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Abstract
Cartoon parsing is an important task for cartoon-centric applica-
tions, which segments the body parts of cartoon images. Due to
the complex appearances, abstract drawing styles, and irregular
structures of cartoon characters, cartoon parsing remains a chal-
lenging task. In this paper, a novel approach, named CartoonNet, is
proposed for cartoon parsing, in which semantic consistency and
structure correlation are integrated to address the visual diversity
and structural complexity for cartoon parsing. A memory-based
semantic consistency module is designed to learn the diverse ap-
pearances exhibited by cartoon characters. Thememory bank stores
features of diverse samples and retrieves the samples related to new
samples for consistency, which aims to improve the semantic rea-
soning capability of the network. A self-attention mechanism is
employed to conduct consistency learning among diverse body
parts belong to the retrieved samples and new samples. To capture
the intricate structural information of cartoon images, a structure
correlation module is proposed. Leveraging graph attention net-
works and a main body-aware mechanism, the proposed approach
enables structural correlation, allowing it to parse cartoon images
with complex structures. Experiments conducted on cartoon pars-
ing and human parsing datasets demonstrate the effectiveness of
the proposed method, which outperforms the state-of-the-art ap-
proaches for cartoon parsing and achieves competitive performance
on human parsing.
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Figure 1: Cartoon parsing remains a challenging task due to the
various styles, complex appearances and abstract structures of car-
toon images. The diversity and complexity of cartoon images pose
great difficulties for cartoon parsing.
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1 Introduction
Cartoon characters are an important part of culture and media with
their diverse appearances and abstract structures. From human-like
cartoon characters to animal-like cartoon images, cartoons exhibit
a wide range of styles. The task of cartoon parsing, which aims
to segment different parts of cartoon characters, holds substantial
importance for various applications such as cartoon animation,
content creation and virtual worlds. Due to the inherent variations
in cartoon appearances and lack of uniformity in cartoon structures,
identifying diverse visual appearances and complex structures of
cartoons is a challenging task.

Cartoon images have various visual appearances and abstract
spatial structures, which are illustrated in Fig. 1. Unlike real-world
humans, the styles of cartoon characters may vary depending on
author or cultural background, which results in the diversity and
complexity of cartoon images. For human-like cartoon characters,
their appearances and structures are quite different. The properties
of cartoon images make the body parts such as limbs, head and
body of human-like cartoon characters abstract and complicated,
which are not consistent with real-world humans. Animal-like
cartoon images are more complex due to diverse animal categories.
For different animal species such as fish, mammals, and reptiles,
their visual appearances and body structures are different when
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Figure 2: The framework of the proposed CartoonNet. It mainly consists of memory-based semantic consistency and main body-aware
structure correlation. The memory-based semantic consistency utilizes a memory bank to achieve consistency learning across different samples.
The main body-aware structure correlation focuses on correlation of body structures, modeling the structure of cartoons. PCL and PCM refer
to pixel correlation learning and part correlation modeling [23], which are employed to solve the irregularities of cartoon images.

presented in the form of cartoon images. Therefore, cartoon parsing
remains a challenging task.

For image parsing, existing methods have primarily focused
on human parsing and achieved significant progress. Previous hu-
man parsing methods have explored hierarchical structure learning
[12, 34, 35, 43], pose estimation-guided learning [19, 41] and the
integration of self-correction strategy [14]. However, due to the
significant differences between real humans and cartoon images,
these human parsing methods exhibit limited performance in car-
toon parsing. With the development of cartoon related applications,
the advanced deep learning methods [23, 32] have been applied to
cartoon parsing. They employ multi-scale learning structures, and
leverage pixel and part correlation to infer irregular cartoon struc-
tures. However, the diversity and complexity of cartoon images
remain a challenge.

In this paper, CartoonNet is proposed to address the diversity
and complexity of cartoon images in cartoon parsing. It augments
cartoon parsing by designing amemory-based semantic consistency
structure and a graph attention network-based structure correla-
tion module. The framework is illustrated in Fig. 2. The semantic
consistency module encodes and learns the diverse appearances dis-
played by cartoon characters. It designs a memory-based learning
structure to conduct consistency learning of diverse body parts. The
memory-based semantic consistency learns the visual differences
of cartoon characters, which aims to alleviate the rich diversity of
cartoon images and improve generalization ability. The structure
correlation approach focuses on modeling and learning the intri-
cate and irregular structures exhibited by cartoon characters. It
leverages graph attention networks (GATs) [2, 11, 31] and a main
body-aware mechanism to facilitate structural learning and cor-
relation. By modeling the structural features of cartoon images
across the main bodies, the method focuses on important parts of
cartoon images to alleviate the structural complexity of cartoon
parsing. Experiments conducted on cartoon parsing and human
parsing datasets demonstrate the effectiveness of the proposed ap-
proach, which outperforms the state-of-the-art methods for cartoon
parsing and achieves competitive results on human parsing. The
contributions are summarized as follows:
• CartoonNet is proposed to address the challenges of visual diver-
sity and structure complexity in cartoon images, which designs

a memory-based semantic consistency module and a main body-
aware structure correlation strategy for cartoon parsing.

• A memory-based learning structure is proposed to facilitate ap-
pearance learning, which captures the inconsistent appearances
of different cartoon characters and utilizes self-attention mecha-
nism to achieve semantic consistency among diverse body parts.

• A main body-aware structure correlation method is proposed
to model the structural information of cartoon characters with
complex structures, which employs the graph attention networks
and a main body-aware mechanism to focus on the important
structures.

• The proposed method achieves state-of-the-art performance on
the cartoon parsing datasets, which demonstrates the effective-
ness of CartoonNet.

2 Related Work
2.1 Human Parsing
Human parsing [5, 16, 29], the task of segmenting human body
parts in images, has achieved significant progress. Previous human
parsing methods develop approaches such as hierarchical structure
learning [12, 34, 35, 43], pose estimation-guided learning [19, 41],
and self-correction strategy [14], achieving satisfactory results on
recognition of body parts of humans. However, applying human
parsing methods to cartoon parsing presents challenges due to
fundamental differences. Cartoons are known for their complexity,
diverse styles, irregular lines, unique color schemes, and abstract
representations, varying greatly based on creators and cultural con-
texts. Human parsing models [15, 18] are designed on real-world
human images, making them unsuitable for cartoon parsing, where
characters often have unconventional body proportions and ar-
ticulations. Cartoon parsing necessitates dedicated research and
specialized algorithms to address its unique characteristics, empha-
sizing accuracy and effectiveness in dealing with the diversity and
complexity of cartoon images.

2.2 Cartoon Parsing
The task of cartoon parsing has gained increasing attention in
recent years due to its relevance in various multimedia applica-
tions. Researchers have proposed several approaches to address
the challenges posed by diverse and complex cartoon appearances
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and structures. Early works in this domain primarily focused on
rule-based methods and handcrafted feature extraction techniques.
These approaches, while capable of capturing some aspects of car-
toon images, often struggle with the diversity and complexity of
cartoon imagery. The emergence of deep learning techniques, par-
ticularly the convolutional neural networks (CNNs) [1, 17, 25, 27],
has significantly advanced the field of cartoon parsing. DFPNet [32]
applies feature pyramid network to cartoon dog parsing, which
alleviates the varied scales in cartoon parsing. However, it ignores
the correlations of visual cues and structural features in cartoon
characters. CPNet [23] recognizes the irregular cartoon structures
and body parts with different semantics but have visually akin
appearances, by introducing a pixel and part correlation learning
structure. However, it ignores the semantic consistency of diverse
cartoon images and the structure correlation of complex cartoon
characters. Although CNN-based methods demonstrate improved
performance in recognizing cartoon characters, addressing the di-
versity and complexity of cartoon images remains a challenge.

2.3 Memory-Augmented Networks
Memory-augmented neural networks [36, 37] have shown promise
in capturing and utilizing long-term dependencies in data. These
networks [13, 24] employ an external memory structure that can be
read from and written to, enabling the storage and retrieval of infor-
mation over extended sequences. In the context of cartoon parsing,
memory-augmented networks can offer a promising potential for
encoding and learning the diverse appearances exhibited by cartoon
characters. Despite the growing interest in memory-augmented
networks, their potential for cartoon parsing remains unexplored.
The ability to store appearance information and perform semantic
consistency learning opens possibilities for addressing individual
visual differences. Therefore, this paper proposes a novel approach
applicable to cartoon parsing to address the issue of significant sam-
ple diversity in cartoon parsing through a memory-based structure.

3 Cartoon Parsing
3.1 Framework
CartoonNet is proposed to address the problems of cartoon parsing,
which are caused by visual diversities and structural complexities
of cartoon characters. A two-fold strategy integrating appearance
learning and structural modeling is introduced to capture features
of diverse visual appearances and model complex structural repre-
sentations. The framework is illustrated in Fig. 2, in which ConvNet
[10] is employed to encode and extract features for cartoon images.
The memory bank is adopted to store features of diverse samples
with a three-column structure. The stored features are matched
to current images by measuring feature similarity, which aims to
parse current samples by recalling previous experiences. The previ-
ous experiences are integrated into current samples by adopting
self-attention mechanism, which achieves semantic consistency
among diverse samples. To learn the correlation of complex body
parts, a main body-aware structure correlation strategy is designed.
It incorporates graph attention networks and a main body-aware
mechanism to facilitate part correlation. The graph attention net-
works model the structural representations and capture important
relations among the body parts. The main body-aware mechanism

learn important body parts that reflect the complex structural prop-
erties of the cartoon images.

3.2 Memory Bank Construction
Previous cartoon parsing methods only consider multi-scale learn-
ing, as well as pixel and part correlation among a single cartoon
character [23, 32]. They have difficulties in identifying diverse car-
toon images. Therefore, the first significant component of the ap-
proach is to encode and learn the visual appearances of diverse
cartoon characters. A memory-based learning structure is proposed
to address the problems caused by visual diversity, which aims to
achieve semantic consistency among different semantic parts. The
memory-based consistency learning includes two parts, representa-
tion consistency and classification consistency. The representation
consistency is designed to conduct consistency learning on seman-
tic parts from different cartoon characters at high-dimensional
semantic feature level. The classification consistency is proposed
to achieve consistency learning of semantic parts from various car-
toon characters at the semantic recognition level, which leverages
the constraint information.

Given a cartoon image 𝑋 , 𝐹 ∈ R𝐶×𝐻×𝑊 is the encoded image
features outputted by ConvNet. 𝐶 denotes the number of channels.
𝐻 and𝑊 refer to height and width of the feature maps, respec-
tively. A memory bank with three columns is defined, where the
prediction column stores the two-dimensional prediction maps, the
representation column saves one-dimensional feature representa-
tions, and the label column one retains labels. Specifically, 𝐹 is fed
into a decoder with three convolution layers [4] to obtain the two-
dimensional feature maps 𝐹𝑚𝑒𝑚 ∈ R𝐶𝑛×𝐻×𝑊 , where 𝐶𝑛 denotes
the number of classes. 𝐹𝑚𝑒𝑚 is then stored in the prediction column
of the memory bank. Additionally, the operation of information
aggregation with global adaptive max pooling is performed on each
feature map of 𝐹 , which outputs a feature vector 𝐹𝑣 ∈ R𝐶×1×1. 𝐹𝑣
is the representation of 𝑋 and it is stored in the representation
column. Label 𝐿 corresponding to 𝑋 is stored in the label column
of the memory bank, which aims to provide supervision for the
semantic consistency learning. In the initial stage, all three columns
of the memory structure are initialized as zeros. During the training
process, image features of each iteration are stored in the memory
bank. When the memory is full, the earliest stored features are
deleted from memory to ensure that the memory bank has space
for features of new iterations, which aims to continuously update
the memory bank throughout the training process.

During each iteration, 𝐹 not only gets stored in the memory
structure but also undergoes further forward operations. A mem-
ory selection operation is performed to choose samples from the
memory structure. These selected samples have some similarities to
current sample and they are used to achieve semantic consistency,
which aims to enhance the semantic reasoning of the network for
targets sharing similar characteristics. Specifically, when inputting
a new sample, the network selects similar samples from the memory
structure. By leveraging the knowledge acquired from these learned
samples, the network accurately infers and identifies current sam-
ple. To achieve memory selection, during each training iteration, a
similarity calculation is performed between current 𝐹𝑐𝑚𝑒𝑚 and the
stored 𝐹𝑚𝑚𝑒𝑚 within the memory structure. This is done using the
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Figure 3: Memory-based representation consistency learning.

Euclidean distance, which retrieves 𝑛 samples from the memory
structure.

3.3 Representation Consistency Learning
The problem of inconsistent appearances among different cartoon
images poses great challenges for cartoon parsing. To achieve con-
sistency learning for the body parts that belong to the same class
but from different samples, the network initially performs consis-
tency learning at the representation level. The framework of the
representation consistency learning is illustrated in Fig. 3, which in-
volves the integration and consistency of feature representations of
current sample and feature representations of the relevant samples
retrieved from the memory bank. Multi-head self-attention [30]
is employed to achieve consistency learning among the semantic
parts from different samples. It ensures that current sample and
the samples stored in the memory structure are associated and
consistent at the feature representation level.

To conduct the representation consistency learning, 𝐹 is mapped
into 1-dimensional feature representation 𝐹𝑐𝑣 with a global adaptive
max pooling operation. Through the memory selection, 𝑛 feature
representations 𝐹𝑚,𝑛𝑣 that represents the retrieved samples are se-
lected for current sample. 𝐹𝑐𝑣 is then duplicated 𝑛 times and con-
catenated with 𝐹𝑚,𝑛𝑣 to aggregate features from diverse samples.
The above operations are formulated as follows:

𝐹𝑐𝑎𝑡𝑣 = 𝐶𝑎𝑡 (𝐶𝑜𝑝𝑦 (𝐺𝑎𝑝 (𝐹 )), 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑀)) (1)

where 𝐹𝑐𝑎𝑡𝑣 is the concatenated features. 𝐺𝑎𝑝 (·) denotes global
adaptive max pooling operation. 𝐶𝑜𝑝𝑦 (·) is the duplication opera-
tion.𝐶𝑎𝑡 (·) refers to concatenation operation. 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(·) denotes
the memory selection operation that retrieves the related sam-
ples from memory𝑀 . Subsequently, multi-perceptual (MLP) layers
are adopted to create queries, keys and values for multi-head self-
attention. It is formulated as,

𝑄 = 𝐹𝑐𝑎𝑡𝑣 𝑊𝑄 , 𝐾 = 𝐹𝑐𝑎𝑡𝑣 𝑊𝐾 , 𝑉 = 𝐹𝑐𝑎𝑡𝑣 𝑊𝑉 (2)

where𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 are learnable weight matrices that project
the input vectors 𝐹𝑐𝑎𝑡𝑣 into queries 𝑄 , keys 𝐾 , and values𝑉 , respec-
tively. Multi-head self-attention mechanism calculates the output
vectors 𝐹𝑜𝑢𝑡𝑣 as a weighted sum of the input vectors 𝐹𝑐𝑎𝑡𝑣 , where
the weights are determined by the attention scores. The attention
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Figure 4: Memory-based classification consistency learning.

scores are calculated as,

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉 (3)

where dot products of the query𝑄 with all keys𝐾 are computed and
scaled by the scaling factor 1√

𝑑𝑘
. 𝑑𝑘 is the dimension of query. The

softmax operation generates the attention scores. The dot products
of the attention score and value 𝑉 associate the representations of
different samples.

Multi-head attention mechanism has 𝑡 heads and it performs
the attention calculation in parallel for each head. The outputs
of the heads are concatenated and projected back to the original
dimension of 𝐹𝑐𝑎𝑡𝑣 , which is formulated as,

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 ) (4)

𝐹𝑜𝑢𝑡𝑣 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾,𝑉 ) = 𝐶𝑎𝑡 (ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑𝑡 )𝑊𝑂 (5)

where𝑊𝑄

𝑖
,𝑊𝐾

𝑖
,𝑊𝑉

𝑖
, and𝑊𝑂 are parameter matrices.

The representation consistency learningwith self-attentionmech-
anism allows the model to attend to different representations of
the same input sequence when calculating the output vectors 𝐹𝑜𝑢𝑡𝑣 .
The consistent features, 𝐹𝑜𝑢𝑡𝑣 , is fused to the original features 𝐹 as,

𝐹𝑟𝑐 = 𝐶𝑎𝑡 (𝐹, 𝐹 ⊙ 𝑆𝑖𝑔(𝐹𝑜𝑢𝑡𝑣 )) (6)

where 𝑆𝑖𝑔(·) denotes sigmoid operation that aims to map the val-
ues of vectors into calibration weights. ⊙ refers to element-wise
multiplication.

3.4 Classification Consistency Learning
To achieve semantic consistency, supervisions are required for di-
verse body parts during the training process. Therefore, in addition
to representation consistency learning, classification consistency
learning is proposed and performed through loss weighting, which
achieves semantic consistency among current sample and the sam-
ples retrieved from the memory bank. The labels of current sample
and the retrieved samples are utilized to provide supervision.

With the memory selection operation, predictions 𝐹𝑚,𝑛𝑚𝑒𝑚 of the
retrieved 𝑛 samples are obtained, which are related to features
𝐹 of current sample 𝑋 . 𝐹 is mapped into category dimension for
semantic prediction. The decoder of DeepLabV3+ [4] is adopted
for the mapping, which is widely used in previous human parsing
methods. It is formulated as,

𝐹𝑐𝑚𝑒𝑚 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝐹, 𝐹 ′) (7)
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Figure 5: GAT-based structure correlation.

where 𝐹 ′ denotes the shallow features from ConvNet that provide
spatial details for the deep features 𝐹 .

To ensure that the network consistently recognizes the body
parts that belong to the same class in 𝐹𝑐𝑚𝑒𝑚 and 𝐹𝑚,𝑛𝑚𝑒𝑚 , the classi-
fication consistency is performed by calibrating the recognition
results of 𝐹𝑐𝑚𝑒𝑚 using the recognition results of 𝐹𝑚,𝑛𝑚𝑒𝑚 . As can be
seen in Fig. 4, for each sample in 𝐹𝑚,𝑛𝑚𝑒𝑚 , losses of each sample are
calculated for each category such as face and arm, which outputs 𝑛
loss values for the same category. The loss values of the same cate-
gory are summed for the corresponding category, aggregating the
losses from different samples. Subsequently, all summed losses are
normalized and mapped to weights. The weights are multiplied by
the loss of each category in 𝐹𝑐𝑚𝑒𝑚 . Consequently, the recognition of
each category in 𝐹𝑐𝑚𝑒𝑚 is calibrated by the corresponding category
in 𝐹𝑚,𝑛𝑚𝑒𝑚 , which achieves classification consistency learning. It is
formulated as follows:

L𝑐𝑙𝑠 = 𝐶𝐸𝑐𝑙𝑠 (𝐹𝑚,𝑛𝑚𝑒𝑚, 𝐿
𝑛) (8)

L𝑤𝑡𝑠 = 𝑁𝑜𝑟𝑚(𝑆𝑢𝑚𝑐𝑙𝑠 (L𝑐𝑙𝑠 )) (9)
L𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝐶𝐸𝑐𝑙𝑠 (𝐹𝑐𝑚𝑒𝑚, 𝐿) ⊙ L𝑤𝑡𝑠 (10)

where 𝐶𝐸𝑐𝑙𝑠 (·) means modified cross-entropy loss function, which
is used for loss computation of each class. 𝑆𝑢𝑚𝑐𝑙𝑠 (·) denotes gath-
ering the losses of the same class. 𝑁𝑜𝑟𝑚(·) refers to normalization
on the summed losses of different categories. 𝐹𝑐𝑚𝑒𝑚 and 𝐹𝑚,𝑛𝑚𝑒𝑚 are
predictions of the current sample and the retrieved samples, respec-
tively. 𝐿 and 𝐿𝑛 are their corresponding labels, respectively.

3.5 Structure Correlation
In addition to appearance learning, structural learning is also crucial
for cartoon parsing. Previous methods consider the correlation of
different parts, but they overlook the learning of strongly related
local structures. The pipeline of the main body-aware mechanism
is illustrated in Fig. 6, in which some local structures exhibit high
correlations, such as the face, hair, and hat. Similarly, the thighs,
shins, and shoes, or the palms, upper arms, and forearms, are also
strongly related. Therefore, this paper introduces the main body-
aware recognition strategy, which focuses on structural modeling
of strongly correlated structures to explore complex structures of
cartoon images.

Given 𝐹𝑟𝑐 , pixel correlation learning (PCL) is adopted to capture
pixel correlations of the cartoon image [23]. Feature aggregation
is then performed using global average pooling along the channel
dimension to obtain a one-dimensional feature representation. The
one-dimensional feature representation is divided into 𝑛𝑐 feature
representations, which are treated as nodes of graph G = (V, E).
𝑛𝑐 represents the number of categories.V denotes the set of nodes
that correspond to body parts of cartoon characters. E refers to

left hand+left arm left arm+torso

GAT GAT

Enhanced part features

Integrated features

torso+right arm

GAT

......

......

......

......

Main body Main body

Figure 6: Main body-aware mechanism.

the set of edges that indicates the connection relations of adjacent
body parts. For the construction of edge E, the adjacency matrix
that indicates the connections of semantic parts is computed to
associate body parts.

GAT layers [31] are constructed to model the graph G. The
framework of the GAT-based structure correlation is illustrated in
Fig. 5. The network first computes the attention score 𝑎𝑖 𝑗 between
nodes 𝑖 and 𝑗 . For a node 𝑖 in graph G, the attention of its neighbor
𝑗 is defined as,

𝑎𝑖 𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎𝑇𝐶𝑎𝑡 (𝑊ℎ𝑖 ,𝑊ℎ 𝑗 )) (11)

where 𝑎 is a learnable vector. ℎ𝑖 and ℎ 𝑗 are the feature vectors of
nodes 𝑖 and 𝑗 . 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (·) is the activation function used for
non-linearity. 𝐶𝑎𝑡 (·) allows the model to consider the features of
both node 𝑖 and 𝑗 . The features are transformed with weight matrix
𝑊 , which learns the importance of different node pairs.

Softmax function is applied to the attention scores, which nor-
malizes them to obtain weights 𝛼𝑖 𝑗 . The attention coefficient 𝛼𝑖 𝑗
represents the importance of node 𝑗 when updating the representa-
tion of node 𝑖 , which is calculated as,

𝛼𝑖 𝑗 =
exp(𝑎𝑖 𝑗 )∑

𝑘∈N𝑖
exp(𝑎𝑖𝑘 )

(12)

where N𝑖 is the set of neighbors of node 𝑖 .
The new representation of node 𝑖 , ℎ′

𝑖
, is calculated as a weighted

sum of the transformed features of its neighbors, with weights
given by the attention coefficients 𝛼𝑖 𝑗 . This allows each node to
selectively attend to its neighbors, capturing the importance of
different connections in the graph. It is formulated as,

ℎ′𝑖 = 𝜎 (
∑︁
𝑗∈N𝑖

𝛼𝑖 𝑗𝑊ℎ 𝑗 ) (13)

where 𝜎 denotes to a nonlinearity operation [31].
The ultimately updated node representation ℎ′

𝑖
is obtained by

employing multi-head attention mechanism [30]. 𝑆 independent
attention mechanisms perform the transformation described in
Equation 13. The output features are concatenated as the ultimately
updated node representation ℎ′

𝑖
.

Unlike the typical GAT, the GATs built are hierarchical, which
are designed to model structural representations of global and local
regions. Firstly, a GAT layer is adopted to model the pre-constructed
graph structure, updates all node data and returns the results. Sub-
sequently, the subgraph structures are built by merging strongly
related nodes among the 𝑛𝑐 nodes, and GAT is then applied to
model the strongly related nodes and return the results. As can be
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seen in Fig. 6, the graph of the left hand, left arm and torso is treated
as a main body graph because they are strongly connected through
the left arm. By feeding the paired nodes associated with the left
arm into GAT for learning, the structural information related to
the left arm is emphasized. The network facilitates the recognition
of specific regions by focusing on the main body structure. After
that, the learning results of various main bodies are aggregated
and the integrated results are combined with the initially returned
results from the global graph, producing the ultimate output. The
output of the structure correlation is fused with the input features,
resulting in stronger structural features that are used for accurate
structural learning, which is formulated as,

ℎ′𝑖 = 𝑆𝐶𝐺𝐴𝑇𝑠 (𝐷𝑖𝑣𝑖𝑑𝑒 (𝐺𝑎𝑝 (𝑃𝐶𝐿(𝐹𝑟𝑐 )))) (14)
𝐹𝑟𝑐−𝑚𝑎𝑖𝑛 = 𝐻𝑒𝑎𝑑 (𝐹𝑟𝑐 ⊕ ℎ′𝑖 , 𝑃𝐶𝑀 (𝑃𝐶𝐿(𝐹𝑟𝑐 ))) (15)

where 𝑆𝐶𝐺𝐴𝑇𝑠 (·) denotes the structure correlation function based
on GATs. 𝐷𝑖𝑣𝑖𝑑𝑒 (·) is the operation dividing the one-dimensional
feature representation into 𝑛𝑐 nodes. 𝐻𝑒𝑎𝑑 (·) means a stacked
module of concatenation and a convolution layer. 𝑃𝐶𝑀 (·) denotes
part correlation modeling [23].

3.6 Loss Functions
The objective function is composed of the proposed classification
consistency loss, pixel correlation loss, part correlation loss, spatial
loss and edge loss, which is formulated as,

L𝑜𝑏 𝑗 = L𝑐𝑐 +𝐶𝐸 (𝐹𝑐𝑚𝑒𝑚, 𝐿) +𝐶𝐸 (𝐹𝑝𝑐𝑙 , 𝐿)+
𝐶𝐸 (𝐹𝑟𝑐−𝑚𝑎𝑖𝑛, 𝐿) + L𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + L𝑒𝑑𝑔𝑒

(16)

where 𝐶𝐸 (·) is the cross-entropy loss function. 𝐶𝐸 (𝐹𝑐𝑚𝑒𝑚, 𝐿) is
adopted to predict segmentation results using features from Con-
vNet. 𝐶𝐸 (𝐹𝑝𝑐𝑙 , 𝐿) and 𝐶𝐸 (𝐹𝑟𝑐−𝑚𝑎𝑖𝑛, 𝐿) are used to learn pixel and
part correlations [23]. 𝐹𝑝𝑐𝑙 is obtained by using a convolution layer
to map the output of PCL into predictions. L𝑠𝑝𝑎𝑡𝑖𝑎𝑙 and L𝑒𝑑𝑔𝑒 are
utilized to learn spatial information [20, 23, 28] and edge informa-
tion [14, 26]. L𝑐𝑐 is the proposed classification consistency loss,
which is defined as follows:

L𝑐𝑐 = (𝐶𝐸𝑐𝑙𝑠 (𝐹𝑐𝑚𝑒𝑚, 𝐿) +𝐶𝐸𝑐𝑙𝑠 (𝐹𝑝𝑐𝑙 , 𝐿)+
𝐶𝐸𝑐𝑙𝑠 (𝐹𝑟𝑐−𝑚𝑎𝑖𝑛, 𝐿)) ⊙ L𝑤𝑡𝑠

(17)

4 Experiments
4.1 Datasets and Evaluation Metrics
CartoonSet. The CartoonSet dataset [23] comprises 2,229 cartoon
images, which are divided into 1,530 images for training, 510 for
testing, and 189 for validation. It includes diverse samples such as
drawings of children, illustrations with brief strokes and animated
characters. The cartoon images are annotated and the body parts
of cartoon characters are categorized into 24 classes.
Cartoon dog. The Cartoon dog dataset [32] contains 965 images of
cartoon dogs. It consists of 773 images for training and 192 images
for testing. This dataset focuses on cartoon dog parsing, with eight
classes such as head and body for labeling.
LIP. LIP [8] is a human parsing dataset consisting of 50,462 single-
person images. It is divided into 30,462 training images, 10,000
testing images, and an additional 10,000 images for validation. It
provides annotations for 19 classes, which include categories such
as face and right arm.

Evaluation Metrics. Following previous approaches [15, 22, 23,
32], the utilized evaluation metric is Mean Intersection over Union
(Mean IoU). Mean IoU computes the average intersection-to-union
ratio between the predicted body parts and ground truth. Addition-
ally, Mean Accuracy (Mean Acc.) is employed to calculate per-class
accuracy and Pixel Accuracy (Pixel Acc.) is used to compute the
accuracy of the correctly predicted pixels.

4.2 Implementation Details
To implement the proposed approach, Stochastic Gradient Descent
(SGD) is employed as the optimizer with a momentum of 0.9 and a
weight decay of 5e-4. Following previous methods [3, 7, 21, 38, 39,
42], the “poly” learning rate strategy is utilized, which is defined as
𝑙𝑟 = 𝑙𝑟𝑏𝑎𝑠𝑒 × (1 − 𝐶𝑛

𝑇𝑛
)𝑝𝑜𝑤𝑒𝑟 . 𝑙𝑟 and 𝑙𝑟𝑏𝑎𝑠𝑒 are the current learning

rate and the base learning rate, respectively. 𝑝𝑜𝑤𝑒𝑟 = 0.9. 𝐶𝑛 and
𝑇𝑛 represent the current iteration number and the total iteration
number, respectively. For data augmentation, random left-right
flipping with a 0.5 probability and random scaling strategy are
applied. For a fair comparison on CartoonSet, CartoonNet is trained
with a batch size of 8 and image size of 384×384. The number of
training epochs is 150 and the learning rate for CartoonSet is set to
7e-3. For Cartoon dog dataset, CartoonNet uses a learning rate of 1e-
3, and the training images are resized to 384×384. All methods adopt
single-scale evaluation on CartoonSet and Cartoon dog dataset. For
LIP dataset, CartoonNet is trained with a learning rate of 7e-3, with
training images resized to 473×473. The number of training epochs
is 150. The multi-scale evaluation approach [14, 15] is employed
for LIP dataset.

4.3 Comparison with the State-of-the-Art
Approaches

To evaluate the performance of the proposed approach, it is com-
pared with the state-of-the-art human parsing approaches and
cartoon parsing methods. DeepLabV3+ [4], a model not special-
ized for cartoon parsing, has limited performance in the domain
of cartoon parsing. DFPNet [32] is designed for cartoon parsing
and it boosts the performance by introducing a multi-scale learning
mechanism. But it primarily focuses on scale variations, resulting in
limited performance. Methods like HHP [35] and CNIF [34] employs
GNN to model the structures of cartoon image, which improves
the results with structural modeling. However, their hierarchical
structure learning is designed for real humans with consistent and
regular structures. When segmenting the irregular and complex
body structures of cartoon characters, the performance is limited
[23]. CE2P [26] leverages global context information and edge de-
tails to improve the results. But it fails to account for the visual
diversity and structural complexity of cartoon images, resulting in
limited performance. CDGNet [15] uses class distributions as spa-
tial constraints, outperforming most of the methods. But it ignores
the structural modeling and faces challenges when segmenting car-
toon images with complex structures. SCHP [14] achieves improved
results using a self-correction strategy, which helps differentiate
visually complex body parts. Nonetheless, it still faces challenges
caused by the diversity and complexity of cartoon characters. CP-
Net [23] significantly improves the performance of cartoon parsing
by addressing the problems caused by the irregular structures with
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Table 1: Comparison on CartoonSet.

Method Pixel Acc. Mean Acc. Mean IoU
DeepLabV3+ [4] 87.28 63.42 50.12
DFPNet [32] 88.21 65.33 51.71
HHP [35] 87.51 64.42 51.98
CE2P [26] 88.06 66.55 52.90
CNIF [34] 87.74 66.01 53.21
CDGNet [15] 88.11 67.98 53.99
SCHP [14] 88.63 69.36 55.44
CPNet [23] 89.42 69.90 57.02
CartoonNet (Ours) 89.61 70.59 57.84

Table 2: Comparison on Cartoon dog dataset.

Method Pixel Acc. Mean Acc. Mean IoU
Mask R-CNN [9] 89.21 57.78 50.56
CE2P [26] 92.63 76.43 65.32
DFPNet [32] 93.50 79.40 68.39
SCHP [14] 94.05 81.15 71.22
CDGNet [15] 94.09 80.03 71.44
CPNet [23] 94.32 82.60 72.28
CartoonNet (Ours) 94.64 84.01 74.05

its pixel and part correlation learning module. However, CPNet [23]
mainly focuses on independent cartoon characters, which makes
it less effective for segmenting diverse cartoon characters. Com-
pared to the previous methods, CartoonNet achieves the best results
on CartoonSet. The memory-based semantic consistency learning
module recalls previous experiences to improve the generalization
ability. The main body-aware mechanism focuses on the important
local regions to improve structural correlation learning. CartoonNet
makes a deep exploration of semantic consistency and structure
correlation across diverse and complex cartoon images, addressing
the challenges posed by cartoon characters of multiple styles.

To further evaluate the performance of the proposed method,
it is tested on Cartoon dog dataset. Overall, the performance of
previous human parsing methods is limited when tested on Cartoon
dog dataset. The limitations are caused by the differences between
abstract cartoon images and real-world humans. Cartoon parsing
methods like CPNet [23] perform better because it accounts for the
properties of cartoon images. But the diversity and complexity of
cartoon images remain challenges, which limits the performance.
Compared to previous methods, CartoonNet achieves the state-of-
the-art performance on Cartoon dog dataset, as listed in Table 2. The
specific design of CartoonNet effectively alleviates the challenges
posed by the diverse visual appearances and abstract structures of
cartoon dogs. The results listed in Table 2 further demonstrate the
effectiveness of the proposed method.

To verify the generalization ability of CartoonNet, it is tested on
human parsing dataset LIP. The comparative results are listed in
Table 3. Methods like DeepLabV3+ [4], OCR (ResNet101) [40], OCR
(HRNetV2-W48) [40] and HRNetV2 [33] are common semantic seg-
mentation methods. Although these methods achieve outstanding
performance on segmentation datasets such as Cityscapes [6], their
performance on LIP is limited due to the lack of specific designs
for human parsing. Compared to the common semantic segmenta-
tion approaches, the human parsing methods like HHP [35], SCHP
[14] and CDGNet [15] achieve better performance. Their compo-
nents such as GNN-based hierarchical structure learning module
[34, 35], self-correction strategy [14] and class distribution learning

Table 3: Comparison on LIP dataset.

Method Pixel Acc. Mean Acc. Mean IoU
DeepLabV3+ [4] n/a n/a 52.09
CE2P [26] 87.37 63.20 53.10
CorrPM [44] 87.68 67.21 55.33
OCR (ResNet101) [40] n/a n/a 55.60
HRNetV2 [33] n/a n/a 55.90
OCR (HRNetV2-W48) [40] n/a n/a 56.65
CPNet [23] 88.29 68.41 57.21
CNIF [34] 88.03 68.80 57.74
HHP [35] 89.05 70.58 59.25
SCHP [14] n/a n/a 59.36
CDGNet [15] 88.86 71.49 60.30
CartoonNet (Ours) 88.59 69.57 58.27

mechanism [15] are designed for real-world humans. Although the
proposed CartoonNet is designed for cartoon parsing, it achieves
competitive performance on LIP dataset. Compared to common
semantic segmentation methods, the performance of CartoonNet
on LIP dataset is unexpected, which outperforms methods like OCR
(HRNetV2-W48) [40] and HRNetV2 [33] by a large margin. Car-
toonNet also outperforms the cartoon parsing method CPNet [23]
significantly on LIP dataset, which proves its generalization abil-
ity. The performance of CartoonNet on LIP dataset demonstrates
that the proposed semantic consistency and structure correlation
approach is effective for human parsing as well.

4.4 Ablation Studies
To validate the effect of the proposed method, ablation studies of
semantic consistency and structure correlation are conducted. The
results are listed in Table 4. Compared to the baseline model, the
incorporation of representation consistency and classification con-
sistency leads to a significant improvement in Mean IoUmetric. The
memory-based consistency learning strategy facilitates the seman-
tic consistency of the body parts that belong to the same class but
from diverse cartoon images. When adopting the main body-aware
structure correlation module, the performance is further boosted.
The structure correlationmodule focuses on important local regions
with main body-aware mechanism and captures important relations
among body parts with graph attention network. The integration of
the memory-based consistency module and the main body-aware
structure correlation achieves the best results, confirming that the
proposed method is effective in addressing challenges posed by
diverse appearances and complex structures of cartoon parsing. To
further verify the effect of the proposedmodules, ablation studies on
Cartoon dog dataset are conducted and the results are listed in table
5. Compared to the baseline model, CartoonNet with the proposed
modules significantly boosts the performance, which proves the
effectiveness of the memory-based semantic consistency strategy
and main body-aware structure correlation module.

To verify the effect of the memory bank, ablation studies of the
size of the memory bank and the number of selected similar samples
from the memory bank are conducted. In Table 6, CartoonNet +
M400 represents training CartoonNet with a memory storage size
of 400 samples. 1530 is the number of images of the training set in
CartoonSet dataset. It can be seen from the table that the storage size
of the memory bank has little impact on the accuracy. CartoonNet
+ N3 represents selecting three similar samples in each iteration,
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Image Ground Truth DFPNet SCHP CPNet CartoonNet

Figure 7: Visualization comparisons on CartoonSet.

Table 4: Effect of the proposed modules on CartoonSet dataset.

Method Pixel Acc. Mean Acc. Mean IoU
Baseline 89.19 68.91 56.12
Baseline + RC 89.33 70.24 57.11
Baseline + CC 89.51 69.71 57.08
Baseline + RC + CC 89.49 70.50 57.47
Baseline + Main 89.48 69.61 57.26
Baseline + RC + CC + Main 89.61 70.59 57.84

Table 5: Effect of the proposed modules on Cartoon dog dataset.

Method Pixel Acc. Mean Acc. Mean IoU
Baseline 94.09 82.22 72.13
Baseline + RC 94.47 83.05 73.24
Baseline + CC 94.37 81.91 73.09
Baseline + RC + CC 94.50 83.19 73.69
Baseline + Main 94.44 82.69 72.77
Baseline + RC + CC + Main 94.64 84.01 74.05

and the data in the table indicates that the best result is obtained
when the number of the selected samples is 5.

4.5 Qualitative Evaluation
To qualitatively evaluate the proposed method, the visualization
results of CartoonNet and the state-of-the-art approaches are illus-
trated in Fig. 7. For diverse cartoon characters, existing methods
tend to make recognition errors when segmenting body parts that
belong to the same class but exhibit significant visual and struc-
tural differences. For example, the heads of panda and dog are
quite different. Previous methods like CPNet [23] have difficulties
in segmenting diverse cartoon images as they primarily focus on

Image Ground Truth CartoonNet Image Ground Truth CartoonNet

Figure 8: Examples of failure cases.

Table 6: Ablation studies of the memory size and the number of
selected samples.

Method Pixel Acc. Mean Acc. Mean IoU
CartoonNet + M400 89.61 70.59 57.84
CartoonNet + M800 89.51 70.48 57.45
CartoonNet + M1200 89.56 70.94 57.31
CartoonNet + M1530 89.41 70.45 57.67
CartoonNet + N3 89.49 70.04 57.15
CartoonNet + N5 89.61 70.59 57.84
CartoonNet + N7 89.67 70.85 57.47
CartoonNet + N9 89.51 69.64 57.40

visual appearances within a single cartoon character. The proposed
method conducts semantic consistency learning across different
cartoon characters with a memory bank to recall experiences for
previous samples, achieving better results. Previous methods also
have limited performance when the targets have intricate and irreg-
ular structures such as the hair of the girls, as they lack specialized
recognition structures for the irregularities in cartoon characters.
Among the previous methods, CPNet [23] performs better by con-
sidering the irregularities of cartoon characters. However, it still
falls short in segmenting complex structures as it ignores the main
bodies. The proposedmethod introduces the main body-aware strat-
egy, which addresses the challenges related to complex structures
by focusing on core local regions and capturing important relations
among body parts.

Although CartoonNet achieves the state-of-the-art performance,
it still faces some challenges. The failure examples are illustrated
in Fig. 8. When the bodies of cartoon characters are significantly
occluded by other objects such as cups, it is difficult for CartoonNet
to correctly segment the cartoon image. In addition, if the adjacent
body parts have similar appearances, for example, the black hat
and black hair, CartoonNet may make some error predictions.

5 Conclusion
In this paper, a cartoon parsing method named CartoonNet is pro-
posed to address the challenges posed by diverse appearances and
complex structures of cartoon characters. It consists of a seman-
tic consistency approach based on a memory bank and a main
body-aware structure correlation module based on graph attention
networks. The memory-based consistency learning achieves seman-
tic consistency among diverse cartoon characters, which explores
deep relations of the body parts that have different appearances but
belong to the same class. The main body-aware structure correla-
tion boosts the performance of complex structures by focusing on
the core body parts and capturing important relations among the
body parts. By integrating the semantic consistency strategy and
the structure correlation module, the proposed method achieves
the state-of-the-art results in cartoon parsing.
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