \m@& < N‘@Q
@,x}" o @ RIS e ide ‘\%@” o @ \’Qx}" ide @xf‘ >
< <X <X B < < <X AR\ BN RN
Precision @ k=100
plain 0.008 0.066 - 0010 0004 0054 0.066
fisher 0.000 0056 0.000 0.040 0050 0036 0050 0018 0022 0056 0.306
grasp 0.012 0006 0.026 0.046 0.058 0.054 0.306
grad norm 0.000 0036 0.000 0040 0042 0.042 0.318
snip 0.000 0.038 0.000 0.328
jacov 0.044 0.028 0.272
12_norm 0.020 0.410
params 0.050 0.294
zen 0.020 0.282 0.194
flops 0.066 0.032 0.404 0.640 0.290 0.422
nwot | 0.044 0,024 - 0462 0. 0.534 0500 0.452
C ® < X} °) < ¢ < v ¢ ® v N © \
(¥ o @ & N e o G\gﬁ e \s@@\ R g NP
K R RS BN P Lo o® o oo S 2 o Y B
O K W (S W (S RS S & < s QO (S O R 8 & & ©
o Y W W W W W W oS W S W N N &
A o> ‘a\p\” e ‘6@\/ %\g\v %@X/ \\‘a@ ‘\%\,‘5 T ?’@‘v A ‘b\p\v @\)"
.‘\Ra AN <) B\ B\ < a\ ‘\\Y> B\ .‘\\‘b N ,@‘6

Figure 8: Precision@K between ZC proxy values and validation accuracies, for each ZC proxy and
benchmark. The rows and columns are ordered based on the mean scores across columns and rows,
respectively.

30

Best ranking @ k=5
flops 0025 0010 0006 0003 0006 0017 0083 0017 0019 0025 - 0039 0067 0.123

nwot 0.020 0.018 0.004 0.003 0.033 0.051 0.008 0.016 0.046 0.032 - 0.036 0.116 0.088
12_norm 0.029 0.011 0029 0117 0.019 0074 0010 0.025 0.032 - 0.056 0.036 0.135 0.082
params - 0.019 0.113 0.118 0.006 0.037 0.048 0.019 0.019 0125 0067 0039 0.130 0.123
jacov 0.014 0.117 0.100 0.062 0.087 0.047 0.016 0.023 0.106 0.100 0.042
0.006 0.019 0.082 0.044 0.042
0.129

zen
grasp
plain =~ 0.042 0.117
snip =~ 0.023 0.021

0.060 . ¥ 0.389

grad_norm 0.024 0079 0.078 ! ! 0.431 !
fisher _- ! 968 | 0 0.528 0122
% v“ N 3 N o W o A9 AQ 4 o W A0 ot N
\\,\@ @,& @g& @\«z oscc ¢ 6\ \@s\ ’s@z @ P e\' o > & Q%‘(‘ @o xﬁc’s %yc(o P g&
v& I S \mt‘\e (& \:&d“ & & Xc?g W N W @ xd’“ &C%“ G N S \»\XL%
o> O a® a0 @,/ i)4 O (@ S S N e
PR ®\ B @ < e R < e \\‘6\’ N < o

Best ranking @ k=25
flops 0002 0001 0005 0018 0012 0005 0005 0003 0001 0009 0002 0016 0004 0005 0004 0030 0028 0.120 “
params 0012 0004 0008 0009 0012 0005 0004 0003 0012 0009 0002 0016 0004 0010 0004 0030 0.028 0.120 E
12_norm 0012 0009 0.006 0.009 0008 0006 0007 0007 0034 0018 0003 0017 0002 0036 0003 0.049 0.009 - 0.049
jacov 0005 0.009 0014 0025 0016 0135 0020 0010 0031 0008 0014 0044 0007 0013 0016 0040 0059 0096 0.038
nwot 0.001 0001 0002 0019 0030 0004 0006 0.006 0001 0022 0005 0065 0002 0006 0007 0076 0.022
zen 0010 0002 0004 0004 0003 0.002 0.002 PN 0003 0014 0002 0014 0002 0.053
plain 0023 0026 0037 0057 0127 0.088 _ 0067 0074 0083 0073 0035 0.009
grasp 0.014 0049 0052 0084 0033 0006 0015 0020 0.126 0.032 0.120
snip 0007 0009 0009 0071 0055 0041 0011 0020 0101 0.033
grad norm 0.006 0003 0014 0068 0055 0049 0020 0021 0103 0035
fisher 0.040 0050 0034 001 0433 0034 0062 0070 0.112 0.066

N N o N\ N N o W A0 A\ N N o W o) A0 o N
\),\ge @y\“ PO CUPT S " JSIa S X-& G (@ y&" &€ Q‘&z ‘@@ & %xg “,@ G

B D QQ’ W o Q0 h .
<v\“ v(} «® W o ® &® W ® & @ ,@& &C*“ «® !C?* &(}“ &C*Q R V\’»" «®
o> 3 ‘b\"\‘/ ‘\“\'/ (32 ‘\)2 X & o>) () @Q 33 ¢
S W @ ® B B @ PR SN S NPt

Best ranking @ k=100
flops 0001 0001 0002 0001 0001 0003 0001 0002 0004 0004 0005 0002 0007 0002 0001 0001 0002 0017 0.010

params 0.001 0.002 0.004 0.001 0.003 0003 0.001 0.001 0.003 0004 0004 0002 0.005 0.002 0001 0003 0003 0017 0.010
12_norm 0.002 0.002 0.003 0.002 0.008 0.004 0.003 0.003 0.003 0.014 0009 0.002 0.005 0005 0.001 0.002 0.008 0.003 0.010
zen 0.001 0001 0.002 0.002 0005 0002 0001 0002 0.004 0.005 0006 0002 0035 0003 0.001 0.001 0.004 0003 0.013
nwot 0.002 0.001 0.002 0.001 0.001 0.002 0.003 0.002 0.004 0010 0.011 0.001 0.005 0.008 0.001 0.001 0.002 0.018 0.046
jacov 0.002 0003 0003 0.003 0.003 0005 0003 0002 0008 0.007 0.027 0011 0016 0002 0006 0.009 0.005 0040 0.009

plain 0.008 0.012 0.006 0.027 0.008 0.019 0043 0.012 0.023 0.003 0.002 0.003 0.013
grasp 0.004 0003 0011 0.003 0010 0003 0007 0.026 0.019 0.021 0014 0.005 0.021 0.056
fisher 0.003 0.007 0.009 0.003 0.009 0016 0.007 0.023 0.017 0026 0013 0.017 0.007 0.024 0.004 0.053 I 0.420
snip 0.002 0.002 0.004 0.002 0.001 0.009 0.006 0.004 0.017 0017 0023 0.010 0005 0.021 0.022 0.043 b b 0.357
grad_norm 0.002 0.002 0.002 0.002 0.001 0.008 0.006 0.005 0.024 0023 0.023 0.008 0.008 0.021 FUEEEN 0.053 k b 0.348

N v & « S 2 W\ < o » o N < o ¢
@\'\“\ ‘\g@“ %@k‘c“ o @V“ 5@“ ® v&““ “v~“° &:‘?“ @3‘5’ &> @Q «> 560“ {\5{9“ “@‘é' & o

S o 5 5 AT S RS RN R AT S AR U SRR SO)
S \»@s o @ g @\\:\‘x N R R " R \’\ﬁ(“\ \’N} W
PP P ¥ &‘5@ T QS : © % PR &

Figure 9: BestRanking @K between ZC proxy values and validation accuracies, for each ZC proxy
and benchmark. The rows and columns are ordered based on the mean scores across columns and
rows, respectively.

31

Pairwise correlations of ZC proxies

plain
grasp
nwot
flops
zen
jacov
epe_nas
synflow
12 _norm
fisher
params
grad_norm

snip

; X
O ° (\099 2e® o ®@° &\ﬁ“ ot

Q (}(A\

N\ & a°
X 2 PRSI
> B S

<
e
Ao <
L ed Q° o2 P

Figure 10: Pearson correlation coefficient for each pair of ZC proxies, averaged over all benchmarks.
The entries in the plot are ordered based on the mean score across each row and column.

32

synflow
jacov
epe_nas
params
flops.

plain
grad_norm
snip

fisher

grasp

synfiow
params.
12_norm
flops.

plain

snip
grad_norm

jacov

synflow
params.
12_norm

flops.

plain

synflow
params.
12_norm
flops

plain

snip
grad_norm

jacov

Figure 11: Conditional entropy and information gain (IG) for each ZC proxy pair across all search

Pairwise conditional entropy on NB101-CF10

12_norm
nwot
synfiow
Jacov
epo_nas
params
flops.

plin
grad_norm
snip

fisher
grasp

N & ooV &, a® SN)
B W®¢‘9;o'® o ¢

Pairwise conditional entropy on NB201-CF10

139 139 139 139 136 synflow

150 150 150 160 160 params

5 156 12_norm
flops.

plain

snip
grad_norm
jacov

zen
epe_nas
nwot
fisher
grasp

o >
o Wﬂ/‘\d‘\p‘)

synflow
params
12_norm
flops.

plain

snip
grad_norm
Jacov

zen
epe_nas
nwot
fisher
grasp.

ey vﬁ,«; P ‘69@\;@* w‘e W«a’ & @ @
o

Pairwise conditional entropy on NB201-IMGNT

270 280 synflow

304 305 params

300 310 12_norm
flops.

plain

snip
grad_norm
jacov.

zen
epe_nas
fisher
grasp.

nwot

B

G o

* p T

«°
&

025

045

N N §® O
2 \Lﬁoﬁ“ﬂwg w"\%:,oz PaRCC

032

085 0

081 088

Information gain on NB101-CF10

032 035 035 035|048 049 027

020 035 035 034

000 CXEREYY

046 mw 040 [

036

028

022

031 024 021

039 035 | 029 0.

039 040 | 027 020 0. 001

038 038 | 025 020 ¢ 002

026 023 000

025 021 003

o *Se«‘%«\" «
o

S

Information gain on NB201-CF10

034 012 -000 0.00 000 -0.00 0.03

008 013 0143 013 007 003

009 013 013 013 008 003

010 012 042 012 007 003

006 008 008 003 004

043 003 014 014 014 008 002

044 | 044 000 045 045 015 009 0.02

048 046 045 000 000 000 000 002

048 | 046 045 000 000 000 000 002

048 | 046 045 0.00 000 000 000 002

049 | 047 015 006 005 006 000 002

051 050

000

51 050

002

) © S @ et 5 O 3
AT 7 o e e
<

061
063
063
063
064

111 088

109 |0

of

069

o (O
(g o

Information gain on NB201-CF100
000 000

006

013 013 007 006

013 013 007 006

012 012 007 005

007 007 003 006

014 014 008 003

015 015 009 003

000 000 000 003

000 000 000 003

000 000 000 0.03

006 000 003

015 009 000

015 015 009 003

N
0 Fad @

o 0 St
& *@»1"(\“’) oS

Information gain on NB201-IMGNT

000 000 042 009

013 013 012 009

013 013 012 008

012 012 012 009

007 007 041 009

014 014 005 005

015 015 005 004

000 000 006 006

000 000 006 006

000 000 006 006

070 015 015

on 0n
o 0
o2 00

© O 0 St
ey o 9 “‘,w“@

000 005

068 068 015 015 005 000

064 063 006 006 006 0.06

S e
EPRLT

o0
&

005
003

004

&

002
002

002

002
002
002
002
002
002
000

&

005
005
005
005
006
003
003
004
004
004
004
003
000

o

000
007
007
007
004
008
009
000
000
000
009
009

000

o

o N »

Conditional entropy

o © © o ©
o N » ® ®

225
2.00

P!
3
&

1.50
1.25
1.00
0.75
0.50
0.25

Conditional entropy

4.0

Conditional entropy
S =2 = NN W w
o o o o v o o

NB101-CF10

—— random ordering
—— greedy ordering
—— minimum k-tuple

12 3 4 5 6 7 8 9 10 1112 13
Number of ZC proxies

NB201-CF10

—— random ordering
—— greedy ordering
—— minimum k-tuple

1.2 3 4 5 6 7 8 9 10 1112 13
Number of ZC proxies

NB201-CF100

—— random ordering
~——— greedy ordering
~——— minimum k-tuple

12 3 4 5 6 7 8 9 10 11 12 13
Number of ZC proxies

NB201-IMGNT

—— random ordering
—— greedy ordering
—— minimum k-tuple

12 3 4 5 6 7 8 9
Number of ZC proxies

10 11 12 13

spaces and datasets (Left and Middle). Conditional entropy H(y | zi,,...,2i,) vs. k, where the
ordering z;,, ..., 2;, is selected using three different strategies (Right). (1/5)

33

Pairwise conditional entropy on NB301-CF10

Information gain on NB301-CF10

epe_nas NPT <« 131 152 157 156 tsé 155 120 120 090 087 080
synflow synfiow ‘W 135 130 131 131 131 104 102 084 082 083
plain plain’ [RECHR m‘ 125 125 128 122 104 104 072
t IR 7 061 108 107 0
™ = NB301-CF10
zen zon RECARREIRRE . 108 1 35
; o —— random ordering
flops. fops. 1 110 30 |
2 —— greedy ordering
12_norm 12_norm 109 107 g .
225 —— minimum k-tuple
params params [REM PP 00 108 08 540
snip snip [RECEEERN 129 131 K -0.00 ®
1=
15
grad_norm grad_norm [KEZHEE 29 129 130 127 u ;S
°
[250 255 260 fisher (XSS 0 104105 105|104 104 059 059 R 510
o
Py 255 250 265 Py oss o 097|096 095 057 070 070 0.5
joccre P s 00 o 085 083 050 080 0.0
g S ® s 6 O S S T 12 3 456 7 8 910 111213
o o _L/qd‘;(ﬂ‘“ga“#f“?\ o o a0 o o e "‘«u& Bl Number of ZC proxies
Information gain on TNB101_MACRO-AUTOENC
Pairwise ot 1
ot B
plain
plain
12_norm
e TNB101_MACRO-AUTOENC
4.0
jacov 35 —— random ordering
jacov 2 i
sarams 30 =T grAeEledy ordering
params E= —— minimum k-tuple
grad_norm 5 25
grad_norm 20
snip c
e S15
fisher fisher g 10
flops. flops. 104 093 o 05
arasp grasp [REG 107 102 0.0
o &‘“\L‘d‘“ = \6@« qﬁ"‘& Sdmé(\\v & o & 12 3 45 6 7 8 9 10111213 14
o

12_norm

plain

grad_norm

params.

snip

fisher

WO P

o

Pairwise conditional entropy on TNB101_MACRO-SCENE
nwot [RESW 158 136 135 149 151 161 17

plain

zen

5@
Information gain on TNB101_MACRO-OBJECT

SRS 71 174 140 154 155 139 088

12_nom [EE 4 | 102 | 148
plain

grad_nom
params.
snip
fisher
grasp
flops [0 090
jacov [REETVRR TN

o

o

o

Information gain on TNB101_MACRO-SCENE

W 12 o B o o
o o5 ¥ P

i - ‘nwu

Number of ZC proxies

TNB101_MACRO-OBJECT

—— random ordering
——— greedy ordering
—— minimum k-tuple

12 3 45 6 7 8 9 10111213 14
Number of ZC proxies

TNB101_MACRO-SCENE

12_norm 109 m 183 | 096 140 139
12_nom . 40
grad_nom grad_norm 60 | 176 1 ﬂ 165 090 084 35 —— random ordering
2 —— greedy ordering
- 40 oc
. 5 —— minimum k-tuple
B e o [£25
©
fisher fisher g 20
=15
flops flops. °
510
grasp grasp o 0.5
jacov 3 jacov 0.0

o

o ‘Dﬂw‘;@* o @ @R

I

o o a®

@ o
05 @59 ¢

123 45 6 7 8 910111213 14
Number of ZC proxies

Figure 12: Conditional entropy and information gain (IG) for each ZC proxy pair across all search
spaces and datasets (Left and Middle). Conditional entropy H(y | zi,,. .., 2i,) vs. k, where the
ordering z;,, ..., 2;, is selected using three different strategies (Right). (2/5)

34

nwot

Pairwise conditional entropy on TNB101_MACRO-JIGSAW

ot 1e 135 150 168 216 250 23
zen

2on
12_norm

12_nom
params

params
. grad_nom

arad_nom
plain

plain
o snip
fisher fisher
jacov Jacov
flops flops.
arasp grasp

nwot
plain

12 [aas
2_nom
t2vom 117 |Hn

jacov
jacov

params
params | 129

snip
snip

grad_norm
grad_nom

flops.
fisher
grasp

194 21

o P

Pairwise conditional entropy on TNB101_MACRO-ROOM

grad_norm grad_norm
12_nom 12_norm
params params.
plain plain

snip snip
fisher fisher
grasp grasp
flops flops.
Jacox Jacov

‘@@63"2 R

Pairwise conditional entropy on TNB101_MACRO-SEGMENT

12_norm
12_norm
plain
plain
params
params
jacov.

grasp.
grasp

snip
snip

o,
oy grad_norm

sshor fisher

flops.

o

G B

>

Figure 13: Conditional entropy and information gain (IG) for each ZC proxy pair across all search

Information gain on TNB101_MACRO-JIGSAW

068

0

109 | 083

078 | 070

P s W«\; N P I
Information gain on TNB101_MACRO-NORMAL

106 | 086 | 095

o

091 088 | 080
107 | 089 | 097

050 062 082 063 049 058

131 | 082 | 098 097 086 | 080 063 | 082

127 | 075 | 099 101 | 081 | C 3 075 079 | 084

B I Y LR
s @

Information gain on TNB101_MACRO-ROOM
153 | 141 155 137 | 109 126
084 | 122

128 | 103 058

0922

N SN
o gt o o @0«

& e
@0 «

Information gain on TNB101_MACRO-SEGMENT
YN 162 170 160 160 | 143 132 122 | 145 089
131 08
13 102

089

101

1.06 088 087

3 0 ol O ok
o g o P
o

TNB101_MACRO-JIGSAW

—— random ordering
—— greedy ordering
~——— minimum k-tuple

Conditional entropy
© o o oo NN oW
> o o o o w o

12 3 45 6 7 8 9 10111213 14
Number of ZC proxies

TNB101_MACRO-NORMAL

—— random ordering
—— greedy ordering
—— minimum k-tuple

Conditional entropy
o

1.0

0.5

0.0

12 3 45 6 7 8 9 10111213 14
Number of ZC proxies
TNB101_MACRO-ROOM

3.0 —— random ordering
Z25 —— greedy ordering
2 —— minimum k-tuple
§ 20
215
K]
T10
Q
Cos

0.0

12 3 45 6 7 8 9 10111213 14
Number of ZC proxies
TNB101_MACRO-SEGMENT
4

—— random ordering
—— greedy ordering
—— minimum k-tuple

w

Conditional entropy
- ~

12 3 45 6 7 8 9 10 111213 14
Number of ZC proxies

spaces and datasets (Left and Middle). Conditional entropy H(y | zi,,. .., 2i,) vs. k, where the
ordering z;,, ..., 2;, is selected using three different strategies (Right). (3/5)

35

Pairwise conditional entropy on TNB101_MICRO-AUTOENC

12_norm

12_norm

plain
plain
snip
snip
params
params

nwot
nwot

grad_norm
grad_nom

flops:
fops "

fisher fisher

jacov jacov

zen

grasp

R

o Pk & g B @
o
Pairwise conditional entropy on TNB101_MICRO-OBJECT
snip
snip ‘
params.
params
flops.
flops
12_norm
12_norm
grad_norm
grad_nom
ot nwot
plain plain
grasp arasp
fisher fisher
jocov Jacov
zon 2 zen
X o N <
«° & o o /\o‘:‘& OO g @ @
Pairwise conditional entropy on TNB101_MICRO-SCENE
sni
snip 106 120 113 "
grad_norm
grad_norm
porams params.
fops flops.
ot nwot
12_nom 12_norm
plain plain
gresp grasp
jacov Jacov
zen zen
fisher fisher

snip
snip

params
params

flops.
flops

grad_norm
grad_nom

nwot
nwot

[
2o 12_norm

plain plain
fsher fisher

Jacov

grasp [REE 1 190 190

= o @:@6?"@ "@\1,“"@ e

«*

Figure 14:

Information gain on TNB101_MICRO-AUTOENC

000 79 082 | 057 | 073 077 [RECEESERNECEEIT

020 020

000 000 005

- o

o

044 054

R o & S
1@“ 90 o N 0o @ ot o
A A Pasd

Information gain on TNB101_MICRO-OBJECT

§ S S
« Qﬂ\‘e o ﬂ}oﬁ«aﬂ P R
o

Information gain on TNB101_MICRO-SCENE

" <
& B @

N o
P AP
& e o o

Information gain on TNB101_MICRO-JIGSAW
013 013 o1

012 012
004 004

014 014 012

061 066 | 059

050 043 | 042

57 050 043 | 042

A © > i
«® v"‘m o » ,‘,em‘“w o ,\,cx‘“ O @ gt e (@
o

Conditional entropy
© ©o o oo poN o®
© o o u o @« o

= M
o o o

Conditional entropy
>

e o
o o

Conditional entropy
o = =N
o o o o

o
o

o

Conditional entropy
>

TNB101_MICRO-AUTOENC

—— random ordering
——— greedy ordering
——— minimum k-tuple

12 3 45 6 7 8 9 10111213 14
Number of ZC proxies

TNB101_MICRO-OBJECT

—— random ordering
—— greedy ordering
—— minimum k-tuple

12 3 45 6 7 8 9 10111213 14
Number of ZC proxies

TNB101_MICRO-SCENE

—— random ordering
—— greedy ordering
—— minimum k-tuple

12 3 45 6 7 8 9 10111213 14
Number of ZC proxies

TNB101_MICRO-JIGSAW

—— random ordering
—— greedy ordering
~——— minimum k-tuple

1.2 3 45 6 7 8 9 10111213 14
Number of ZC proxies

Conditional entropy and information gain (IG) for each ZC proxy pair across all search

spaces and datasets (Left and Middle). Conditional entropy H(y | zi,,. .., 2i,) vs. k, where the
ordering z;,, ..., 2;, is selected using three different strategies (Right). (4/5)

36

params

Pairwise conditional entropy on TNB101_MICRO-NORMAL

flops.

12_norm

nwot

plain

grad_norm

snip

fisher

jacov

R T @@:‘ SIS @ o o

Pairwise conditional entropy on TNB101_MICRO-ROOM

snip

grad_norm

12_nom

params

flops.

nwot

plain

fisher

grasp.

Jacov

zen

P S

Pairwise conditional entropy on TNB101_MICRO-SEGMENT params
O - - RENREIREIREEY 0 2o 20 2o

flops
fiops [
12_norm
12_nom 180
nwot
nwot 185

o '

plain 158

snip
plain
grad_norm
fisher

Jacov

0

o = @QQQ@A

S

Figure 15: Conditional entropy and information gain (IG) for each ZC proxy pair across all search

Information gain on TNB101_MICRO-NORMAL

017 014 014

055
058 051

041

o N NN
R T s I
o

Information gain on TNB101_MICRO-ROOM

000 8 o080 o077 | 064 o051 I 014 014
013 013

014

«° » 9‘,«\2 "m@‘,«* oF @ @0 @ @R gt
o

Information gain on TNB101_MICRO-SEGMENT

o o [EIREE o om0 on

'E- o

013 013 043 047

078 | 055

000 000 000 040

017 017 017 o013

[N 000 000 -000 004

000 000 000 004

el

6
gt o o

S0 e
i

Conditional entropy
2 &

Conditional entropy

Conditional entropy
o ©o = 4 oM N oW
> o o w o w o

TNB101_MICRO-NORMAL

—— random ordering
——— greedy ordering
—— minimum k-tuple

12 3 456 7 8 9 10111213 14
Number of ZC proxies

TNB101_MICRO-ROOM

—— random ordering
—— greedy ordering
—— minimum k-tuple

12 3 45 6 7 8 9 10111213 14
Number of ZC proxies

TNB101_MICRO-SEGMENT

—— random ordering
—— greedy ordering
—— minimum k-tuple

12 3 45 6 7 8 9 10111213 14
Number of ZC proxies

spaces and datasets (Left and Middle). Conditional entropy H(y | zi,...,2i,) vs. k, where the
ordering z;,, . .., z;, is selected using three different strategies (Right). (5/5)

37

Pairwise conditional entropy on NB301-CF10

Information gain on NB301-CF10

epe_nas 118 149 147 120 120 122 120 148 117 147 117 1.19 epe_nas 0.00 [PXEVMPECRPXINPE]
jacov 122 120 127 123 122 124 126 125 125 1.24 jacov m 8 284 2.87
grasp 1.19 140 122 126 128 123 121 123 121 122 grasp Mz.es 259
plain 117 1.22 123 119 119 129 129 130 132 1.31 plain 271 MZW
fisher 120 120 1.40 178 177 120 147 120 122 121 fisher
synflow 120 127 122 123 138 143 140 147 142 synflow
snip 122 123 126 1.19 1.78 1.34 snip
grad_norm 120 1.22 1.28 1.19 177 1.46 grad_norm
nwot 1.18 124 123 129 120 1.38 nwot
flops 117 126 121 129 117 143 flops
12_norm 117 125 123 130 1.20 1.40 12_norm
zen 147 125 121 132 122 147 zen
params 119 124 122 131 121 142 params 0.00
- S o 2" i\5“e‘e *“&\0‘“ eé\‘;‘a }\c““\\«"\ ,\\0?5\1 j\o““ 20 Q'b‘m@ & 0 @ 90" @\‘?"e \!‘«\0‘“ 66\‘;@6 /(\o“?\«"\ r\\OQe\(L }\o“(\ 0 Q,b(o“‘s
NB301-CF10 NB201-CF100 TNB101_MACRO-autoencoder
4 —— random ordering 4 —— random ordering 4 —— random ordering

greedy ordering
—— minimum k-tuple

w

Conditional entropy
N ~

12 3 4 5 6 7 8 9 10 11 12 13
Number of ZC proxies

greedy ordering

w

Conditional entropy
- ~

\\‘

—— minimum k-tuple

greedy ordering
—— minimum k-tuple

5

Conditional entropy
- ~

12 3 4 5 6 7 8 9
Number of ZC proxies

10 11 12 13 1

2 3 45 6 7 8 9 10 11 12 13
Number of ZC proxies

Figure 16: Given a ZC proxy pair (¢, j), we compute the conditional entropy H (y | 2;, z;) (top left),
and information gain H(y | z;) — H(y | 2, ;) (top right). Conditional entropy H(y | zi,, - - -, %,)
vs. k, where the ordering z;,, ..., z;, is selected using three different strategies. The minimum
k-tuple and greedy ordering significantly overlap in the first two figures (bottom). Similar to Figure
EI, but using a different bin discretization strategy.

38

NB101 CF10 NB201 CF100

0.96
C 0.80 c
2 S 0.94
T 0.75 o
) o 092
£ 0.70 =
o S 0.90
z 0.65 :2'
0.88
S 0.601 5
o o 0.86 -
€ 0551 <
0.84 1
€ 050 €
s © 0821
0.45
Q. Q.
0 v 0.80
0.40 1 T T T T T T T T T T T T
4 6 8 10 12 2 4 6 8 10 12
Num. ZC Proxies Num. ZC Proxies
NB301 CF10 TNB101-Macro-Autoencoder
0.50
c c 0.90
o o
T 045 | © 0.8
£ £
5 S 0.86
© 0.40 O
X Y 0.84
C c
© ©
& 035 & 0.82+
C c
© ©
c £ 0.80
55 0.30 5
L} © 0.78
& &
0.25 0.76
2 4 6 8 10 12 2 4 6 8 10 12
Num. ZC Proxies Num. ZC Proxies

Figure 17: Ablation study on the number of ZC proxies as features vs. rank correlation performance,
for an XGBoost surrogate model trained on 1000 randomly drawn architectures. The ordering of ZC
proxies is computed via the greedy method from Section @

39

NB201 CF10 NB201 CF100 NB201 IMGNT

73.0 47.0
91.4{ — Encoding — Encoding —— Encoding
— 2ePs 7254 — zcps 4654 — ZCPs
91.2{ — Encoding + ZCPs —~ —— Encoding + ZCPs — —— Encoding + ZCPs
X x
_ 910 < 720 S 46.0
g > >
3908 & 715 @ 455
5 \5 \5
g 906
< g 710 9 450
90.4 < <
705 445
902
70.0 44.0
90.0 5 105 108
Time (5) Time (s) Time (s)
NB301 CF10 TNB101_MICRO JIGSAW TNB101_MICRO OBJECT
94.4{ — Encoding 95.2{ — Encoding 45.44 — Encoding
ZCPs —— zCPs — 7cps
= Encoding + ZCPs g5.0{ — Encoding +ZCPs 4529 — Encoding + ZCPs
L 943 45.0
Ro4s g
a‘ 94.2 Z S8
© I 3
5 £ o6 S aas
o 941 < <44
< 9.4
94.0 44.2
942 44.0
93.9
s e 9.0 438
10 . 10 109 100 10° 108
Time (s) Time (s) Time (s)
TNB101_MICRO NORMAL 540 TNB101_MICRO SCENE TNB101_MICRO SEGMENT
05800 = — Encodint
— Encoding 54.8 9 94.60 { — Encoding
05775 { — ZCPs =T Zcke — zcps
—— Encoding + ZCPs 54,7 — Encoding + ZCPs 94.58 1 —— Encoding + ZCPs
0.5750
_ 546 94.56
05725 g
- 5545 S 9454
H 2
05700 55“ .
0.5675 <
243 94.50
05650 542
94.48
0.5625 54.1
94.46
0.5600 54.0
106 10° 100 10°
Time (s) Time (s) Time (s)
TNB101 MICRO ROOM s TNB101_MICRO AUTOENC
—0.605 =
—— Encoding — Encoding
—0.6104 — ZCPs 0.5704 —— ZCPs
) —— Encoding + ZCPs —— Encoding + ZCPs
0.565
—0.615
0.560
% 0620
S % 0.555
Y o625
0.550
0630 0.545
—0.635 0540
—0.640 0.535
10° 10° 10° 107
Time (s) Time (s)

Figure 18: Performance of BANANAS with the vanilla XGBoost surrogate model vs. XGBoost using
the additional ZC proxy scores (concatenated to the architecture encoding) as input.

40

NB201 CF10

NB201 CF100

910 NB201 IMGNT
' 47.00
72.44 — Encoding —— Encoding
—— ZCPs 46.75 — ZCPs
90.8 72.24 — Encoding + ZCPs ~—— Encoding + ZCPs
46.50
- _ 720
2906 g ga625
g 3718 >
g g g 46.00
2 ge 8
904 g K 4575
714 45.50
90.24 — Encoding
~—— ZCPs 71.2 4525
—— Encoding + ZCPs
90.0 71.0 45.00
105 10° 105 10° 10°
Time Time Time
sis TNB101_MICRO JIGSAW w50 TNB101_MICRO OBJECT o TNB101 MICRO NORMAL
— Encoding —— Encoding — Encoding
94.7 —— zcps —— zcps — zcps
~—— Encoding + ZCPs 44.8 ~—— Encoding + ZCPs —
oe 0.568 Encoding + ZCPs
g94s5 Lae 0.566
< >
8944 8 H
3 5 2
£ 943 g 444 0.564
942
442 0.562
941
94.0 44.0 0560
10° 108 108 107
Time Time Time
TNB101_MICRO SCENE
s ssse7— TNB101_MICRO SEGMENT TNB101_MICRO ROOM
— Encoding -oee - — Encoding
sas —— zcps . .
34531 — Encoding + 2cts o — ncodng + 275
—0.6250
7 54.4 94.52
g ~06275
> 3 4
%5“ 20451 570 6300
<542 94.50 -0.6325 /
— Encoding 060
541 94.49
— zcps ~06375
~—— Encoding + ZCPs
54.0 94.48 -0.6400
100 10° 107 10°
Time Time Time
TNB101_MICRO AUTOENC
0.554
0.552
0.550
= 0.548
7
0.546
0.544
~—— Encoding
0.542 —— ZCPs
— Encoding + ZCPs
0.540
106 107
Time

Figure 19: Performance of NPENAS with the vanilla XGBoost surrogate model vs. XGBoost using
the additional ZC proxy scores (concatenated to the architecture encoding) as input.

41

Feature importances for NB101 (train size: 100)

=10
-08
0.6
CF10 0.166 0.187 0.243 0.28 0.281 0.336 0.361 0.417 0.449 I 1
0.4
0.2
0.0
params snip grad_norm nwot zen synflow 12_norm plain grasp flops jacov fisher epe_nas
Feature importances for NB201 (train size: 100) 1o
[elZ VI 0.000173 0.185 0.202 0.247 0.253 0.276 0.264 0.326 0.328 Il 0.818 08
0.6
CF100 0.23 b 5 0.35 0.874
0.4
[[Y[cl 0.000347 k 0.269 0.301 0.309 0.321 0.345 L - 1 02
0.0
params snip grad_norm nwot 12_norm zen grasp flops plain synflow jacov fisher epe_nas
Feature importances for NB301 (train size: 100) o
-08
0.6
CF10 0.0912 0.114 0.187 0.231 0.244 0.302 0.336 0.342 ¥ 1
0.4
0.2
0.0
zen params 12_norm snip nwot grad_norm synflow plain flops grasp jacov fisher epe_nas
Feature importances for TNB101_MICRO (train size: 100) .
JIGSAW L 0.263 0.348 0.384 0.13 0.441 ’
SCENE J 0.206 0.252 0.27 0.682 0.345 -08
OBJECT 0266 0326 0344 [NOKIPEN o041 o6
AUTOENC b 0.358 0.381 0.436 (0] 0.476
NORMAL 0298 0308 0357 0 0.413 04
ROOM ! 026 o3t1 oz2ss [JEEEH oo 02
SEGMENT 0.258 0.166 0.314 (0] 0.409
0.0
params synflow snip zen grad_norm nwot 12_norm plain grasp epe_nas flops jacov fisher
Feature importances for TNB101_MACRO (train size: 100) o
JIGSAW 0.242 0.379 0.317 0.457 ’
SCENE 0.166 0.286 0.239 0.41 -08
OBJECT 0.158 0.324 0.302 0.391 08
AUTOENC 0.249 0.309 0.401 0.266
NORMAL 0.221 0301 0.398 0.34 04
ROOM 0.179 0306 | 0.361 0.354 02
SEGMENT 0.22 0.176 0.352 0.505 0.86
0.0

synflow snip zen params 12_norm grad_norm plain grasp nwot jacov epe_nas flops fisher

Figure 20: Feature importance values for XGBoost trained on a set of 100 architectures using ZC
proxies as features.

42

Feature importances for NB101 (train size: 1000)

=10
0.8
0.6
CF10 0.268 0.334 0.346 0.358 0.384 0.39 k I 1
0.4
0.2
0.0
params snip grad_norm zen nwot flops synflow 12_norm plain grasp jacov fisher epe_nas
Feature importances for NB201 (train size: 1000) 1o
CF10 0.305 0.291 0.33 08
0.6
CF100 [K 0.326 0.329 0.358 0.383 0.387
0.4
(Y[l 0.00152 0.254 0.336 0.381 0.397 0.428 0.424 02
0.0
params snip flops grad_norm nwot zen 12_norm synflow grasp plain jacov fisher epe_nas
Feature importances for NB301 (train size: 1000) o
0.8
0.6
CF10 0.0179 0.0842 0.133 0.158 0.244 0.272 0.305 0.326 1
0.4
0.2
0.0
zen params 12_norm snip nwot grad_norm synflow plain flops grasp jacov fisher epe_nas
Feature importances for TNB101_MICRO (train size .
JIGSAW 0.252 ’
SCENE 0.182 08
OBJECT 0.269 0.6
AUTOENC 0.465
NORMAL 0.394 04
ROOM 0.237 02
SEGMENT 0.395
0.0
params synflow snip zen epe_nas grad_norm nwot flops 12_norm plain grasp jacov fisher
Feature importances for TNB101_MACRO (train size: 1000) o
JIGSAW 0.408 0.307 0.162 0.515 0.447 W ’
SCENE 0.268 0.309 0.85 0.4 0.338 0.8
OBJECT 0.28 0.344 0.97 0.451 0.379 06
AUTOENC 0.403 0.458 0 0.447 0.516
NORMAL 0.426 0.502 0 0451 0544 04
ROOM 0292 0.331 m 0393 0457 02
SEGMENT 0.423 0.474 0 0.329 0.456 0.905
0.0

synflow params snip zen 12_norm nwot grad_norm epe_nas plain grasp jacov flops fisher

Figure 21: Feature importance values for XGBoost trained on a set of 1000 architectures using ZC
proxies as features.

43

	Introduction
	Background and Related Work
	Overview of NAS-Bench-Suite-Zero
	Generalizability, Mutual Information, and Bias of ZC Proxies
	RQ 1: How well do ZC proxies generalize across different benchmarks?
	RQ 2: Are ZC proxies complementary with respect to explaining validation accuracy?
	RQ 3: Do ZC proxies contain biases, such as a bias toward certain operations or sizes, and can we mitigate these biases?

	Integration into NAS
	Conclusions, Limitations, and Broader Impact
	NAS Best Practices Checklist
	Dataset Documentation
	Author responsibility and license
	Maintenance plan
	Code of conduct
	Datasheet

	Related Work Continued
	Theoretical results for ZC proxies

	Details from Section 4
	Details from Section 4.1: generalization
	Initial results with FBNet

	Details from Section 4.2: information theory
	Details from Section 4.3: biases
	NAS-Bench-Suite-Zero Speedup Details

	Details from Section 5
	Feature importances of ZC proxies
	Ablation study on the number of ZC proxies
	Additional NAS results

	ZC Proxy Competition

