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Abstract

Zero-cost proxies (ZC proxies) are a recent architecture performance prediction
technique aiming to significantly speed up algorithms for neural architecture search
(NAS). Recent work has shown that these techniques show great promise, but cer-
tain aspects, such as evaluating and exploiting their complementary strengths, are
under-studied. In this work, we create NAS-Bench-Suite-Zero: we evaluate 13
ZC proxies across 28 tasks, creating by far the largest dataset (and unified codebase)
for ZC proxies, enabling orders-of-magnitude faster experiments on ZC proxies,
while avoiding confounding factors stemming from different implementations.
To demonstrate the usefulness of NAS-Bench-Suite-Zero, we run a large-scale
analysis of ZC proxies, including a bias analysis, and the first information-theoretic
analysis which concludes that ZC proxies capture substantial complementary infor-
mation. Motivated by these findings, we present a procedure to improve the perfor-
mance of ZC proxies by reducing biases such as cell size, and we also show that
incorporating all 13 ZC proxies into the surrogate models used by NAS algorithms
can improve their predictive performance by up to 42%. Our code and datasets are
available at https://github. com/automl/naslib/tree/zerocost|

1 Introduction

Algorithms for neural architecture search (NAS) seek to automate the design of high-performing
neural architectures for a given dataset. NAS has successfully been used to discover architectures
with better accuracy/latency tradeoffs than the best human-designed architectures [5, 9} 28] 138]). Since
early NAS algorithms were prohibitively expensive to run [58]], a long line of recent work has focused
on improving the runtime and efficiency of NAS methods (see [9} 49| for recent surveys).

A recent thread of research within NAS focuses on zero-cost proxies (ZC proxies) [IL, 23]. These
novel techniques aim to give an estimate of the (relative) performance of neural architectures from
just a single minibatch of data. Often taking just five seconds to run, these techniques are essentially
“zero cost” compared to training an architecture or to any other method of predicting the performance
of neural architectures [48]]. Since the initial ZC proxy was introduced [23|], there have been many
follow-up methods [[1,[16]. However, several recent works have shown that simple baselines such
as “number of parameters” and “FLOPS” are competitive with all existing ZC proxies across most
settings, and that most ZC proxies do not generalize well across different benchmarks, thus requiring
broader large-scale evaluations in order to assess their strengths [2, [25]]. A recent landscape overview
concluded that ZC proxies show great promise, but certain aspects are under-studied and their true
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Figure 1: Overview of NAS-Bench-Suite-Zero. We implement and pre-compute 13 ZC proxies on
28 tasks in a unified framework, and then use this dataset to analyze the generalizability, complemen-
tary information, biases, and NAS integration of ZC proxies.

potential has not been realized thus far [45]]. In particular, it is still largely unknown whether ZC
proxies can be effectively combined, and how best to integrate ZC proxies into NAS algorithms.

In this work, we introduce NAS-Bench-Suite-Zero: a unified and extensible collection of 13
ZC proxies, accessible through a unified interface, which can be evaluated on a suite of 28 tasks
through NASLib [30] (see Figure[I). In addition to the codebase itself, we release precomputed
ZC proxy scores across all 13 ZC proxies and 28 tasks, which can be used to speed up ZC proxy
experiments. Specifically, we show that the runtime of ZC proxy experiments such as NAS analyses
and bias analyses are shortened by a factor of at least 10% when using the precomputed ZC proxies in
NAS-Bench-Suite-Zero. By providing a unified framework with ready-to-use scripts to run large-
scale experiments, NAS-Bench-Suite-Zero eliminates the overhead for researchers to compare
against many other methods and across all popular NAS benchmark search spaces, helping the
community to rapidly increase the speed of research in this promising direction. Our benchmark
suite was very recently used successfully in the Zero Cost NAS Competition at AutoML-Conf 2022.
See Appendix |F for more details. In Appendix |Bl we give detailed documentation, including a
datasheet [[10], license, author responsibility, code of conduct, and maintenance plan. We welcome
contributions from the community and hope to grow the repository and benchmark suite as more ZC
proxies and NAS benchmarks are released.

To demonstrate the usefulness of NAS-Bench-Suite-Zero, we run a large-scale analysis of ZC
proxies: we give a thorough study of generalizability and biases, and we give the first information-
theoretic analysis. Interestingly, based on the bias study, we present a concrete method for
improving the performance of a ZC proxy by reducing biases (such as the tendency to favor larger
architectures or architectures with more conv operations). This may have important consequences
for the future design of ZC proxies. Furthermore, based on the information-theoretic analysis, we
find that there is high information gain of the validation accuracy when conditioned on multiple
ZC proxies, suggesting that ZC proxies do indeed compute substantial complementary information.
Motivated by these findings, we incorporate all 13 proxies into the surrogate models used by NAS
algorithms [44, 47], showing that the Spearman rank correlation of the surrogate predictions can
increase by up to 42%. We show that this results in improved performance for two predictor-based
NAS algorithms: BANANAS [47] and NPENAS [44].

Our contributions. We summarize our main contributions below.

* We release NAS-Bench-Suite-Zero, a collection of benchmarks and ZC proxies that unifies
and accelerates research on ZC proxies — a promising new sub-field of NAS — by enabling
orders-of-magnitude faster evaluations on a large suite of diverse benchmarks.

* We run a large-scale analysis of 13 ZC proxies across 28 different combinations of search spaces
and tasks by studying the generalizability, bias, and mutual information among ZC proxies.

* Motivated by our analysis, we present a procedure to improve the performance of ZC proxies by
reducing biases, and we show that the complementary information of ZC proxies can significantly
improve the predictive power of surrogate models commonly used for NAS.



Table 1: List of ZC proxies in NAS-Bench-Suite-Zero. Note that “neuron-wise” denotes whether
the total score is a sum of individual weights.

Name Data-dependent Neuron-wise Type In NAS-Bench-Suite-Zero
epe-nas [21] X Jacobian
fisher [42] Pruning-at-init
flops [25] Baseline
grad-norm [1] Pruning-at-init
grasp [43] Pruning-at-init
12-norm [1] X X Baseline
jacov [23] X Jacobian
nwot [23] X Jacobian
params [25] X Baseline
plain [1] Baseline
snip [14] Pruning-at-init
synflow [39] X Pruning-at-init
zen-score [16] X X Piece. Lin.

2 Background and Related Work

Given a dataset and a search space — a large set of neural architectures — NAS seeks to find the
architecture with the highest validation accuracy (or the best application-specific trade-off among
accuracy, latency, size, and so on) on the dataset. NAS has been studied since the late 1980s [24, 40]]
and has seen a resurgence in the last few years [18} 58], with over 1000 papers on NAS in the last
two years alone. For a survey of the different techniques used for NAS, see [9,49].

Many NAS methods make use of performance prediction. A performance prediction method is
any function which predicts the (relative) performance of architectures, without fully training the
architectures [48]. BRP-NAS [8]], BONAS [34], and BANANAS [47] are all examples of NAS
methods that make use of performance prediction. While performance prediction speeds up NAS
algorithms by avoiding fully training neural networks, many still require non-trivial computation time.
On the other hand, a recently-proposed line of techniques, zero-cost proxies (ZC proxies) require just
a single forward pass through the network, often taking just five seconds [23]].

Zero-cost proxies. The original ZC proxy estimated the separability of the minibatch of data into
different linear regions of the output space [23]]. Many other ZC proxies have been proposed since
then, including data-independent ZC proxies [1} [15} 16, 139], ZC proxies inspired by pruning-at-
initialization techniques [1, 14} |39} 43]], and ZC proxies inspired by neural tangent kernels [4, [35]].
See Table([T]for a full list of the ZC proxies we use in this paper. We describe theoretical ZC proxy

results in Appendix

Search spaces and tasks. In our experiments, we make use of several different NAS benchmark
search spaces and tasks. NAS-Bench-101 [54] is a popular cell-based search space for NAS research.
It consists of 423 624 architectures trained on CIFAR-10. The cell-based search space is designed
to model ResNet-like and Inception-like cells [12}137]. NAS-Bench-201 [[6] is a cell-based search
space consisting of 15 625 architectures (6 466 non-isomorphic) trained on CIFAR-10, CIFAR-100,
and ImageNet16-120. NAS-Bench-301 [560] is a surrogate NAS benchmark for the DARTS search
space [[19]. The search space consists of normal cell and reduction cells, with 10*® total architectures.
TransNAS-Bench-101 [7] is a NAS benchmark consisting of two different search spaces: a “micro”
(cell-based) search space of size 4 096, and a macro search space of size 3 256. The architectures are
trained on seven different tasks from the Taskonomy dataset [55)]. NAS-Bench-Suite [22] collects
these search spaces and tasks within the unified framework of NASLib [30]. In this work, we extend
this collection by adding two datasets from NAS-Bench-360 [41], SVHN, and four datasets from
Taskonomy. NAS-Bench-360 is a collection of diverse tasks that are ready-to-use for NAS research.

Large-scale studies of ZC proxies. A few recent works [2,[25]145]/48]] investigated the performance
of ZC proxies in ranking architectures over different NAS benchmarks, showing that the relative
performance highly depends on the search space, but none study more than 12 total tasks, and none
make the ZC proxy values publicly available. Two predictor-based NAS methods have recently
been introduced: OMNI [48] and ProxyBO [33]]. However, OMNI only uses a single ZC proxy, and



Table 2: Overview of ZC proxy evaluations in NAS-Bench-Suite-Zero. * Note that EPE-NAS is
only defined for classification tasks [21]].

Search space Tasks Num. ZC proxies Num. architectures Total ZC proxy evaluations
NAS-Bench-101 1 13 10000 130000
NAS-Bench-201 3 13 15625 609 375
NAS-Bench-301 1 13 11221 145873
TransNAS-Bench-101-Micro 7 12* 3256 273504
TransNAS-Bench-101-Macro 7 12* 4096 344 064
Add’l. 201, 301, TNB-Micro 9 13 600 23400
Total 28 13 44798 1526216

while ProxyBO uses three, the algorithm dynamically chooses one in each iteration (so individual
predictions are made using a single ZC proxy at a time). Recently, NAS-Bench-Zero was introduced
[2]], a new benchmark based on popular computer vision models ResNet [[12] and MobileNetV2
[31], which includes 10 ZC proxies. However, the NAS-Bench-Zero dataset is currently not publicly
available. For more related work details, see Appendix [C|

Only two prior works combine the information of multiple ZC proxies together in architecture
predictions [1 2] and both only use the voting strategy to combine at most four ZC proxies. Our
work is the first to publicly release ZC proxy values, combine ZC proxies in a nontrivial way, and
exploit the complementary information of 13 ZC proxies simultaneously.

3 Overview of NAS-Bench-Suite-Zero

In this section, we give an overview of the NAS-Bench-Suite-Zero codebase and dataset, which
allows researchers to quickly develop ZC proxies, compare against existing ZC proxies across diverse
datasets, and integrate them into NAS algorithms, as shown in Sections E] and@

We implement all ZC proxies from Table in the same codebase (NASLib [30Q]). For all ZC proxies,
we use the default implementation from the original work. While this list covers 13 ZC proxies,
the majority of ZC proxies released to date, we did not yet include a few other ZC proxies, for
example, due to requiring a trained supernetwork to make evaluations [4}, 35] (therefore needing to
implement a supernetwork on 28 benchmarks), implementation in TensorFlow rather than PyTorch
[26]], or unreleased code. Our modular framework easily allows additional ZC proxies to be added to
NAS-Bench-Suite-Zero in the future.

To build NAS-Bench-Suite-Zero, we extend the collection of NASLib’s publicly available bench-
marks, known as NAS-Bench-Suite [22]]. This allows us to evaluate and fairly compare all ZC
proxies in the same framework without confounding factors stemming from different implemen-
tations, software versions or training pipelines. Specifically, for the search spaces and tasks, we
use NAS-Bench-101 (CIFAR-10), NAS-Bench-201 (CIFAR-10, CIFAR-100, and ImageNet16-120),
NAS-Bench-301 (CIFAR-10), and TransNAS-Bench-101 Micro and Macro (Jigsaw, Object Classifi-
cation, Scene Classification, Autoencoder) from NAS-Bench-Suite. We add the remaining tasks from
TransNAS-Bench-101 (Room Layout, Surface Normal, Semantic Segmentation), and three tasks each
for NAS-Bench-201, NAS-Bench-301, and TransNAS-Bench-101-Micro: Spherical-CIFAR-100,
NinaPro, and SVHN. This yields a total of 28 benchmarks in our analysis. For all NAS-Bench-201
and TransNAS-Bench-101 tasks, we evaluate all ZC proxy values and the respective runtimes, for
all architectures. For NAS-Bench-301, we evaluate on all 11221 randomly sampled architectures
from the NAS-Bench-301 dataset, due to the computational infeasibility of exhaustively evaluating
the full set of 10'® architectures. Similarly, we evaluate 10000 architectures from NAS-Bench-101.
Finally, for Spherical-CIFAR-100, NinaPro, and SVHN, we evaluate 200 architectures per search
space, since only 200 architectures are fully trained for each of these tasks. See Table 2]

We run all ZC proxies from Table 1| on Intel Xeon Gold 6242 CPUs and save their evaluations in
order to create a queryable table with these pre-computed values. We use a batch size of 64 for all ZC
proxy evaluations, except for the case of TransNAS-Bench-101: due to the extreme memory usage of
the Taskonomy tasks (> 30GB memory), we used a batch size of 32. The total computation time for
all 1.5M evaluations was 1100 CPU hours.
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Figure 2: Spearman rank correlation coefficient between ZC proxy values and validation accuracies,
for each ZC proxy and benchmark. The rows and columns are ordered based on the mean scores
across columns and rows, respectively.

Speedups and recommended usage. The average time to compute a ZC proxy across all tasks is
2.6 seconds, and the maximum time (computing grasp on TNB-Macro Autoencoder) is 205 seconds,
compared to 10~° seconds when instead querying the NAS-Bench-Suite-ZeroAPI.

When researchers evaluate ZC proxy-based NAS algorithms using queryable NAS benchmarks, the
bottleneck is often (ironically) the ZC proxy evaluations. For example, for OMNI [48] or ProxyBO
[33] running for 100 iterations and 100 candidates per iteration, the total evaluation time is roughly 9
hours, yet they can be run on NAS-Bench-Suite-Zero in under one minute. Across all experiments
done in this paper (mutual information study, bias study, NAS study, etc.), we calculate that using
NAS-Bench-Suite-Zero decreases the computation time by at least three orders of magnitude. See
Appendix [D.4] for more details.

Since NAS-Bench-Suite-Zero reduces the runtime of experiments by at least three orders
of magnitude (on queryable NAS benchmarks), we recommend researchers take advantage of
NAS-Bench-Suite-Zero to (i) run hundreds of trials of ZC proxy-based NAS algorithms, to reach
statistically significant conclusions, (ii) run extensive ablation studies, including the type and usage
of ZC proxies, and (iii) increase the total number of ZC proxies evaluated in the NAS algorithm.
Finally, when using NAS-Bench-Suite-Zero, researchers should report the real-world time NAS
algorithms would take, by adding the time to run each ZC proxy evaluation (which can be queried in
NAS-Bench-Suite-Zero) to the total runtime of the NAS algorithm.

4 Generalizability, Mutual Information, and Bias of ZC Proxies

In this section, we use NAS-Bench-Suite-Zero to study concrete research questions relating to the
generalizability, complementary information, and bias of ZC proxies.

4.1 RQ 1: How well do ZC proxies generalize across different benchmarks?

In Figure 2] for each ZC proxy and each benchmark, we compute the Spearman rank correlation
between the ZC proxy values and the validation accuracies over a set of 1000 randomly drawn
architectures (see Appendix [D]for the full results on all benchmarks). Out of all the ZC proxies, nwot
and flops have the highest rank correlations across all benchmarks. On some of the benchmarks,
such as TransNAS-Bench-101-Micro Autoencoder and Room Layout, all of the ZC proxies exhibit
poor performance on average, while on the widely used NAS-Bench-201 benchmarks, almost all of
them perform well. Several methods, such as snip and grasp, perform well on the NAS-Bench-201
tasks, but on average are outperformed by params and f1lops on the other benchmarks.

Although no ZC proxy performs consistently across all benchmarks, we may ask a related question:
is the performance of all ZC proxies across benchmarks correlated enough to capture similarities
among benchmarks? In other words, can we use ZC proxies as a tool to assess the similarities among
tasks. This is particularly important in meta-learning or transfer learning, where a meta-algorithm
aims to learn and transfer knowledge across a set of similar tasks. To answer this question, we



compute the Pearson correlation of the ZC proxy scores on each pair of benchmarks. See Figure 3]
As expected, benchmarks that are based on the same or similar search spaces are highly correlated
with respect to the ZC proxy scores. For example, we see clusters of high correlation for the
Trans-NAS-Bench-101-Macro benchmarks, and the NAS-Bench-201 benchmarks.

Answer to RQ 1: Only a few ZC proxies generalize well across most benchmarks and tasks. However,
ZC proxies can be used to assess similarities across benchmarks. This suggests the potential future
direction of incorporating them as task features in a meta-learning setting [20].

4.2 RQ 2: Are ZC proxies complementary with respect to explaining validation accuracy?

While Figure [2] shows the
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information theoretic mea-
sures: by treating the valida-
tion accuracy and ZC proxy
values as random variables,
we can measure the entropy
of the validation accuracy conditioned on one or more ZC proxies, which intuitively tells us the
information that one or more ZC proxies reveal about the validation accuracy.

Figure 3: Pearson correlation coefficient between ZC proxy scores on
pairs of benchmarks. The entries in the plot are ordered based on the
mean score across each row and column.

Formally, given a search space .9, let ) denote the uniform distribution of validation accuracies over
the search space, and let y denote a random sample from ). Similarly, for a ZC proxy ¢ from 1 to 13,
let Z; denote the uniform distribution of the ZC proxy values, and let z; denote a random sample
from Z,. Let H(-) denote the entropy function. For all pairs z;, z; of ZC proxies, we compute the
conditional entropy H(y | z;,2;), as well as the information gain H(y | z;) — H(y | zi,2;). See
Figure[d] The entropy computations are based on 1000 randomly sampled architectures, using 24-bin
histograms for density smoothing (see Appendix D] for more details). We see that synflow and
plain together give the most information about the ground truth validation accuracies, due to their
substantial complementary information.

Now we can ask the same question for k tuples of ZC proxies. Given an ordered list of & ZC proxies
Ziys Zigs - - - %iy,» We define the information gain of z;, conditioned on y as follows:

IG(z:,) = H(y | ziyy -y 2ip_y) —HW | Ziyy- oy 2ip)- (1)
Intuitively, IG computes the marginal information we learn about y when z;, is revealed, assuming
we already knew the values of z;,,...,2;, ,. We compare the conditional entropy vs. number of

2For completeness, we re-run that experiment and include the results in Appendix@
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Figure 4: Given a ZC proxy pair (3, j), we compute the conditional entropy H (y | 2;, z;) (top left),
and information gain H(y | z;) — H(y | i, z;) (top right). Conditional entropy H(y | zi,, ..., 2i,)
vs. k, where the ordering z;,, ..., %;, is selected using three different strategies. The minimum
k-tuple and greedy ordering significantly overlap in the first two figures (bottom).

ZC proxies for three different orderings of the ZC proxies. The first is a random ordering (averaged
over 100 random trials), which tells us the average information gain when iteratively adding more
ZC proxies. The second is a greedy ordering, computed by iteratively selecting the ZC proxy that
maximizes IG(z;, ), for k from 1 to 13. The final plot exhaustively searches through (1,5’) sets to find
the k proxies which minimize H (y | z;,, - . . 2, ), for k from 1 to 13 (note that this may not define a
valid ordering). See Figure[d] and Appendix [D|for the complete results. We see that there is very
substantial information gain when iteratively adding ZC proxies, even if the ZC proxies are randomly
chosen. Optimizing the order of adding ZC proxies yields much higher IG in certain benchmarks
(e.g., NB201-CF100), and a greedy approach is shown to be not far from the optimum.

Answer to RQ 2: In some benchmarks, we see substantial complementary information among ZC
proxies. However, the degree of complementary information depends heavily on the NAS benchmark
at hand. This suggests that we cannot always expect ZC proxies to yield complementary information,
but a machine learning model might be able to identify useful combinations of ZC proxies.

4.3 RQ 3: Do ZC proxies contain biases, such as a bias toward certain operations or sizes,
and can we mitigate these biases?

Identifying biases in ZC proxies can help explain weaknesses and facilitate the development of
higher-performing ZC proxies. We define bias metrics and study ZC proxy scores for thousands
of architectures for their correlation with biases. This systematic approach yields generalizable
conclusions and avoids the noise from assessing singular architectures. We consider the following
biases: conv:pool (the numerical advantage of convolution to pooling operations in the cell), cell size
(the number of non-zero operations in the cell), num. skip connections, and num. parameters.

For each search space, ZC proxy, and bias, we compute the Pearson correlation coefficient between
the ZC proxy values and the bias values. We consider all 44K architectures referenced in Table 2]
See Table [3]and Appendix D] for the full results. We find that many ZC proxies exhibit biases to



Table 3: Pearson correlation coefficients between predictors and bias metrics (in bold) on different
datasets. For example, for Cell size on NB201-CF100, snip has a correlation of -0.04 (indicating
very little bias), while synflow has a correlation of 0.57 (meaning it favors larger architectures).

Name Conv:pool Cell size Num. skip connections Num. parameters
NB201-CF10 | NB301-CF10 | NB201-CF100 | NB201-IM | NB301-CF10 | NB201-CF100 | NB101-CF10 | NB301-CF10

epe-nas 0.05 -0.02 0.35 0.35 0.01 0.09 -0.02 -0.01
fisher 0.05 0.01 -0.03 -0.05 -0.15 -0.03 0.11 0.17
flops 0.59 0.70 0.30 0.30 -0.35 -0.30 1.00 0.99
grad-norm 0.35 0.27 -0.04 -0.05 -0.26 -0.26 0.30 0.51
grasp 0.01 0.28 -0.01 0.01 0.03 0.00 -0.03 0.24
12-norm 0.87 0.76 0.41 0.41 -0.33 -0.41 0.62 0.99
jacov 0.05 -0.11 0.35 0.35 0.08 0.09 -0.18 -0.10
nwot 0.06 0.78 0.28 0.28 -0.21 0.06 0.74 0.95
params 0.61 0.78 0.29 0.29 -0.32 -0.29 1.00 1.00
plain -0.33 -0.45 0.14 0.14 0.02 0.02 0.03 -0.45
snip 0.37 0.27 -0.04 -0.04 -0.28 -0.28 0.44 0.50
synflow 0.53 0.41 0.57 0.58 -0.20 -0.14 0.57 0.62
zen-score 0.05 0.75 0.35 0.35 -0.33 0.09 0.68 0.99
val-acc | 0.36 | 0.45 | 0.35 | 0.43 | 0.13 | -0.06 | 0.09 | 0.47

various degrees. Interestingly, some biases are consistent across search spaces, while others are not.
For example, 12-norm has a conv:pool bias on both NB201-C10 and NB301-C10, while nwot has a
strong conv:pool bias on NB301-C10 and almost no bias on NB201-C10. While validation accuracy
does not correlate with number of skip connections, most ZC proxies in the benchmark exhibit a
negative bias towards this metric.

Next, we present a procedure for removing these biases. For this study, we use ZC proxies that had
large biases in Table[3] and we attempt to answer the following questions: (/) can we remove these
biases, and (2) if we can remove the biases, does the performance of ZC proxies improve?

Given a search space of architectures A, let f : A — R denote a ZC proxy (a function that takes as
input an architecture, and outputs a real number). Furthermore, let b : A — R denote a bias measure
such as “cell size”. Recall that Table [3]showed that the correlation between a ZC proxy f and a bias
measure b may be high. For example, the correlation between synflow and “cell size” is high, which
means using synflow would favor larger architectures. To reduce bias, we use a simple heuristic:

1

f/(a):f(a)'m- 2

In this expression, C' is a constant that we can tune. In deciding on a strategy to tune C', we make two
observations. First, for most bias measures, the bias of val_acc is not zero, which means completely
de-biasing ZC proxies could hurt performance. Second, depending on the application, we may want
to fully remove the bias of a ZC proxy, or else remove bias only insofar as it improves performance.

Therefore, we test three different strategies to tune C by brute force: (/) “minimize”, to minimize
bias, (2) “equalize”, to match the bias with the bias of val_acc, and (3) “performance”, to optimize
the performance (Pearson correlation). See Table E] for the results.

We find that using the “performance” strategy, we are able to increase the performance of ZC proxies
by reducing their bias. Furthermore, the “equalize” strategy sometimes provide good results on par
with the “performance” strategy. This suggests a good bias mitigation strategy when we do not know
the ground truth but have information on how the ground truth correlations with bias. This may have
important consequences for the future design of ZC proxies.

Answer to RQ 3: Many ZC proxies do exhibit different types of biases to various degrees, but the
biases can be mitigated, thereby improving performance.

5 Integration into NAS

The findings in Section showed that ZC proxies contain substantial complementary information,
conditioned on the ground-truth validation accuracies. However, no prior work has combined more
than four ZC proxies, or used a combination strategy other than a simple vote. In this section, we
combine and integrate all 13 ZC proxies into predictor-based NAS algorithms by adding the ZC
proxies directly as features into the surrogate (predictor) models.



Table 4: Bias mitigation strategies tested on the ZC proxies with the most biases. We test three
different strategies by tuning C' from Equation [2|for different objectives: minimize (tune C' to mini-
mize bias), equalize (tune C' to match ground truth’s correlation with bias metric), and performance
(tune C' to maximize correlation with ground truth). Bias and performance are Pearson correlation
coefficients of the proxy score with the bias metric and with the ground truth accuracy, respectively.
C is searched between -10 and 1000.
bias original original new  new
metric bias perf. bias  perf.
0.00 0.10 minimize
12-norm NB201-CF10  conv:pool 0.87 0.42 0.37 0.11 equalize
0.70 044  performance
0.00 0.03 minimize
nwot NB301-CF10  conv:pool 0.78 0.49 0.29 0.14 equalize
0.78 0.49  performance
0.01 0.64 minimize
synflow NB201-CF100 cell size 0.57 0.68 0.35 0.71  equalize
0.35 0.71  performance
0.01 0.62 minimize
synflow NB201-IM cell size 0.58 0.76 043 0.76  equalize
046 0.76  performance
-0.01 0.06 minimize
flops NB301-CF10  num. skip -0.35 0.43 0.12  -0.05 equalize
-0.35 043  performance

ZC proxy dataset strategy

We run experiments on two common predictor-based NAS algorithms: BANANAS, based on Bayesian
optimization [47], and NPENAS, based on evolution [44]. Both algorithms use a model-based
performance predictor: a model that takes in an architecture encoding as features (e.g., the adjacency
matrix encoding [46]), and outputs a prediction of that architecture’s validation accuracy. The model
is retrained throughout the search algorithm, as more and more architectures are fully trained. Recent
work has shown that boosted trees such as XGBoost achieve strong performance in NAS [48] 156].

Experimental setup. For both algorithms, we use the NASLib implementation [30] and default
parameters reported in prior work [48]]. First, we assess the standalone performance of XGBoost
when ZC proxies are added as features in addition to the architecture encoding, by randomly
sampling 100 training architectures and 1000 disjoint test architectures, and computing the Spearman
rank correlation coefficient between the set of predicted validation accuracies and the ground-truth
accuracies. On NAS-Bench-201 CIFAR-100, averaged over 100 trials, the Spearman rank correlation
(£ std. dev.) improves from 0.640 + 0.0420 to 0.908 4+ 0.012 with the addition of ZC proxies,
representing an improvement of 41.7%. Even more surprisingly, using the ZC proxies alone as
features without the architecture, results in a Spearman rank correlation of 0.907 £ 0.013, implying
that the ZC proxies subsume nearly all information contained in the architecture encoding itself.
We present the full results in Appendix [E] These results show that an ensemble of ZC proxies can
substantially increase the performance of model-based predictors.

Similar to the previous experiment, we run both NAS algorithms three different ways: using only the
encoding, only the ZC proxies, and both, as features of the predictor. Each algorithm is given 200
architecture evaluations, and we plot performance over time, averaged over 400 trials. See Figure[3]
for the results of BANANAS, and Appendix [E] for the full results. We find that the ZC proxies give
the NAS algorithms a boost in performance, especially in the early stages of the search.

6 Conclusions, Limitations, and Broader Impact

In this work, we created NAS-Bench-Suite-Zero: an extensible collection of 13 ZC proxies
(covering the majority that currently exist), accessible through a unified interface, which can be
evaluated on a suite of 28 NAS benchmark tasks. In addition to the codebase, we release precomputed
ZC proxy scores across all 13 ZC proxies and 28 tasks, giving 1.5 million total ZC proxy evaluations.
This dataset can be used to speed up ZC proxy-based NAS experiments, e.g., from 9 hours to 4
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Figure 5: Performance of BANANAS with and without ZC proxies as additional features in the
surrogate model. Each curve shows the mean and standard error across 400 trials.

minutes (see Section [3). Overall, NAS-Bench-Suite-Zero eliminates the overhead in ZC proxy
research, with respect to comparing against different methods and across a diverse set of tasks.

To motivate the usefulness of NAS-Bench-Suite-Zero, we conducted a large-scale analysis of
the generalizability, bias, and the first information-theoretic analysis of ZC proxies. Our empirical
analysis showed substantial complementary information of ZC proxies conditioned on validation
accuracy, motivating us to ensemble all 13 into predictor-based NAS algorithms. We show that using
several ZC proxies together significantly improves the performance of the surrogate models used in
NAS, as well as improving the NAS algorithms themselves.

Limitations and future work. Although our work makes substantial progress towards motivating
and increasing the speed of ZC proxy research, there are still some limitations of our analysis. First,
our work is limited to empirical analysis. However, we discuss existing theoretical results in Appendix
[C.1] Furthermore, there are some benchmarks on which we did not give a comprehensive evaluation.
For example, on NAS-Bench-301, we only computed ZC proxies on 11 000 architectures, since the
full space of 10'® architectures is computationally infeasible. In the future, a surrogate model [53} [56]]
could be trained to predict the performance of ZC proxies on the remaining architectures. Finally,
there is very recent work on applying ZC proxies to one-shot NAS methods [52], which tested one
ZC proxy at a time with one-shot models. Since our work motivates the ensembling of ZC proxies,
an exciting problem for future work is to incorporate 13 ZC proxies into the one-shot framework.

Broader impact. The goal of our work is to make it faster and easier for researchers to run
reproducible, generalizable ZC proxy experiments and to motivate further study on exploiting the
complementary strengths of ZC proxies. By pre-computing ZC proxies across many benchmarks,
researchers can run many trials of NAS experiments cheaply on a CPU, reducing the carbon footprint
of the experiments [[L1}27]. Due to the notoriously high GPU consumption of prior research in NAS
[28. 158]], this reduction in CO2 emissions is especially worthwhile. Furthermore, our hope is that
our work will have a positive impact in the NAS and automated machine learning communities by
showing which ZC proxies are useful in which settings, and showing how to most effectively combine
ZC proxies to achieve the best predictive performance. By open-sourcing all of our code and datasets,
AutoML researchers can use our library to further test and develop ZC proxies for NAS.
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using/curating? [N/A] [Our asset does not include data based on people.]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [IN/A] [Our asset does not include data based on

people.]
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] [We did not conduct research with human subjects.]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] [We did not conduct research with human
subjects.]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] [We did not conduct research with human
subjects.]
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A NAS Best Practices Checklist

We now describe how we addressed the individual points of the NAS best practice checklist [[17].

1. Best Practices for Releasing Code
For all experiments you report:

(a) Did you release code for the training pipeline used to evaluate the final architectures?
[Yes] Since we used NAS benchmarks, we did not evaluate the architectures ourselves.
The code for the training pipelines of these benchmarks is publicly available.

(b) Did you release code for the search space [Yes] Since we used NAS benchmarks, this
is already publicly available.

(c) Did you release the hyperparameters used for the final evaluation pipeline, as well as
random seeds? [Yes] Since we used NAS benchmarks, the final evaluation pipeline is
fixed. We released our code, including the seeds used.

(d) Did you release code for your NAS method? [Yes] The code for our NAS method is
available at https://github.com/automl/naslib/tree/zerocostl

(e) Did you release hyperparameters for your NAS method, as well as random seeds? [Yes]
The hyperparameters used are also available at the above link.
2. Best practices for comparing NAS methods

(a) For all NAS methods you compare, did you use exactly the same NAS benchmark,
including the same dataset (with the same training-test split), search space and code
for training the architectures and hyperparameters for that code? [Yes] Since we used
NAS benchmarks, the training details are fixed.

(b) Did you control for confounding factors (different hardware, versions of DL libraries,
different runtimes for the different methods)? [Yes] Since we used NAS Benchmarks,
these details are fixed automatically.

(c) Did you run ablation studies? [Yes] We included NAS experiments with only the
encoding, only the ZC proxies, and the encoding with 13 ZC proxies.

(d) Did you use the same evaluation protocol for the methods being compared? [Yes] We
used NAS Benchmarks, which keep this fixed.

(e) Did you compare performance over time? [Yes] Our experiments in Section [5] and
Appendix [E|compare performance over time.

(f) Did you compare to random search? We used baselines that are better than random
search: the original NAS algorithms without ZC proxies.

(g) Did you perform multiple runs of your experiments and report seeds? [Yes] All of our
experiments are averaged across many trials. The seeds are reported in our code files.

(h) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] All of our
experiments use queryable benchmarks.
3. Best practices for reporting important details

(a) Did you report how you tuned hyperparameters, and what time and resources this re-
quired? [Yes] We used the default hyperparameters from the respective NAS algorithms
and ZC proxies. Our addition of ZC proxies did not add any new hyperparameters.

(b) Did you report the time for the entire end-to-end NAS method (rather than, e.g., only
for the search phase)? [Yes] Our plots include the end-to-end time.

(c) Did you report all the details of your experimental setup? [Yes] We included all the
details in Section[5|and Appendix [E]

B Dataset Documentation

Here, we give an overview of our dataset documentation. For the full details, including links to the
dataset, usage, and tutorials, see https://github.com/automl/NASLib/tree/zerocost.
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Table 5: Licenses for the datasets that we use.

Dataset License URL
NAS-Bench-101 Apache 2.0 | https://github.com/google-research/nasbench
NAS-Bench-201 MIT https://github.com/D-X-Y/NAS-Bench-201
NAS-Bench-301 Apache 2.0 https://github.com/automl/nasbench301
TransNAS-Bench-101 MIT https://github.com/yawen-d/TransNASBench
NAS-Bench-360 MIT https://github.com/rtu715/NAS-Bench-360

B.1 Author responsibility and license

We, the authors, bear all responsibility in case of violation of rights. The license of our dataset and
repository is the Apache License 2.0. For more information, see https://github.com/automl/
NASLib/blob/Develop/LICENSE.

In addition, we include the licenses of the datasets we used in Table[5]

B.2 Maintenance plan

The data is available on GitHub at https://github.com/automl/NASLib/tree/zerocost. We
plan to actively maintain the repository, and we also welcome contributions from the community. For
more information, see https://github.com/automl/NASLib/tree/zerocost,

B.3 Code of conduct

Our Code of Conduct is from the Contributor Covenant, version 2.0. See
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
The policy is copied below.

“We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality,
personal appearance, race, caste, color, religion, or sexual identity and orientation.”

B.4 Datasheet

We include a datasheet [[10] for NAS-Bench-Suite-Zero.

Motivation For Datasheet Creation

*Why was the datasheet created? (e.g., was there a specific task in mind? was there a specific gap
that needed to be filled?) The goal of our work is to make it easier and faster for researchers to run
generalizable, reproducible ZC proxy experiments, and to motivate further study on exploiting the
complementary strengths of ZC proxies. By pre-computing ZC proxies across many benchmarks,
users can run many trials of NAS experiments cheaply on a CPU, reducing their carbon footprint
[L1,127]. Since prior research in NAS has notoriously high GPU consumption [28} 58], this reduction
in CO2 emissions is worthwhile.

*Has the dataset been used already? If so, where are the results so others can compare (e.g., links to
published papers)? The dataset has only been used in this paper. See Sections 4] and [5]and Appendix
Dland[El
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*What (other) tasks could the dataset be used for? Since the dataset only contains values of ZC
proxies on existing NAS benchmarks, we are not aware of any tasks this dataset can be used for,
besides analyzing ZC proxies and speeding up ZC proxy-based NAS algorithms.

*Who funded the creation dataset? This dataset was created by researchers at the University of
Freiburg, Abacus.Al, the University of Toronto, and the Bosch Center for Artificial Intelligence.
Funding for the dataset computation itself is from the University of Freiburg.

*Any other comment? None.

Datasheet Composition

*What are the instances?(that is, examples; e.g., documents, images, people, countries) Are there
multiple types of instances? (e.g., movies, users, ratings; people, interactions between them; nodes,
edges) For each NAS benchmark, each instance is a tuple of an architecture hash, the name of a ZC
proxy, and the value and runtime of the ZC proxy evaluated on that architecture.

*How many instances are there in total (of each type, if appropriate)? See Table[2]for a full breakdown
of the number of instances for each NAS benchmark.

*What data does each instance consist of ? “Raw” data (e.g., unprocessed text or images)? Fea-
tures/attributes? Is there a label/target associated with instances? If the instances related to people,
are subpopulations identified (e.g., by age, gender, etc.) and what is their distribution? Each instance
is a tuple of an architecture hash, the name of a ZC proxy, and the value and runtime of the ZC proxy
evaluated on that architecture. These will most-often be used to speed up NAS experiments or run
analysis on ZC proxies, in which case they are not used as features/labels.

*Is any information missing from individual instances? If so, please provide a description, explaining
why this information is missing (e.g., because it was unavailable). This does not include intentionally
removed information, but might include, e.g., redacted text. There is no missing information from
individual instances.

*Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit. There are no
relationships between individual instances.

*Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances
from a larger set? If the dataset is a sample, then what is the larger set? Is the sample representative
of the larger set (e.g., geographic coverage)? If so, please describe how this representativeness was
validated/verified. If it is not representative of the larger set, please describe why not (e.g., to cover
a more diverse range of instances, because instances were withheld or unavailable). NAS-Bench-
201 and TransNAS-Bench-101-Micro and Macro contain all possible instances. NAS-Bench-101,
NAS-Bench-301, and the additional architectures evaluated on spherical-cifar, SVHN, and NinaPro
are samples. All samples are drawn uniformly at random from the respective search space. This
is ensured because the code used to draw architectures uniformly at random is from the respective
original repositories that introduced the NAS benchmarks.
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*Are there recommended data splits (e.g., training, development/validation, testing)? If so, please
provide a description of these splits, explaining the rationale behind them. The main usage of this
dataset is to speed up NAS experiments, for which there are no data splits. For experiments involving
architecture prediction (such as the standalone predictor experiments in Section[5] we do not give
recommended data splits but instead recommended running at least 100 trials, where each trial
randomly samples train and (disjoint) test sets.

*Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description. There are no known errors, sources of noise, or redundancies.

*Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites,
tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees that they
will exist, and remain constant, over time; b) are there official archival versions of the complete
dataset (i.e., including the external resources as they existed at the time the dataset was created);
c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources that
might apply to a future user? Please provide descriptions of all external resources and any restrictions
associated with them, as well as links or other access points, as appropriate. The dataset does rely on
the code from the respective existing NAS benchmarks to reconstruct the architecture itself from the
hash provided in our dataset. Furthermore, a user will often want access to the validation accuracies
of the architectures in our dataset, which also comes from the existing NAS benchmarks. Since these
NAS benchmarks serve similar goals as our dataset (to accelerate and simplify research in NAS) and
are hosted similarly to ours (on Google Drive and GitHub), we are confident that these benchmarks
will exist and remain constant over time. In some cases, we have also created our own versions of the
NAS benchmarks, so all of the data can be downloaded at one time. Licenses and links are described
in Table

Any other comments? None.

Collection Process

*What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or sensor,
manual human curation, software program, software API)? How were these mechanisms or procedures
validated? The data was created with a software program (available at https://github.com/
automl/NASLib/tree/zerocost). The ZC proxy code were taken from their original repositories.
All ZC proxies from Table I] were run on an Intel Xeon Gold 6242 CPU, using a batch size of 64,
except for the case of TransNAS-Bench-101: due to the extreme memory usage of the Taskonomy
tasks (> 30GB memory), we used a batch size of 32.

*How was the data associated with each instance acquired? Was the data directly observable (e.g.,
raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived
from other data (e.g., part-of-speech tags, model-based guesses for age or language)? If data was
reported by subjects or indirectly inferred/derived from other data, was the data validated/verified?
If so, please describe how. As described, all data was created with a publicly available software
program.

*If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)? As described earlier, the sampling was done
uniformly at random.
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*Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how
were they compensated (e.g., how much were crowdworkers paid)? The data collection process (e.g.,
running the code) was done by the authors of this work.

*Qver what timeframe was the data collected? Does this timeframe match the creation timeframe of
the data associated with the instances (e.g., recent crawl of old news articles)? If not, please describe
the timeframe in which the data associated with the instances was created. The total computation
time for all 1.5M evaluations was 1100 CPU hours on Intel Xeon Gold 6242 CPUs (using up to 20
CPUs and 150 cores in parallel). The timeframe was May 15, 2022 to June 1, 2022.

Data Preprocessing
*Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokeniza-
tion, part-of-speech tagging, SIFT feature extraction, removal of instances, processing of missing

values)? If so, please provide a description. If not, you may skip the remainder of the questions in
this section. There was no preprocessing that needed to be done.

*Does this dataset collection/processing procedure achieve the motivation for creating the dataset
stated in the first section of this datasheet? If not, what are the limitations? Yes, the dataset collection
procedure achieves our motivation. See Table [§] for a list of the speedups in NAS experiments
achieved when using our dataset.

*Any other comments None.

Dataset Distribution

*How will the dataset be distributed? (e.g., tarball on website, API, GitHub; does the data have a
DOI and is it archived redundantly?) The dataset is on Google Drive, with a DOL.

*When will the dataset be released/first distributed? What license (if any) is it distributed under? The
dataset is public as of June 8, 2022, distributed under the Apache License 2.0.

*Are there any copyrights on the data? There are no copyrights on the data.

*Are there any fees or access/export restrictions? There are no fees or restrictions.

* Any other comments? None.

Dataset Maintenance

*Who is supporting/hosting/maintaining the dataset? The authors of this work are support-
ing/hosting/maintaining the dataset.
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*Will the dataset be updated? If so, how often and by whom? If new NAS benchmarks are created
in the NAS research community, the authors of this work may update NAS-Bench-Suite-Zero to
include ZC proxy values for the new benchmarks. Similarly, if new ZC proxies are relased, the
authors may update NAS-Bench-Suite-Zero to include the new ZC proxies.

*How will updates be communicated? (e.g., mailing list, GitHub) Updates will be communicated on
the GitHub README of this project.

*If the dataset becomes obsolete how will this be communicated? If the dataset becomes obsolete, it
will be communicated on the GitHub README of this project.

*If others want to extend/augment/build on this dataset, is there a mechanism for them to do so? If
S0, is there a process for tracking/assessing the quality of those contributions. What is the process
for communicating/distributing these contributions to users? Others can create a pull request or
raise an issue on GitHub with possible extensions/augmentations to our dataset, which will be
approved in a case-by-case basis. For example, an author of a new ZC proxy may create a PR in
our codebase with the new ZC proxy, and then we will evaluate the ZC proxy on all architectures in
NAS-Bench-Suite-Zero and update the dataset. These updates will again be communicated on the
GitHub README.

Legal and Ethical Considerations

*Were any ethical review processes conducted (e.g., by an institutional review board)? If so, please
provide a description of these review processes, including the outcomes, as well as a link or other
access point to any supporting documentation. There was no ethical review process. We note that
our dataset was created by simply by running ZC proxy computations on architectures of existing
NAS benchmarks, in some cases using publicly available, licensed datasets such as CIFAR-10 or
CIFAR-100.

*Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctorpatient confidentiality, data that includes the content of individuals
non-public communications)? If so, please provide a description. The dataset does not contain any
confidential data.

*Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please describe why None of the data might be offensive,
insulting, threatening, or otherwise cause anxiety.

*Does the dataset relate to people? If not, you may skip the remaining questions in this section. The
dataset does not relate to people.

* Any other comments? None.

C Related Work Continued

In this section, we give additional details on related work, continued from Section@
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Multiple recent works have investigated the performance of ZC proxies in ranking architectures
over different NAS benchmarks. [25] provides rank correlations and pairwise correlations of 10 ZC
proxies across 7 tasks, and concludes that the relative performance of different ZC proxies highly
depends on the search space. They further analyze how ZC proxies have improper biases. [48]]
compares 6 ZC proxies across four tasks, and further shows how jacov can be used to accelerate
the search in predictor-based NAS. In particular, OMNI [48]] combines jacov with sum of training
losses [29] in the surrogate models of BANANAS and predictor-guided evolution. However, the
predictor-based NAS experiments are restricted to NAS-Bench-201 and a single ZC proxy. Similar
to [48]], ProxyBO [33]] introduces a NAS framework based on BO which uses ZC proxies to speed
up NAS. It dynamically chooses whether to use a Gaussian process, snip, jacov, or synflow
as the surrogate model in BO. Experiments were done on five tasks. Note that although the NAS
method makes use of three different ZC proxies, each are used separately to make predictions on the
performance of architectures.

Recently, NAS-Bench-Zero was introduced [2]], a new benchmark based on popular computer vision
models ResNet [12]] and MobileNetV2 [31]], and examined different characteristics of 10 ZC proxies
across these search space as well as three existing search spaces. The study shows in particular that
individual ZC proxies do not transfer across NAS benchmarks. They also show that voting among
synflow, zen, snip and synflow is the optimal voting ZC proxy strategy. A recent overview of ZC
proxies [45] computes rank correlation, pairwise correlation, and performance plots for 8 ZC proxies
across 12 tasks.

Only two prior works combine the information of multiple ZC proxies together in architecture
predictions [1, 2] and both only use the voting strategy to combine three or four ZC proxies. Our
work is the first to combine ZC proxies in a nontrivial way, and the first to combine 13 ZC proxies.
We also conduct analysis on the largest set of ZC proxies and benchmarks to date.

C.1 Theoretical results for ZC proxies

While ZC proxies are starting to be used more widely today [1} 13} 45} 571, still relatively little is
known about them from a theoretical standpoint. However, there have been a few works that do give
theoretical results. In this section, we survey the existing theoretical results for ZC proxies.

Ning et al. gave a theoretical preference analysis for synflow, proving that it favors larger archi-
tectures (Section B.3 in [23])). Specifically, they prove that given an architecture, introducing a new
fully-connected layer into an MLP architecture causes the synflow value to increase. The core of
their argument is to prove the following statement: “when introducing a new fully-connected layer,
the expected loss gradients with respect to the existing parameters increases.” The authors also claim
that the intuition for this argument should extend to convolutional neural networks. Finally, we note
that our empirical results from Table [3|confirm their theoretical finding.

Shu et al. [36] attempted to give a unified, general theory for multiple ZC proxies. First, the authors
prove that ZC proxy values are asymptotically similar. Specifically, they show that assuming the
loss function of the neural network is -Lipschitz continuous, and ~-Lipschitz smooth, then with
high-priority, then the values of grad_norm, snip, and grasp are all asymptotically similar up to
constants (i.e., the same under big-Oh notation) to the trace norm of the NTK matrix at initialization.
This result implies that the values of these ZC proxies are highly correlated.

Next, Shu et al. establish generalization bounds for DNNs in terms of the ZC proxies. Specifically,
they show that the generalization error of a DNN is at most the sum of the training error of the DNN
and O (x/M), where M can be set to grad_norm, snip, or grasp, and k is the condition number
of the NTK matrix at initialization, i.e., given the NTK matrix O¢, £ = Amax(©0)/Amin(©0)-

As a corollary, they also bound the generalization error in terms of the ZC proxy value and other
fixed constants of the neural network, without the training error term.

Other than these results, a few works have derived new ZC proxies via a theoretical analysis or
inspired by existing theories of deep learning. Shu et al. [35]] introduce NASI by giving a theoretical
analysis that shows the trace norm of the NTK has a similar form to gradient flow. Other theory-
inspired ZC proxies include TE-NAS [4]], which uses the spectrum of the NTK and the number of
linear regions in the input space, and NNGP-NAS [26]], which approximates the Neural Network
Gaussian Process using Monte-Carlo methods.
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Table 6: Spearman rank correlation for 100 architectures randomly drawn from the FBNet search
space on various ZC proxies.

ZCProxy fisher flops grad_norm grasp jacov params snip synflow
Spearman | 0.2574 | 0.6484 | 0.4278 | -0.262 | -0.0895 | 0.3762 | 0.5102 | 0.4954

As ZC proxies gain in popularity, a further theoretical analysis is an important step in understanding
their robustness on different datasets, and in designing higher-performing ZC proxies.

D Details from Section 4]

In this section, we give additional details from Section 4]

D.1 Details from Sectiond.1} generalization

We give the full extensions of the experiments from Section[4.1] In Figure[6] for each ZC proxy and
each benchmark, we compute the Spearman rank correlation (see Sectiond). This is the full version
of Figure[2]

In Figure /] we compute the Pearson correlation coefficient between ZC proxy scores on pairs of
benchmarks. This is the full version of Figure 3]

Next, we recompute Figure 2 using different metrics: Precision@K and BestRanking@K [22, [25]].
Let M denote the number of architectures, and for each architecture a; from ¢ € [1, M|, denote the
rankings of the ground truth and ZC proxy-estimated scores are r; and n;, respectively. Given K,
define Ay = {a; | n; < KM}. The definitions are as follows:

#{Z|T1<K/\TLZ<K}
K
BestRanking@K = argmin,, . 4, 7i/M

Precision@QK =

In Figure [8] we recompute Figure [2] using Precision@K, for K = 5,25,100. In Figure 0] we
recompute Figure 2| using BestRanking@K, for K = 5,25, 100. Overall, we see similar trends to
Figure 2] but we note that Precision@K and BestRanking @K may be more useful than Spearman in
terms of NAS, since the goal of NAS is to find the very best architectures.

D.1.1 [Initial results with FBNet

While NAS-Bench-Suite-Zero contains 28 tasks, the majority of search spaces used were designed
for research. Now, in contrast, we give initial results for FBNet [50] as a search space that has been
used to achieve state-of-the-art results.

The FBNet search space consists of 22 searchable layers, with 9 operation choices each (3 filters and
3 kernel sizes), for a total of 9?2 = 102! architectures in the search space. The block structure is
inspired by MobileNetV2 [31] and ShiftNet [S1].

See Table[6|for the Spearman rank correlation values of the validation accuracy of 100 randomly drawn
architectures compared to ZC proxies. Even though the FBNet search space is size 102!, some of the
ZC proxies perform surprisingly well, such as snip, synflow, and flops. The highest-performing
ZC proxy is flops.

D.2 Details from Sectiond.2} information theory

In this section, we give details from Section d.2] We start with more details on the conditionial
entropy, including why we chose this metric, how it is computed, and how to interpret the results.
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e Why do we choose conditional entropy as the metric?
The conditional entropy of a random variable Y given another random variable X is

H(Y|X) = B[~ logp(yle)] = — S p(zy)log p;fj) 7 0
TEX YEY

for two support sets X', ). If we assume entropy to be a measure of information, in other words
uncertainty within a random variable, conditional entropy essentially captures what is left of the
uncertainty after conditioning. H (Y| X) also has certain desirable properties: (1). H(Y|X) =0
if and only if X completely determines the value of Y; (2). H(Y|X) = H(Y) if and only if X
and Y are completely independent; and (3). H(Y | X1, Xo) = H(Y, X1, X3) — H(X1, X3). We
can then easily calculate conditional entropy when conditioning on multiple random variables,
and use it as a metric for uncertain information.

* Discretization of ZC proxy scores and ground-truth accuracies.
Calculating conditional entropy as prescribed above requires that all random variables be discrete,
which is not the case for raw validation accuracies and ZC proxy scores. Implementation wise,
we discretize all the float values and use Sturge’s rule [32] as a heuristic to choose the number of
bins for discretization:

Tpins = round(1 + 3.322 x log(NV))), where N is the sample size. 4

Therefore, information about Y does not reveal the exact validation accuracy but rather the interval
in which the value falls.

e [nterpreting the information gain heatmap.

The information gain heatmap shows how much the conditional entropy of y|z;, decreases
to y|zi,, zi, as the scores of ZC proxy on each column (z;,) is revealed, given that we al-
ready know the scores of ZC proxy on each row (z;,). For instance, on Figure @] (top
right), the value 1.42 on the second row, first column shows that H (y|scores(synflow) —
H (y|scores(synflow), scores(epe_nas)) = 1.42. Note that (1). all values on the diagonal
are 0.0 because no information is gained when we add a copy of the existing ZC proxy scores; (2).
The heatmap is not symmetric like pairwise conditional entropy. The order in which conditioning
is applied affects the amount of information gain, i.e. IG(y|z;,, zi,) # IG(y|zi,, 2i, ); 3). IG
measures how much one ZC proxy’s information complements that of another for determining
the ground-truth accuracy. It does not serve as a direct indicator of the quality of individual ZC
proxy themselves.

e Interpreting the entropy vs. number of ZC proxies plot.

Conditional entropy monotonically decreases as we condition the validation accuracy, ¥, on an
increasing amount of ZC proxy scores, z;, , . . . 2;, , which always brings in additional information.
In most cases, marginal IG drastically decreases as the amount of ZC proxies k reaches 4, but
this is only true if the proxies are chosen strategically, using either a greedy or a brute-force
minimization approach. For the majority of benchmarks, the less computationally intensive greedy
strategy matches up to the brute-force strategy. On the other hand, randomly choosing the ZC
proxies does not have stable performance and could be suboptimal, such as on NAS-Bench-201 +
CIFAR-100 in Figure ] (bottom middle).

For completion, in Figure[T0} we plot the average pairwise correlation for all pairs of ZC proxies.

In Figures[TT] [T2] [13] [14] [[3] we show all the conditional entropy and information gain heatmaps,
in addition to the entropy vs. number of ZC proxies plots for all benchmark, dataset pairs. Note
that for TransNAS-Bench-101, there are no results for epe_nas because it is not defined on non-
classification tasks. Similarly, synflow returns 0.0 for certain non-classification tasks such as the
ones in TransNAS-Bench-101, so we also removed synflow from the TransNAS-Bench-101 plots.

While the conditional entropy and information gain plots from Figure ] was computed using Equation
M) to compute the number of bins, we also run the same experiment using a different discretization
strategy: the bin dividers are computed based on percentages of the data. See Figure[I6|(top). While
the scales differ, we see largely the same trends. For example, there is still a cluster among nwot,
flops, 12_norm, zen, and params. This suggests that this analysis is robust to the two different
discretization strategies. Next, we also re-run the experiment on conditional entropy vs. k from
Figure ] using the top 1000 architectures only, which may be important in the context of NAS, since
NAS is concerned with finding the best architectures. See Figure |16[(bottom). We find that the
random ordering performs comparatively better, predictably implying that it is harder to distinguish
architectures that are in the top 1000 vs. randomly drawn architectures.
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Table 7: Pearson correlation coefficients between predictors and bias metrics (in bold) on different
datasets, for the most and least biased ZC proxies on each search space and task. For example, for the
Conv:pool bias on NB201-CF10, synflow is most biased, with a correlation of 0.76, while grasp is
least biased (in terms of absolute value), with a correlation of -0.01.

Name Conv:pool Cell size Num. skip connections Num. parameters
Most biased | Least biased | Most biased | Least biased | Most biased | Least Biased | Most biased | Least biased

. synflow grasp nwot epe_nas
NB101-CF10 0.76 2001 n/a n/a n/a n/a 0.74 0,02
N 12_norm grasp synflow grasp 12_norm grasp 12_norm grasp
NB201-CF10 0.87 0.01 0.57 2002 041 20,01 0.70 0.00
12_norm grasp synflow grasp 12_norm grasp 12_norm fisher
NB201-CF100 0.87 0.01 0.57 20.01 20.41 20,01 0.70 0.01
NB201-TIM 12_norm grasp synflow grasp 12_norm grasp 12_norm grasp
- 0.87 0.01 0.58 0.01 -0.41 -0.01 0.70 0.01
- params fisher flops epe_nas zen epe_nas
NB301-CF10 0.78 0.01 n/a n/a 035 0.01 0.99 -0.01
B : g 12_norm grasp plain grasp 12_norm grasp
TNB101_MICRO-JIGSAW wa wa 0.70 20.02 050 ~0.01 0.64 0.02
TNB101_MICRO-SCENE wa Wa 12_norm fisher plain grasp snip grasp
0.70 0.07 0.49 -0.10 0.64 -0.04
TNB101_MICRO-O0BJECT wa wa 12_norm fisher plain grasp 12_norm grasp
0.70 -0.08 0.49 -0.06 0.64 -0.02
TNB101_MICRO-AUTOENC wa wa 12_norm grasp grad_norm grasp 12_norm grasp
0.70 -0.02 -0.46 -0.03 0.64 0.02
TNB101_MICRO-NORMAL wa wa 12_norm plain snip grasp 12_norm plain
0.70 0.01 -0.45 -0.01 0.64 0.00
TNB101_MICRO-ROOM wa Wa 12_norm fisher plain jacov 12_norm grasp
0.70 0.10 0.45 0.14 0.64 -0.01
TNB101_MICRO-SEGMENT wa Wa 12_norm grasp grad_norm grasp 12_norm grasp
0.70 0.00 -0.43 0.01 0.64 -0.01
TNB101_MACRO-JIGSAW 12_norm plain
n/a n/a n/a n/a n/a n/a 0.89 0.04
TNB101_MACRO-SCENE : g ’ ’ ’ ’ 12_norm plain
n/a n/a n/a n/a n/a n/a 0.90 0.05
TNB101_MACRO-0BJECT 5 12_norm plain
n/a n/a n/a n/a n/a n/a 0.89 0.05
TNB101_MACRO-AUTOENC 12_norm plain
n/a n/a n/a n/a n/a n/a 0.89 0.01
TNB101_MACRO-NORMAL 12_norm grasp
n/a n/a n/a n/a n/a n/a 0.89 20.02
TNB101_MACRO-ROOM : g . ’ ’ ’ 12_norm grasp
n/a n/a n/a n/a n/a n/a 0.89 0.00
TNB10_MACRO-SEGMENT 12_norm plain
n/a n/a n/a n/a n/a n/a 0.89 0.00

D.3 Details from Section 4.3t biases

In this section, we give details from Section@ In Table |Z|, for each bias metric we assess, we show
the ZC proxies with the highest and lowest absolute correlation for each search space and dataset,
if applicable. For the number of parameters bias, we do not consider the ZC proxies of params
and flops since they trivially have 1.00 correlation. Note that operation biases are not available in
TransNASBench101-Macro because the search space is architecture-level. This is an extension of
Table[3]

D.4 NAS-Bench-Suite-Zero Speedup Details

Here we show statistics on how our benchmark speeds up NAS experiments previously done with
NAS-Bench-Suite by orders of magnitude. See Table|[]
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Table 8: Runtimes (on an Intel Xeon Gold 6242 CPU) for all types of experiments done in this
paper, with and without NAS-Bench-Suite-Zero. The runtimes of the experiments with NBSuite
are computed by using the average training times for randomly drawn architectures from each search
space in NBSuite.

Experiment With NBSuite (approx.)  With NBSuite + NBSuite-Zero  Speedup
Mutual information study 158.2 hours 124.1 seconds 4592
Architecture bias study 6956 hours 14.8 seconds 1776003 x
Standalone XGBoost+ZC, 100 trials 1033 hours 100 seconds 37180
BANANAS+ZC, 100 trials 4694 hours 4260 seconds 3967 x
NPENAS+ZC, 100 trials 1033 hours 3470 seconds 1071 x

Table 9: Average Spearman rank correlations between XGBoost predictions and validation accuracies,
for each benchmark, across three different experiments: Encoding uses only the encoding of the
model, ZC uses only the ZC features, and Both concatenates ZC features to the encoding of the model.
100 models were used to train XGBoost.

Features Encoding ZC Both % Improvement (ZC) % Improvement (Both)
Benchmark

NB101-CF10 0.546  0.708 0.718 29.67 31.50
NB201-CF10 0.622  0.905 0.906 45.50 45.66
NB201-CF100 0.640  0.907 0.908 41.71 41.87
NB201-IMGNT 0.683 0.879 0.883 28.70 29.28
NB301-CF10 0.314 0.405 0.465 28.98 48.09
TNB101_MACRO-AUTOENC 0.673 0.831 0.837 23.48 24.37
TNB101_MACRO-JIGSAW 0.809 0.706  0.809 -12.73 0.00
TNB101_MACRO-NORMAL 0.617 0.710 0.716 15.07 16.05
TNB101_MACRO-OBJECT 0.736  0.840 0.843 14.13 14.54
TNB101_MACRO-ROOM 0.683 0.589 0.707 -13.76 3.51
TNB101_MACRO-SCENE 0.832  0.891 0.899 7.09 8.05
TNB101_MACRO-SEGMENT 0.900 0.807 0.876 -10.33 -2.67
TNB101_MICRO-AUTOENC 0.714 0.754 0.803 5.60 12.46
TNB101_MICRO-JIGSAW 0.585 0.730 0.743 24.79 27.01
TNB101_MICRO-NORMAL 0.657 0.801 0.809 21.92 23.14
TNB101_MICRO-OBJECT 0.637 0.733 0.752 15.07 18.05
TNB101_MICRO-ROOM 0.582 0.843 0.844 44.85 45.02
TNB101_MICRO-SCENE 0.710 0.849 0.866 19.58 21.97
TNB101_MICRO-SEGMENT 0.767 0.886 0.897 15.51 16.95

E Details from Section 3

In this section, we give the full details from Section 5]

We start by presenting the complete standalone predictor experiments. In Section[5} we mentioned that
on NAS-Bench-201 CIFAR-100, the Spearman rank correlation of XGBoost predictions trained on
100 randomly sampled architectures and averaged over 100 trials, improves from 0.640 to 0.908 when
13 ZC proxies are added. Now, we present the results of this same experiment for all benchmarks.
See Table[0] We see that the large improvement is consistent across the board. We also run the same
experiment when XGBoost is trained on 1000 randomly sampled architectures. See Table [I0] Even
though the predictions with the original XGBoost already have high rank correlation, we show that
ZC proxies improve the performance even more.

E.1 Feature importances of ZC proxies

In this section, we train an XGBoost surrogate model on 100 and 1000 randomly drawn architectures
using the ZC proxies as features, and then we plot feature importances for each feature. The feature
importance is calculated by the the number of times a feature is used to split the data across all trees
(the default feature importance method in the XGBoost library [3]). See Figures [20]and 2] for the
results with a training set size of 100 and 1000, respectively.
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Table 10: Average Spearman rank correlations between XGBoost predictions and validation accura-
cies, for each benchmark, across three different experiments: Encoding uses only the encoding of
the model, ZC uses only the ZC features, and Both concatenates ZC features to the encoding of the
model. 1000 models were used to train XGBoost.

Features Encoding ZC Both % Improvement (ZC) % Improvement (Both)
Benchmark

NB101-CF10 0.748 0.811 0.851 8.42 13.77
NB201-CF10 0.890 0.954 0.961 7.19 7.98
NB201-CF100 0.906 0.953 0.959 5.19 5.85
NB201-IMGNT 0.922 0.948 0.957 2.82 3.80
NB301-CF10 0.678 0.496 0.705 -26.84 3.98
TNB101_MACRO-AUTOENC 0.890 0.903 0917 1.46 3.03
TNB101_MACRO-JIGSAW 0.812 0.801 0.856 -1.35 542
TNB101_MACRO-NORMAL 0.692 0.759 0.764 9.68 10.40
TNB101_MACRO-OBJECT 0.846 0.880 0.888 4.02 4.96
TNB101_MACRO-ROOM 0.741 0.731 0.793 -1.35 7.02
TNB101_MACRO-SCENE 0.936 0.936 0.953 0.00 1.82
TNB101_MACRO-SEGMENT 0.951 0.920 0.952 -3.26 0.11
TNB101_MICRO-AUTOENC 0.838 0.815 0.861 -2.74 2.74
TNB101_MICRO-JIGSAW 0.768 0.827 0.833 7.68 8.46
TNB101_MICRO-NORMAL 0.816 0.850 0.864 4.17 5.88
TNB101_MICRO-OBJECT 0.806 0.841 0.858 4.34 6.45
TNB101_MICRO-ROOM 0.874 0.943 0.947 7.89 8.35
TNB101_MICRO-SCENE 0.862 0.929 0.943 7.77 9.40
TNB101_MICRO-SEGMENT 0.921 0.934 0.948 1.41 2.93

E.2 Ablation study on the number of ZC proxies

Next, we give an ablation study on the number of ZC proxies as features, for an XGBoost surrogate
model trained on 1000 randomly drawn architectures. The ordering of ZC proxies is computed via
the greedy method from Section[4.3] See Figure We find that on all tasks, the best performance
is achieved with all 13 ZC proxies (in some cases, there are ties). However, after 6-8 ZC proxies,
there is only a small improvement up to the full 13 ZC proxies. This is consistent with our mutual
information study from Section[4.3]

E.3 Additional NAS results

Finally, we present more NAS results, extending the NAS results from Section[5} In Figure[I8] we
run BANANAS in the same setting as Section[5} on 11 benchmarks. We see that ZC proxies improve
performance across the board. In Figure we run the same experiment with NPENAS instead of
BANANAS. Note that since NPENAS requires a mutation step, we are only able to run it on complete
benchmarks: NAS-Bench-201 and TransNAS-Bench-101 (in particular, not NAS-Bench-101 or
NAS-Bench-301).

F ZC Proxy Competition

NAS-Bench-Suite-Zero was used successfully in the Zero Cost NAS Competition at AutoML-
Conf 2022. During the competition, participants developed new, better versions of ZC proxies in the
NAS-Bench-Suite-Zero codebase. The challenge was as follows: given /N models, the participant’s
ZC proxy will be used to rank the models for a specified task. The Kendall-Tau rank correlation is
used to score the metric, averaged across three benchmarks in the test phase of the competition. The
tasks in the development phase of the competition were NB201 with Ninapro and SVHN, NB301 with
Ninapro and SVHN, and TNB101-Micro with Ninapro, SVHN, and Spherical-CIFAR100. The tasks
in the final test phase of the competition were NB101 with CIFAR10, NB201 with ImageNet16x120,
NB301 with CIFAR10, TNB101-Macro with Object Classification, and TNB101-Micro with Object
Classification. The winning teams used a normalized version of synflow, a normalized version
of fisher, and a product of grad_norm and params. For more information, see the competition
homepage. E]

*See https://sites.google.com/view/zero- cost-nas-competition/homel
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Precision @ k=5
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Figure 8: Precision@K between ZC proxy values and validation accuracies, for each ZC proxy and
benchmark. The rows and columns are ordered based on the mean scores across columns and rows,
respectively.

30



Best ranking @ k=5
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Figure 9: BestRanking @K between ZC proxy values and validation accuracies, for each ZC proxy
and benchmark. The rows and columns are ordered based on the mean scores across columns and
rows, respectively.
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Figure 10: Pearson correlation coefficient for each pair of ZC proxies, averaged over all benchmarks.
The entries in the plot are ordered based on the mean score across each row and column.
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Figure 11: Conditional entropy and information gain (IG) for each ZC proxy pair across all search
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Figure 12: Conditional entropy and information gain (IG) for each ZC proxy pair across all search
spaces and datasets (Left and Middle). Conditional entropy H(y | zi,,. .., 2i,) vs. k, where the
ordering z;,, ..., 2;, is selected using three different strategies (Right). (2/5)
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Figure 13: Conditional entropy and information gain (IG) for each ZC proxy pair across all search
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ordering z;,, ..., 2;, is selected using three different strategies (Right). (3/5)
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spaces and datasets (Left and Middle). Conditional entropy H(y | zi,,. .., 2i,) vs. k, where the
ordering z;,, ..., 2;, is selected using three different strategies (Right). (4/5)
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Figure 15: Conditional entropy and information gain (IG) for each ZC proxy pair across all search
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spaces and datasets (Left and Middle). Conditional entropy H(y | zi,...,2i,) vs. k, where the
ordering z;,, . .., z;, is selected using three different strategies (Right). (5/5)
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Figure 16: Given a ZC proxy pair (¢, j), we compute the conditional entropy H (y | 2;, z;) (top left),
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EI, but using a different bin discretization strategy.
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Figure 17: Ablation study on the number of ZC proxies as features vs. rank correlation performance,
for an XGBoost surrogate model trained on 1000 randomly drawn architectures. The ordering of ZC
proxies is computed via the greedy method from Section @
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Figure 18: Performance of BANANAS with the vanilla XGBoost surrogate model vs. XGBoost using
the additional ZC proxy scores (concatenated to the architecture encoding) as input.
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Figure 19: Performance of NPENAS with the vanilla XGBoost surrogate model vs. XGBoost using
the additional ZC proxy scores (concatenated to the architecture encoding) as input.
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Feature importances for NB101 (train size: 100)
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Figure 20: Feature importance values for XGBoost trained on a set of 100 architectures using ZC
proxies as features.
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Feature importances for NB101 (train size: 1000)
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Figure 21: Feature importance values for XGBoost trained on a set of 1000 architectures using ZC
proxies as features.
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