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Abstract

Although vision language and large language001
models (VLM and LLM) offer promising op-002
portunities for AI-driven educational assess-003
ment, their effectiveness in real-world class-004
room settings, particularly in underrepresented005
educational contexts, remains underexplored.006
In this study, we evaluated the performance of007
a state-of-the-art VLM and several LLMs on008
646 handwritten exam responses from grade009
4 students in six Indonesian schools, covering010
two subjects: Mathematics and English. These011
sheets contain more than 14K student answers012
that span multiple choice, short answer, and es-013
say questions. Assessment tasks include grad-014
ing these responses and generating personal-015
ized feedback. Our findings show that the VLM016
often struggles to accurately recognize student017
handwriting, leading to error propagation in018
downstream LLM grading. Nevertheless, LLM-019
generated feedback retains some utility, even020
when derived from imperfect input, although021
limitations in personalization and contextual022
relevance persist.023

1 Introduction024

Vision–language models (VLMs) (Liu et al., 2023,025

2024b; Steiner et al., 2024) and large language mod-026

els (LLMs) (Touvron et al., 2023a; Team, 2024;027

Team et al., 2024; OpenAI et al., 2024) have demon-028

strated impressive reasoning capabilities (Wang029

et al., 2023; Wei et al., 2022), including solving030

complex academic tasks such as university-level031

physics (Yeadon and Hardy, 2024) and competition-032

grade mathematics problems (Zhang et al., 2024).033

These advancements have driven growing interest034

in applying such models to education. Common ar-035

eas of application include automated grading (Chi-036

ang et al., 2024), teaching support (Hu et al., 2025),037

feedback generation Morris et al. (2023), and con-038

tent creation (Westerlund and Shcherbakov, 2024).039

However, most VLM and LLM-based educa-040

tional tools have been developed with English-041

Figure 1: AI-powered assessment using VLM and LLM.

speaking contexts in mind Lee and Zhai (2025); 042

Yancey et al. (2023), limiting their relevance and 043

usability in non-English-speaking regions, partic- 044

ularly in rural areas in Indonesia. Ensuring socio- 045

cultural relevance is essential: effective deploy- 046

ment requires adaptation to local curricula, lan- 047

guages, and cultural norms, rather than relying on a 048

one-size-fits-all approach. Moreover, the shortage 049

of qualified teachers in rural areas highlights the 050

importance of prioritizing AI integration in under- 051

served regions, rather than concentrating develop- 052

ment efforts solely in high-resource, Global North 053

contexts (Jin et al., 2025; Kristiawan et al., 2024). 054

In this study, we address the contextual chal- 055

lenges of applying AI-powered assessment tools in 056

non-English speaking and under-resourced settings 057

by collecting real-world student assessment data 058

from primary schools in the form of handwritten 059

responses. This design is motivated by two practi- 060

cal considerations. First, many schools, especially 061

in rural areas, lack consistent access to digital de- 062

vices, highlighting the need for AI systems that 063

function effectively in low-tech environments. Sec- 064

ond, using handwritten responses helps reduce the 065

risk of academic dishonesty, such as students who 066

rely on AI tools to generate answers. Assessments 067

were conducted in Indonesian for the mathematics 068

subject, while the responses to the English subject 069
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were written in English, reflecting the language of070

instruction for each subject.071

Our contributions are as follows: (1) We release072

a dataset of 646 handwritten student answer sheets073

(with over 14K answers) collected from six pri-074

mary schools in Indonesia—three from rural ar-075

eas and three from urban areas. The assessments076

cover Grade 4 Mathematics and English, with ques-077

tions and scoring guidelines developed by experi-078

enced teachers. All student responses were manu-079

ally transcribed and graded by professional teach-080

ers.1 (2) We introduce a multimodal pipeline that081

integrates vision–language models (VLMs) and082

large language models (LLMs), as illustrated in Fig-083

ure 1. We compare several state-of-the-art models084

for grading student answers and find that GPT-4o085

with vision input achieves the highest accuracy and086

feedback quality. (3) We conduct a manual eval-087

uation of LLM-generated feedback in Indonesian088

and find that, even when based on imperfect input089

(e.g., OCR errors), the feedback tends to be clear090

and factually correct. However, personalization091

and helpfulness remain notable areas of concern.092

2 Related Work093

Previous studies have investigated the use of LLMs094

as graders for student assignments and exams. For095

example, Chiang et al. (2024) used GPT-4 to auto-096

matically grade 1,028 student essays in a university-097

level course titled Introduction to Generative AI.098

Their findings suggest that LLM-based graders099

were generally well accepted by students; however,100

the models occasionally did not follow the grading101

rubric. In a related study, Yancey et al. (2023) used102

GPT-3.5 and GPT-4 to score essays in a high-stakes103

English proficiency test, demonstrating that LLM-104

generated scores can achieve high agreement with105

human raters.106

Stahl et al. (2024) used Mistral (Jiang et al.,107

2023) and LLaMA-2 (Touvron et al., 2023b) to108

assess English student essays and generate feed-109

back, finding that scoring accuracy had limited110

influence on student’s perceived usefulness of the111

feedback. Similarly, Morris et al. (2023) applied112

a Longformer-based language model (Botarleanu113

et al., 2022) to generate formative feedback on114

student-written summaries of English textbooks.115

Unlike these prior studies, our work focuses116

1To ensure ethical use and protect student privacy, all per-
sonally identifiable information (e.g., student names, grade
levels, and school names) has been removed.

on handwritten responses from grade 4 primary 117

school students in Indonesia, covering both En- 118

glish and mathematics. We also evaluate a com- 119

plete multimodal pipeline that integrates a VLM 120

for handwriting recognition and LLMs for grading 121

and feedback generation—introducing new chal- 122

lenges related to noisy input, multilingual content, 123

and real-world constraints in low-tech, underrepre- 124

sented classroom settings. 125

3 Dataset Construction 126

Assessment Design We developed assessment 127

instruments for grade 4 primary school students 128

in two subjects: Mathematics and English. The 129

items were designed from scratch based on a thor- 130

ough analysis of the national curriculum and cor- 131

responding learning objectives. Each subject as- 132

sessment consisted of 10 multiple-choice questions 133

(MCQs), 10 short-answer questions, and 2 essay 134

questions. All items were created by experienced 135

senior subject teachers—an English teacher and a 136

Math teacher—each with over 10 years of class- 137

room experience and a Master’s degree in Educa- 138

tion. In addition to writing the assessment items, 139

these teachers developed detailed scoring rubrics 140

for the short-answer and essay questions, as well 141

as answer keys for the MCQs. Standardized an- 142

swer sheets were also prepared to collect student 143

responses. 144

Data Collection Data collection was carried out 145

in six primary schools, evenly divided between ru- 146

ral (Sumatra and Nusa Tenggara Islands) and urban 147

(Java Island) settings. Each classroom included 148

approximately 20 to 30 students. For both subjects, 149

students followed a structured sequence consisting 150

of a pre-test, lesson, and post-test. Students had 151

up to 30 minutes to complete their answers on a 152

standardized answer sheet. 153

In total, we collected 646 handwritten answer 154

sheets from these assessments, comprising both 155

pre-tests and post-tests. Of these, 414 were col- 156

lected from urban schools and 232 from rural 157

schools. The disparity in sample size between ur- 158

ban and rural areas is primarily due to larger class 159

sizes typically found in urban schools compared to 160

their rural counterparts. 161

4 Experiment 162

Overall Pipeline Figure 1 illustrates our pipeline, 163

which begins with a vision–language model (VLM) 164
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that performs optical character recognition (OCR)165

to extract handwritten student responses from166

scanned answer sheets. The extracted text is then167

structured into a JSON format and passed to a large168

language model (LLM), along with the answer key169

and a teacher-defined rubric. For multiple-choice170

questions, we apply string matching. For short-171

answer and essay questions, we run the LLM sep-172

arately for each question, providing the student’s173

response, the corresponding answer key, and the174

assessment rubric. To generate personalized feed-175

back, we provide the LLM with all of the student’s176

responses, the answer key, the assigned weights,177

and the rubric.178

Model For OCR, we use GPT-4o (OpenAI et al.,179

2024), alongside a gold-standard transcription man-180

ually parsed by teachers. For automatic scoring, we181

compare the performance of GPT-4o, Llama-3.1-182

Instruct (70B) (Touvron et al., 2023b), Qwen2.5-183

Instruct (72B) (Team, 2024), and Deepseek-Chat184

(671B) (Liu et al., 2024a). For generating person-185

alized feedback, we rely on the scoring results pro-186

duced by GPT-4o and generate two versions of187

feedback using GPT-4o and Deepseek-Chat. All188

prompts and decoding hyperparameters used are189

provided in the Appendix.190

Evaluation Each answer sheet image was manu-191

ally transcribed and scored by professional teachers.192

We compared the LLM-generated scores against193

these gold-standard scores across three question194

types: multiple-choice, short-answer, and essay,195

using mean absolute error (MAE) as the eval-196

uation metric. For personalized feedback, we197

conducted a manual evaluation covering four as-198

pects—Correctness, Personalization, Clarity, and199

Educational Value/Helpfulness—rated on a 1–5200

scale, where 1 indicates the lowest quality.2201

5 Result and Analysis202

Main Result Table 1 presents the performance203

of the LLMs selected in three types of questions:204

multiple choice, short answer, and essay. When us-205

ing GPT-4o to extract student responses via OCR,206

we observe that most model-generated scores are207

generally competitive. Among them, GPT-4o pro-208

duces scores that align most closely with human209

grading for essay questions, achieving the lowest210

2This evaluation was carried out by an experienced ed-
ucator with a Master’s degree in teaching. The evaluation
guidelines and definitions for each aspect are provided in the
Appendix.

English Math
Model M S E Total M S E Total

OCR by GPT4o
GPT4o 2.8 14.6 5.6 11.7 2.3 16.3 1.5 8.2
Llama 3.1 (70B) 2.8 18.7 9.3 14.5 2.3 10.6 27.5 2.2
Qwen2.5 (72B) 2.8 14.9 16.6 14.7 2.3 19.1 5.8 7.1
Deepseek (671B) 2.8 12.6 9.8 11.9 2.3 22.8 6.7 8.1
OCR by Human
GPT4o 0.0 9.2 2.7 7.9 0.0 2.9 5.7 1.5
Llama 3.1 (70B) 0.0 14.4 2.3 11.6 0.0 9.8 19.1 10.3
Qwen2.5 (72B) 0.0 8.4 3.8 9.2 0.0 5.5 8.7 3.3
Deepseek (671B) 0.0 4.4 1.5 6.8 0.0 5.9 8.5 0.8

Table 1: Mean absolute error (MAE) for English and
Math, calculated separately for multiple-choice (M),
short-answer (S), essay (E), and the total score. Lower
values indicate better performance; bolded numbers
represent the best results. Scores for each component
range from 0 to 100.

Model Correctness Personalization Clarity Helpfulness

English
GPT-4o 4.00 3.96 3.64 3.60
Deepseek 3.96 3.88 4.04 3.96
Math
GPT-4o 3.84 3.72 3.92 3.68
Deepseek 3.88 2.96 4.00 2.92

Table 2: Human evaluation by expert teachers on per-
sonalized feedback, using a rating scale from 1 to 5,
where 1 indicates the lowest score.

MAE in both English (5.6) and Math (1.5). In con- 211

trast, LLaMA-3.1–70B and Qwen-2.5–72B are less 212

reliable, with scores deviating more significantly 213

from human judgments. Short-answer questions 214

remain the most challenging to evaluate: even the 215

best performing model in this category, LaMA-3.1- 216

7B for Math, still shows a relatively high MAE of 217

10.6, indicating a notable gap from human-level 218

accuracy. 219

However, the results differ when human effort is 220

involved in the OCR task. Most scores become bet- 221

ter overall, with Deepseek-chat and GPT-4o emerg- 222

ing as the top-performing models. Deepseek-chat 223

shows strong performance in English (MAE of 4.4 224

for short answers and 1.5 for essays), while GPT-4o 225

performs best in Math, with only a 2.9 difference 226

in short answers and 5.7 in essays. It is worth not- 227

ing that MCQ scores remain at 0, as basic string 228

matching is sufficient due to the exact nature of the 229

answers. The impact of OCR performance on LLM 230

scoring is further discussed in Section 5. 231

Human Evaluation on Personalised Feedback 232

Table 2 presents the results of a human evaluation 233

on personalized feedback quality, rated by expert 234

teachers across four dimensions: Correctness, Per- 235

3



English Math
Model M S E Total M S E Total

Urban
GPT4o 0.0 2.4 7.2 0.8 0.0 5.8 7.6 2.4
Llama 3.1 (70B) 0.0 7.7 2.9 2.7 0.0 10.3 30.0 10.4
Qwen2.5 (72B) 0.0 1.9 1.3 0.5 0.0 7.6 10.7 3.9
Deepseek (671B) 0.0 1.3 3.5 1.5 0.0 5.6 9.9 1.0
Rural
GPT4o 0.0 21.2 5.2 23.1 0.0 2.5 2.2 0.3
Llama 3.1 (70B) 0.0 26.1 11.4 26.9 0.0 8.8 23.1 9.7
Qwen2.5 (72B) 0.0 19.8 12.5 24.3 0.0 1.7 5.0 2.1
Deepseek (671B) 0.0 14.2 10.1 21.2 0.0 6.4 5.9 0.6

Table 3: Analysis of mean absolute errors (MAE) for
English and Math across urban and rural settings, calcu-
lated separately for multiple-choice (M), short-answer
(S), essay (E), and total scores. The OCR results used in
this analysis were obtained through human transcrip-
tion. Lower values indicate better performance; bolded
values represent the best results. Each component is
scored on a 0–100 scale.

sonalization, Clarity, and Helpfulness (scale 1–5,236

with scores below 3 considered poor). For English,237

GPT-4o slightly outperforms Deepseek in correct-238

ness and personalization, while Deepseek leads in239

clarity and helpfulness. In Math, Deepseek shows240

strong clarity and correctness but performs poorly241

in personalization and helpfulness, with both scores242

falling below 3. GPT-4o, on the other hand, main-243

tains more balanced performance across all dimen-244

sions.245

Urban vs. Rural Performance Analysis Given246

the significant educational disparities between rural247

and urban areas, we evaluated the performance of248

the model in these two settings. To isolate the249

analysis of LLM scoring capabilities, we use only250

the human-transcribed OCR results, eliminating251

recognition errors.252

Table 3 presents the MAE scores for English253

and Math, separated by question type: multiple254

choice (M), short answer (S), essay (E), and total255

scores. The results indicate that English MAEs256

are generally higher in rural settings than in urban257

settings across all models. For example, GPT-4o258

achieves a total MAE of only 0.8 in urban English,259

but this rises sharply to 23.1 in the rural setting.260

This discrepancy suggests that LLMs may struggle261

more in interpreting free-form responses from ru-262

ral students, possibly due to variations in writing263

style and grammar. In contrast, MAEs for Math264

tend to be slightly lower in rural areas, although265

the differences are less pronounced. This may be266

attributed to the nature of Math questions, which267

often involve numerical reasoning and have more268

deterministic answers, reducing ambiguity in scor-269

English Math
Area EM(M) EM(S) RL(E) EM(M) EM(S) RL(E)

Urban 82.1 67.1 60.3 62.3 23.3 21.0
Rural 71.7 61.8 60.1 62.5 27.9 24.8

All 78.5 65.3 60.2 62.4 24.9 22.3

Table 4: OCR-based performance (GPT-4o) across Ur-
ban, Rural, and All settings for English and Math: EM
= exact match, RL = ROUGE-L F1, MCQ = multiple
choice.

ing. 270

OCR Performance Analysis Given the differ- 271

ences in MAE between the GPT-4o OCR outputs 272

and human transcription shown in Table 1, we fur- 273

ther analyze the OCR performance of GPT-4o and 274

evaluate the extent to which recognition errors prop- 275

agate to the subsequent scoring. For this analysis, 276

we use exact string matching to assess accuracy on 277

multiple choice and short answer questions, and 278

compute ROUGE-L (Lin, 2004) scores to compare 279

GPT-4o and human transcriptions for essay ques- 280

tions. 281

Table 4 shows that the OCR performance is gen- 282

erally higher for English than for Math. Within En- 283

glish, responses from urban students yield higher 284

exact match and ROUGE-L scores compared to 285

those from rural students, possibly due to differ- 286

ences in handwriting clarity or writing conventions. 287

For Math, the OCR accuracy is overall lower than 288

that of English, but the performance gap between 289

urban and rural settings is less pronounced. This 290

suggests that while English responses may be more 291

affected by region-specific handwriting variability, 292

Math responses, often more structured and numeri- 293

cal, are comparatively stable across regions. 294

6 Conclusion 295

In this work, we present a real-world implementa- 296

tion of vision–language model (VLM) and large 297

language models (LLMs) for student assessment in 298

underrepresented regions—specifically, rural and 299

urban areas of Indonesia—focusing on primary 300

school subjects in Math and English. Our results 301

show that GPT-4o and Deepseek (671B) perform 302

competitively in matching teacher-assigned scores 303

across multiple-choice, short-answer, and essay for- 304

mats. For personalized feedback generation, man- 305

ual evaluation indicates that Deepseek outperforms 306

GPT-4o in terms of quality and relevance. We 307

hope that this work encourages greater research 308

attention towards educational applications of AI in 309

low-resource and underserved contexts. 310
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Limitations311

While this study provides valuable insights into the312

use of vision-language and large language models313

(VLMs and LLMs) for automated assessment in314

multilingual, low-resource contexts, several limita-315

tions should be acknowledged:316

Educational Scope The study was conducted ex-317

clusively in Indonesian public elementary schools,318

specifically in Grade 4 classrooms following the na-319

tional curriculum (Kurikulum Merdeka). It focused320

on two subject areas: Mathematics (covering the321

introductory chapter on fractions) and English (fo-322

cusing on the topic of parts of the house). As such,323

the findings may not be generalizable to other sub-324

jects, grade levels, or curricula. Geographically, the325

research was limited to three provinces—West Java326

(Java Island), West Nusa Tenggara (Lombok Is-327

land), and West Sumatra (Sumatra Island)-–which,328

while diverse, may not fully represent the broader329

variation in educational contexts across Indonesia330

or other countries.331

Models The models used in our evaluations332

include OpenAI’s GPT-4o, Meta’s LLaMA333

3.1–70B Instruct, Qwen 2.5–VL–72B Instruct, and334

DeepSeek Chat. While these models represent the335

current state of the art, their training data and evalu-336

ation strategies are primarily optimized for English337

and other globally dominant contexts. As a result,338

they may struggle to fully capture the nuances of339

student responses written in Bahasa Indonesia.340

Ethics Statement341

This study strictly adheres to ethical research prac-342

tices in AI and education:343

• All student answer sheets were anonymized344

prior to analysis. Identifying information, in-345

cluding names, school names, and class iden-346

tifiers, was removed to protect student pri-347

vacy and comply with ethical guidelines for348

research involving minors.349

• Written informed consent was obtained from350

school administrators and participating teach-351

ers. Participation in the study was voluntary,352

and students were not penalized for opting353

out.354

• The inclusion of both urban and rural schools355

was an intentional decision to ensure represen-356

tation across socio-economic and educational357

divides. However, we recognize that the de- 358

ployment of AI tools in such settings must 359

be approached cautiously to avoid reinforc- 360

ing existing inequalities. This study advocates 361

for equitable development, localization, and 362

participatory design of AI tools in education, 363

particularly when applied in under-resourced 364

areas. 365

• To mitigate risks associated with overreliance 366

on AI outputs, all AI-generated scores and 367

feedback were reviewed by experienced teach- 368

ers. We emphasize that AI should aug- 369

ment—not replace—human judgment in edu- 370

cational assessment, especially when dealing 371

with young learners. 372
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A Hyperarameter Setup681

We use the following default hyperparameters: tem-682

perature = 1.0, top-p = 1.0, and top-k = 1.0 for all683

tasks, including OCR of student papers, scoring,684

and generating feedback. The max_tokens param-685

eter is also set to its default to allow the model to686

generate output without restrictions.687

B Prompts List688

Figures 2, 3, and 4 show the prompts we use to689

generate outputs for the OCR task, score student690

answers, and provide feedback based on the stu-691

dent’s assignment performance.692

Prompt for reading the image (OCR)

This is an image of an answer sheet with
texts written in either English or Indonesian.
Please extract all answers from the image.
Adjust the numbering in your response to
match the actual number of questions on
the answer sheet. Use the following JSON
format in your output, and do not output
anything else.
{

’Nama’: <value>,
’Kelas’: <value>,
’PILIHAN GANDA’: {

’1’: <value>,
’2’: <value>,
// Adjust numbering based on the

answer sheet},
’ISIAN’: {

’1’: <value>,
’2’: <value>,
// Adjust numbering based on the

answer sheet},
’ESSAY’: {

’1’: <value>,
’2’: <value>,
// Adjust numbering based on the

answer sheet}, }

Figure 2: Prompt for reading the image (OCR) using
LLM

C Human Evaluation Guideline on693

Personalised Feedback694

We evaluate the quality of personalized feedback695

along four dimensions using a 1–5 rating scale,696

where 1 indicates the lowest quality and 5 indicates697

Prompt for scoring

The maximum score for this question is
{max_score}. Please follow this marking
criteria when deciding the score for the stu-
dent’s answer

{marking_criteria}

Student answer:

{student_answer}

Answer key:

{gold_answer}

What is the appropriate score for the student
in a range of 0 and {max_score}? Please
only output the score in your response!’

Figure 3: Prompt for scoring using LLM

Prompt for generating the feedback

Write in Indonesian a personalised feedback
(less than 8 sentences) for a student {stu-
dent_name} based on the evaluation results
over his/her exam answer.
Please use this JSON data by focusing on
obtained_score and learning_objective.

{detailed_feedback}

Figure 4: Prompt for generating the feedback using
LLM

the highest. The four dimensions are Correctness, 698

Personalization, Clarity, and Educational Value 699

/ Helpfulness. Correctness assesses whether the 700

feedback is factually accurate based on the stu- 701

dent’s response, the answer key, and the rubric. 702

Personalization measures how well the feedback is 703

tailored to the student’s specific answer, including 704

whether it addresses actual strengths, weaknesses, 705

or errors rather than offering generic comments. 706

Clarity evaluates whether the feedback is easy to 707

understand, well-structured, and communicated in 708

an age-appropriate and supportive tone. Educa- 709

tional Value / Helpfulness considers the extent to 710

which the feedback supports learning and encour- 711

ages the student to reflect and improve. Evalua- 712

tors are instructed to use these criteria consistently 713

when assigning scores. 714
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