
Published as a conference paper at ICLR 2025

GENERATIVE MONOCULTURE IN LARGE LANGUAGE
MODELS

Fan Wu1, Emily Black2†, Varun Chandrasekaran1†
1 University of Illinois Urbana-Champaign 2 New York University
† Equal advising
{fanw6,varunc}@illinois.edu, emilyblack@nyu.edu

ABSTRACT

We introduce generative monoculture, a behavior observed in large language mod-
els (LLMs) characterized by a significant narrowing of model output diversity
relative to available training data for a given task: for example, generating only
positive book reviews for books with a mixed reception. While in some cases,
generative monoculture enhances performance (e.g., LLMs more often produce
efficient code), the dangers are exacerbated in others (e.g., LLMs refuse to share
diverse opinions). As LLMs are increasingly used in high-impact settings such as
education and web search, careful maintenance of LLM output diversity is essen-
tial to ensure a variety of facts and perspectives are preserved over time. We exper-
imentally demonstrate the prevalence of generative monoculture through analysis
of book review and code generation tasks, and find that simple countermeasures
such as altering sampling or prompting strategies are insufficient to mitigate the
behavior. Moreover, our results suggest that the root causes of generative mono-
culture are likely embedded within the LLM’s alignment processes, suggesting a
need for developing fine-tuning paradigms that preserve or promote diversity.

1 INTRODUCTION

Figure 1: (Left) Comparison of the range of average-
per-book sentiment scores for book reviews generated
by an LLM (gen) and by human reviewers from the
Goodreads dataset (src). Note the generated reviews
have a much smaller range, as they are overwhelmingly
positive. Model: Llama-2-chat. (Right) The spec-
trum of the mean pairwise Jaccard similarity among the
algorithms of coding solutions. Note the generated code
covers a narrower range of algorithms. Model: GPT-4

Large language models (LLMs) show promise
due to their emergent abilities (Wei et al.,
2022a) and state-of-the-art performance on sev-
eral NLP tasks (Bommasani et al., 2023). How-
ever, concerns have been raised about the in-
creasing reliance on LLM-based systems with
insufficient testing, and how they impact soci-
ety (Anwar et al., 2024; Wang et al., 2023). Re-
cent evidence has shown that LLMs have dan-
gerous tendencies: they convincingly return in-
correct information (Dahl et al., 2024; Li et al.,
2023a; Zhang et al., 2023), produce toxic lan-
guage (Abid et al., 2021; Wen et al., 2023), and
can effectively propagate misinformation (Bar-
man et al., 2024; Sun et al., 2024).

In this paper, we focus on a different concern:
that for a given prompt and task, LLMs do not
faithfully represent the diversity of potential responses available in their training data. We call
this behavior generative monoculture: given some task (e.g., generating book reviews) and a data
attribute (e.g. sentiment), generative monoculture refers to the narrowing of the probability distribu-
tion of the considered attribute from source data (i.e., available human-written book reviews as part
of the training data) to the generated data (i.e., LLM-generated book reviews).

As a preview, for book reviews (Fig. 1(Left)), we compare the diversity in sentiment of Goodreads
reviews (Wan et al., 2019) (i.e., src)—very likely a portion of LLM training data (Achiam et al.,
2023)—with LLM-generated reviews (i.e., gen). The range of mean sentiment scores per book

1



Published as a conference paper at ICLR 2025

across gen book reviews is much narrower than that in the src: in the experiment pictured, the
average sentiment score for gen reviews are mostly over 0.85, whereas the the average sentiment
score for src reviews over the same books have a wider range from zero to one. For the code
generation task (Fig. 1(Right)), the range of algorithms employed in (correct) solutions to a given
coding problem (i.e., gen) was much less varied than a sample of human answers (src) available
on the web (Li et al., 2022): we show this through the range of Jaccard similarity of the algorithms
employed in sets of human-written (src) and LLM-generated (gen) responses to a coding prompt.

Through the rapid adoption of LLMs such as ChatGPT, CoPilot, and Devin across education, code
generation, and day-to-day information gathering, generative monoculture can harm society through
loss of information, creativity, and intellectual diversity. For example, students asking LLMs ques-
tions about class material to get help researching for an essay may have their opinions formed with-
out exposure to a sufficiently wide subset of available information; this will allow for certain opin-
ions to die out over time. Concretely, a reduction in diversity of sentiment displayed above may
lead to the loss of arguments from negative opinions on controversial books, potentially crucial for
historical or literary context or a nuanced understanding of a book’s contributions.

Generative monoculture could even lead to security threats, depending on the application: soft-
ware engineers across the globe relying on ChatGPT and CoPilot receiving similar code generations
which do not reflect the true diversity of methods to solve a given problem may lead to similar code
vulnerabilities across several large tech companies. Indeed, as we preview in Fig. 1 and show in
detail in § 5, LLM output exhibits are less diverse than human-written solutions in the training data
(e.g., by employing a narrower array of algorithms), which could lead to similarity across a wide
range of code bases, leading in turn to repeated vulnerabilities (Perry et al., 2023; Pearce et al.,
2022). However, in this case, LLM outputs not reflecting the full diversity of available coding ex-
amples can be positive: LLM outputs over-represent correct and efficient solutions. We present a
nuanced picture of generative monoculture: while it can highlight the optimal portion of human-
written data for some attributes, its pervasiveness across generation tasks and attributes may cause
harm without careful intervention.

In this paper, we (1) define the concept of generative monoculture, and compare it to prior work
around related topics (§ 2 and 7); (2) introduce a paradigm for measuring generative monoculture
in LLMs (§ 3); (3) show experimental evidence for the prevalence of generative monoculture across
a variety of application areas (book reviews and code) and (open-source and proprietary) LLMs,
and provide some evidence for what may exacerbate generative monoculture, such as alignment
tuning (Ouyang et al., 2022), (§ 5 and 6); and (4) show the (in)efficacy of several methods to abate
generative monoculture: changing temperature, sampling, and prompting techniques (§ 5 and 6).

2 DEFINING GENERATIVE MONOCULTURE

We broadly characterize generative monoculture as a distribution shift from source data (i.e., human-
written training data) to model generated data (i.e., model outputs) for a specific task, such as gen-
erating reviews for books or solutions to coding problems. This can be formalized using measures
of statistical dispersion applied to various task-specific attributes.

Definition 1 (Generative Monoculture). For a given task, let Psrc denote the probability distri-
bution of the source data, Pgen denote the probability distribution of the LLM-generated data, h
denote a function extracting attributes from data (such as sentiment, or algorithms used in code),
and Dispersion(·) denote a dispersion metric (e.g., entropy). Then we define generative monocul-
ture as the condition where Pgen is statistically narrower than Psrc, namely: Dispersion(h(x)|x ∼
Pgen) < Dispersion(h(x)|x ∼ Psrc).

Note, Psrc/ Pgen can be the distribution of human-written/model-generated responses, for a given
task, conditioned on one specific given prompt (which we refer to as the conditional distribution),
or the distribution of human-written/model-generated responses for any possible prompt in a con-
sidered domain (which we call the unconditional distribution).

This phenomenon signifies a shift towards less varied outputs. We emphasize that the investigation
of generative monoculture is intrinsically task-dependent, as the attributes of interest differ across
tasks. In addition, as we often do not have access to the source distribution in practice, we approxi-
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mate it using a source dataset (Dsrc), comprised of a subset of the training data of the LLMs. Simi-
larly, we approximate the generated distribution through a dataset generated by the model (Dgen).

Generative Monoculture, Human Preference, and Alignment: Generative monoculture can
cause LLMs to over-emphasize human-preferred areas of a distribution for a certain data attribute;
this is often desired behavior. For example, as we demonstrate in § 6, generative monoculture can
result in having a narrower distribution of code correctness or efficiency biased towards correct,
fast, and low-memory code. We conjecture this is a consequence of alignment procedures such as
reinforcement learning with human feedback (RLHF) Ouyang et al. (2022).

However, when a tendency stemming from human preference bleeds beyond its intended use—e.g.,
a preference for positive sentiment affecting outputs that need or should not be positive—these
seemingly advantageous behaviors can prevent an equally important goal: maintaining diversity of
opinion and expression. Further, along data attributes which do not have a clear “preferred area” of
the distribution, generative monoculture can limit the scope of methods, topics, or ideas expressed.

3 MEASURING GENERATIVE MONOCULTURE

We outline a general approach to measuring generative monoculture in LLMs. In particular, follow-
ing Definition 1, we outline steps to construct Dsrc and Dgen and compare their diversity through
extracting data attributes and calculating dispersion metrics. We illustrate our approach in Fig. 2.

3.1 DATA CURATION

For a given task, we aim to create a source dataset that is likely to have been used in training the
LLM we wish to investigate. Training data for most LLMs is a closely guarded secret. While recent
work (Oren et al., 2023) describes how dataset contamination can be determined, such approaches
are (a) riddled with false positives, and (b) computationally expensive. Thus, we often take an
educated guess (based on dataset popularity and ease of use) in ascertaining if a given dataset is a
likely training dataset candidate.

Formally, we define the source dataset as Dsrc = {qi,srci}i∈[N ] where (a) qi is a problem
instance within a task (e.g., name of a book for which a review has to be written), and (b)
srci = {srcj

i}j∈[ni] is a set of ni human-written answers to the given prompt qi (e.g., a set
of ni of book reviews for that particular book). In practice, we utilize existing datasets likely to be
used during LLM training, and perform filtering and sub-sampling to obtain our Dsrc.

To create the model-generated dataset Dgen, for each sample qi, we prompt the LLM (M) we
wish to evaluate, mi times to generate a set of responses, geni = {gen

j
i}j∈[mi]. Here, genj

i ←
Mj(Ptask(qi),kwargs) is the response obtained in the j-th call ofM, where (a) Ptask denotes the
task-specific formatting prompt that wraps the sample qi, and (b) kwargs denotes the generation
keyword arguments (e.g., temperature) that specify the sampling strategy. Across both Dsrc and
Dgen, we select or generate a large enough number of responses per qi to ensure variety.

Figure 2: An overview of the procedure.

3.2 ATTRIBUTE EXTRACTION

For a given task, we identify and compile a list of attributes that are of interest from the perspective of
preserving diversity. This is a subjective task, but we focus on metrics which target understanding the
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content of LLM output (e.g., book review sentiment and topic; code time complexity and algorithms
used), as opposed to more general metrics of output language quality such as saliency, fluency and
coherence. More importantly, we need to ensure that extraction functions are efficient, accurate, and
reproducible—we outline our tests to ensure these qualities in § 5 and the Appendices B and D. For
example, care must be taken to use LLMs for attribute extraction, as they are known to be biased
towards their own responses (Xu et al., 2024). For a given attribute A, extraction function hA takes
a string tgt to obtain the attribute value hA(tgt). Note that tgt can either be srcj

i or genj
i .

The extracted attribute can either be a continuous/categorical variable or of other more complicated
types, depending on the nature of the attribute.

3.3 METRIC CALCULATION

As the last step, we compute metrics on the extracted attributes. Given a set of responses, dispersion
metrics aim to capture their breadth or coverage of these attributes. We describe those used in this
paper below and in Fig. 3.

Dispersion Metrics. We introduce dispersion metrics suited to different data types.

A. Distribution of the mean. For ordinal or continuous attributes, we calculate the mean over the
conditional distribution—that is, we calculate the metrics over each srci or geni (e.g. reviews for
a given book), and show the distribution of this mean over all qi for a certain task (e.g. over all
books). While the mean itself does not directly measure dispersion, the distribution of the mean
values sheds light on dispersion: concentrated mean values indicates a smaller dispersion of the
data. The advantage is that it not only describes dispersion, but also the qualitative tendency of the
attribute (e.g. bias towards positive/negative sentiment), which cannot be captured otherwise.

B. Entropy and standard deviation. For categorical attributes, we measure dispersion using entropy
over the conditional distribution. For continuous attributes, we use standard deviation over the con-
ditional distribution to quantify the dispersion of values around the mean, providing the variability.

C. Mean pairwise similarity. For attributes that are not easily characterized as categorical or contin-
uous, we adopt specific similarity metrics catered to the data type. We then calculate the pairwise
similarity values for the conditional distribution—i.e. calculate the mean similarity value for all the
pairs of elements within each srci/geni, then show the distribution for all N samples. We use:

1. Mean pairwise Jaccard index: Given two sets of categorical variables A and B, the Jaccard index,
J(A,B) = |A∩B|/|A∪B|, measures similarity between them. An example of such a set could be a
set of several algorithms inferred from a piece of code. A higher mean Jaccard index indicates a
higher overall similarity between the set, and consequently, lower dispersion.

2. Mean pairwise cosine similarity: Given two multi-dimensional embeddings e1 and e2 obtained
via a sentence embedder (Reimers & Gurevych, 2019), we calculate their similarity via cosine
similarity, i.e., SC(e1, e2) = ⟨e1,e2⟩/∥e1∥∥e2∥. A higher mean cosine similarity indicates a higher
similarity and lower dispersion.

3. Mean pairwise fingerprint similarity: For tasks related to coding or computer programs, sim-
ilarity is based on the overlap of selected hash values (or fingerprints) generated by Winnow-
ing (Schleimer et al., 2003). We adopt an existing open-source tool COPYDETECT (Lingenfel-
ter), which takes in a set of programs and returns the pairwise similarity scores for all programs in
the set. We then calculate the mean value of these pairwise similarity scores as an indicator of the
similarity for the set of programs. A higher mean fingerprint similarity indicateshigher structural
and syntactical similarity of the code.

In addition to the dispersion metrics, we consider one other approach—visualizing the top modes of
unconditional distributions for certain attributes, e.g., topics. This helps identify areas of emphasis
in src and gen distributions, as well as the tendency of change across distributions.

4 MITIGATING GENERATIVE MONOCULTURE

To attempt to mitigate generative monoculture, we test four methods known to increase LLM output
diversity: increasing the temperature T , top-p parameter, setting a temperature decay, and changing
prompts. More details are in Appendices A and C.6.
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Temperature T . This determines the dispersion of the probability distribution over the next token:
increasing the temperature leads to a more flat probability distribution and increases the likelihood
of sampling from less probable tokens, resulting in more diverse generations.

Top-p. This controls the randomness of the generations by limiting the range of tokens considered.
Specifically, it considers the smallest subset (consisting of the top probability tokens) whose cumu-
lative probability exceeds the threshold p. A smaller p encourages the model to sample from a more
focused set of likely tokens.

Decaying Temperature. We choose the starting temperature T = 10.0 and follow a linear schedule
for temperature decay, over the course of 50 time-steps (i.e., from the 1-st output token to the 50-th
output token), with an ending temperature T = 1.2. The method is inspired by Carlini et al. (2021).

Prompts. Tuning the specific content and framing of the prompt can steer the model’s output more
effectively (Brown et al., 2020; Sclar et al., 2023) and significantly impact the diversity of the gener-
ated text. We use “role-playing” or impersonation (Salewski et al., 2024), which instructs the model
to produce the output in the persona of a specific person, and expect it to induce more personalized
and varied responses.

5 EXPERIMENTAL SETUP

In this section, we describe our experimental setup for measuring and mitigating generative mono-
culture for two tasks, namely, generating book reviews and code solutions. We provide details for
datasets, LLMs used, and most notably, the data attributes and metrics considered. We open source
our code at https://github.com/GeMoLLM/GeMO.

5.1 GENERATING BOOK REVIEWS

Data Curation: For Dsrc, we use the Goodreads dataset (Wan et al., 2019), which contains multiple
books with several reviews each. We perform filtering and sampling to ensure reliable attribute
extraction (see Appendix B.1), and craft a final dataset of N = 742 books with English titles, and
∀i, ni = 10 reviews per book such that the review length is between 300 and 700 words.

Attribute Data type Level Metric

Book
review

sentiment categorical C mean, entropy

topic categorical C entropy

U distribution visualization

wording categorical U count, entropy

Coding

correctness categorical C mean

efficiency
(complexity) categorical C entropy

U distribution visualization

efficiency
(runtime) continuous C mean, standard deviation

fingerprint hash values C mean pairwise
fingerprint similarity

code summary
(text) embedding C mean pairwise

cosine similarity

code summary
(categorical) categorical C mean pairwise

Jaccard index

Figure 3: A summary of the scenarios, the attributes
we consider, their data types, and the corresponding
analysis levels as well as metrics. C and U stand for
conditional and unconditional distributions.

To obtain Dgen, we used the following LLMs:
(a) Llama-2-13b (Touvron et al., 2023)
(henceforth referred to as Llama-2), (b)
Llama-2-13b-chat (Touvron et al., 2023)
(henceforth referred to as Llama-2-chat),
(c) Vicuna-13b-v1.5 (Chiang et al., 2023)
(henceforth referred to as Vicuna-13b),
(d) GPT-3.5-turbo-instruct
(0914) (Ouyang et al., 2022) (hence-
forth referred to as GPT-3.5), and (e)
GPT-4-turbo (0125) (Microsoft, 2024;
Achiam et al., 2023) (henceforth referred
to as GPT-4). We performed nucleus
sampling (Holtzman et al., 2019) with var-
ious sampling parameters: (a) temperature
T ∈ {0.5, 0.8, 1.0, 1.2, 1.5}, and (b) top-
p ∈ {0.90, 0.95, 0.98, 1.00}. We also experi-
mented with two candidates for Ptask: prompt
(1) “Write a personalized review
of the book titled {title}:”, and
prompt (2) “Write a book review for the book titled {title} as if you
are {person}:”. Prompt (2) was chosen as LLMs are known to generate more diverse responses
when instantiated with a persona (Salewski et al., 2024). We list the names of the 10 persons we
considered in Appendix B.2. For comprehensiveness, we experimented with three more groups of
prompts and report the results in Appendix C.7. For each combination of LLM, sampling parameter,
and prompt, we independently sampled from the LLM 10 times to generate responses. We filtered
out low-quality (generated) reviews by examining their perplexity (see Appendix C.1). This is to
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ensure that the data used for analysis represents well-formed and coherent text, thereby improving
the reliability of our findings. Thus, ∀i,mi ≤ 10.

Attribute Extraction: We want attributes that capture both the semantics and syntax of book re-
views, representative of the key thematic and linguistic elements. Most importantly, while these
attributes are not exhaustive, their extraction is reliable and efficient.

1. Sentiment indicates whether a review is positive (praising the book) or negative (criticizing the
book). We employ a fine-tuned sentiment classifier (HuggingFace, b) as the attribute extractor
which accepts text and returns a prediction in {0, 1}. This model has been downloaded ∼ 5.4
million times, and reaches an accuracy of 91.3 % on the dev set of SST-2 (Socher et al., 2013).

2. Topic refers to the themes discussed in a review (Wallach, 2006; Alghamdi & Alfalqi, 2015).
We leverage BERTopic (Grootendorst, 2022) pre-trained on Wikipedia (HuggingFace, a) which
assigns one topic to each review out of a total of ∼2,000 topics.

3. Word choice captures the lexical diversity in a review. To quantify this, we produce a frequency
table of the unique words (see Appendix B.3), and immediately have the number of unique words.

Metric Calculation: For sentiment, we calculate mean and entropy for the conditional distribution.
For topic, we calculate entropy for the conditional distribution as well as visualize the unconditional
distribution of topics across all reviews, focusing on the top 10 classes. Finally, for word choice, we
calculate count and entropy of the unconditional distribution.

5.2 GENERATING CODE SOLUTIONS

Data Curation: For Dsrc, we chose the CodeContests dataset (Li et al., 2022), a competitive
programming problem dataset where each problem comes with multiple correct and incorrect solu-
tions. We limited the scope to a subset (N = 100) of level-A problems (easy problems) on Code-
forces (CodeForces), and the language of the solutions to python3. More details in Appendix D.1.
For each problem in the subset, we randomly sampled ∀i, ni = 20 correct solutions from all of the
ncorrect
i solutions for that problem.

To obtain Dgen, we use: (a) GPT-4, and (b) Claude-3-Sonnet (Anthropic, 2024). We
did not use open-source LLMs, as these were not able to generate correct solutions for the
problems we chose. More details are in Appendix E.4. We performed nucleus sampling (Holtz-
man et al., 2019) with various sampling parameters: (a) temperature T ∈ {0.5, 1.0}, and
(b) top-p ∈ {0.9, 1.0}. We used only one candidate for Ptask i.e., “Please read the
below problem description and generate a python code to solve
the problem {problem description} Please only generate code and
nothing else.” While we experimented with providing the LLM with a persona i.e., asking
the LLM to pretend to be a “grandmaster in solving competitive programming problems”, the
resulting accuracy was lower (see Appendix E.2). For each combination of LLM, sampling
parameter, and prompt, we produce ∀i,mi ≥ 20 generations such that at least 20 of the generated
solutions were correct (details in Appendix D.2). We instantiated this by keep generating samples
and measuring their correctness, until at some point all problems reached at least 20 correct
solutions; we then stopped. This gave us k = 100 for GPT-4 and k = 200 for Claude-3.

Attribute Extraction: We consider the following attributes which characterize different aspects of
code. We rely on GPT-3.5 for extracting some of the attributes; we manually verified the extracted
attributes and confirmed their quality is high (see Appendix E.3).

1. Correctness refers to whether a piece of code correctly solves the given problem and passes all
the test cases. We measure accuracy as the ratio of correct solutions among all solutions (details
in Appendix D.3), to quantify the quality of human-/model-generated solutions.

2. Efficiency is crucial for scalability (Huang et al., 2024). This is measured through: asymptotic
time/space complexity and runtime efficiency. We prompt GPT-3.5 to infer the big O time and
space complexity (MacNeil et al., 2022), and execute the code on test cases to measure runtime
and memory usage (see Appendix D.4).

3. Fingerprint provides insights into the structural and syntactical uniqueness of each code segment.
As stated in Section 3.3, we use the COPYDETECT tool for this.
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4. Code Summary (textual) explains the functionality of the code. Prior work has demonstrated
the effectiveness of GPT-3.5 in code understanding (Nam et al., 2024). Thus, we use it to pro-
duce text-based summaries, and a description, functionality, algorithm, and data
structure (prompt for this task is in Appendix D.5). To compare the similarity for these text
summaries, we produce their embeddings using the all-MiniLM-L6-v2 model (Hugging-
Face, c).

5. Code Summary (categorical) reflects the techniques employed in the code through categorical
tags, as used on the Codeforces website. We prompt GPT-3.5 to assign tags to a code segment
by providing it a set of tags to choose from (prompt for this task is in Appendix D.5). We obtain
one set per code segment. We similarly prompt GPT-3.5 to choose from a list of algorithms
and data structures.

Metric Calculation: For correctness, we calculate the mean value i.e., accuracy over the con-
ditional distribution. For efficiency (asymptotic complexity), we calculate: (a) entropy for the
conditional distribution, and (b) plot the histogram for the unconditional distribution. For runtime
efficiency, we calculate mean and standard deviation for the conditional distribution. We measure
the following over the conditional distribution: (a) fingerprints, where we calculate the mean
pairwise fingerprint similarity; (b) code summary (textual), where we calculate the mean pairwise
cosine similarity in their embedding space; and (c) code summary (categorical), where we calculate
the mean pairwise Jaccard index.

6 RESULTS AND TAKEAWAYS

(a) Sentiment (varying sampling)

(b) Sentiment (varying prompt)

(c) Sentiment (varying models)

(d) Topic (temperature decay)

D
en

si
ty

Entropy

(e) Topic (unconditional)

Percentage

Figure 4: (a-c) stacked barplots for the mean sentiment scores under varying sampling parameters, prompts,
and models. For these plots, in each bar, darker hues (bottom) represent lower scores while lighter one
(top) denote higher scores. See the legend for the value range of each hue. In subfigure (b), (1) and (2)
refer to the two prompts as introduced in Section 5.1. In subfigure (c), (a-c) refer to Llama-2-chat,
Vicuna-13b, and Llama-2. (d) kernel density estimation (KDE) for the entropy values calculated on
the conditional distribution of the topics. (e) unconditional topic distribution for top-10 topics. For all the
subfigures, we mark the sampling parameters in them; unless marked with (1-2) or (a-c), the results are
obtained on Llama-2-chat under prompt (1). These subfigures show that the model-generated reviews
are overwhelmingly positive and cover a narrower range of the topics per book; moreover, there is distinctive
under- and over-representation of the topics covered overall.

Guide: We present our results on measuring, and attempting to mitigate, generative monoculture
in Fig. 4 and 5. We display results mainly in three formats: (a) stacked bar charts, where different
hues correspond to different value ranges as indicated in the legend; (b) histograms (or grouped bar
charts), to reflect the probability mass of a categorical variable; and (c) kernel density estimation
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(KDE) plots, to reflect the estimated probability density of a continuous variable. We note that, in
the code results, for all plots except that evaluating accuracy, we restrict to correct solutions.

Takeaway 1: Monoculture Exists and is Severe, Within and Across LLMs. As shown in Fig. 4
and 5, there exists significant narrowing from the source to generation distribution in all attributes
considered for both scenarios, book reviews and coding.

Notably, for book review, proprietary OpenAI LLMs (GPT-3.5 and GPT-4) demonstrate even
more severe monoculture compared with the open-source Llama family LLMs (see Fig. 9 in Ap-
pendix C.5 for more details). Particularly, for both GPT-3.5 and GPT-4, 100% of the samples
have average positivity falling in (0.95,1.00] under prompt (1), and 98.9% and 97.6% under prompt
(2). For coding, similar reductions in diversity can be seen: in Fig. 5(e), we see increased simi-
larity in natural language descriptions of LLM-generated code solutions, and Fig. 5(f) shows the
Jaccard similarity of the generated solutions in terms of the inferred algorithms, with the ma-
jority of problems displaying high similarity across generated solutions. Of particular interest, the
plagiarism scores of the LLM-generated code are extremely high (Fig. 5(b)), compared to the source
solutions which achieve an utterly zero plagiarism score for all the problems. We examine a few
pairs of examples and their plagiarism scores in Appendix E.1.

Takeaway 2: LLMs tend to produce Human-favorable Generations. Our results show that
LLMs tend to over-represent parts of the attribute distribution that are preferred by humans: hu-
mans largely prefer text with positive sentiment (Dodds et al., 2015; Augustine et al., 2011; Boucher
& Osgood, 1969) as well as correct and efficient code, and researchers have specifically infused
these preferences into LLM assistants through preference tuning (e.g. RLHF) (Ouyang et al., 2022;
Bai et al., 2022; Roziere et al., 2023). Fig. 4(a) and Appendix C.5 show that LLMs produce over-
whelmingly positive generations. Fig. 5, as well as Fig. 22 and 23 in the Appendix reveal that
LLM-generated code segments (a) are over 2× more accurate than the average human solutions, (b)
enjoy an overall lower asymptotic time and space complexity, and (c) use less runtime and memory
during execution. This may just be the intended consequence of RLHF, which explicitly optimizes
the LLM towards producing human-favored responses in its objective, as guided by a reward model
trained on human preferences.

However, as our results show, this implies a loss of diversity guided by human preferences, which,
if only naively understood and enforced, could lead to unwanted consequences if going unnoticed.
One example of the unintended artifacts is the under- and over-represented topics (Fig. 4(e)); the
topic group 15 which contains keywords “rob” and “kill” etc. is significantly under-represented,
likely a consequence of RLHF alignment tuning.

Takeaway 3: RLHF Hurts Diversity the Most. Llama-2-chat is obtained via performing
RLHF tuning (Ouyang et al., 2022) on the pre-trained (PT) Llama-2. Similarly, Vicuna-13b is
obtained via supervised fine-tuning (SFT) on the PT Llama-2 (Chiang et al., 2023). Comparisons
on these LLMs (see Fig. 4(c), as well as Fig. 8 in Appendix C.4) show that the PT LLM-generated
reviews are much more similar to the source. The PT LLM Llama-2 has 5.9% of samples with av-
erage sentiment values falling in the range of (0.95,1.00], which is much closer to the source percent-
age of 2.8% than 44.7% for Vicuna-13b and 82.1% for Llama-2-chat. Vicuna-13b also
shows better diversity than Llama-2-chat—this is consistent with findings suggesting RLHF
reduces output diversity compared with SFT (albeit with different metrics) (Kirk et al., 2024).

Takeaway 4: Naive Mitigations are Insufficient. Changing the sampling parameter (increasing T
and p) and using a more diversity-inducing prompt (e.g., prompt (2) for book reviews) can reduce
the gap (see Fig. 4(a-b) and Fig. 5). For example, using prompt (2) reduces the percentage of the
most positive range from 82.1% to 58.1% in Fig. 4(b) for T = 1.2, p = 1.0. However, the gap is still
large. More results in Appendix (Figures 13 and 14, and Appendix E) show similar conclusions.

We attempted two other strategies: (a) picking a higher temperature, and (b) leveraging a decaying
temperature scheme (see § 4). Results in Appendix C.2 show that the gap still remains big even
at such high randomness. Furthermore, for larger T , we notice a significant degradation of the
generation quality as a result of the increased randomness. In Table 1, we present the average fraction
of valid generations for Llama-2-chat and Vicuna-13b under various sampling parameters.
The table shows that the valid number of generations rapidly drops as the randomness increases,
particularly at T = 1.5; the implication is that such a high randomness setting cannot be adopted for
practical use.
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Figure 5: (Left) (a) stacked barplot for accuracy and (b) probability mass along with KDE for plagiarism
scores. (Middle) Time complexity: (c) histogram of the (unconditional) distribution of the asymptotic com-
plexity and (d) probability mass for the (conditional) distribution of entropy values. (Right) Selected code
summary: (e) KDE plot for the mean pairwise cosine similarity scores for “description” as natural language
and (f) stacked barplot for the mean pairwise Jaccard scores for “algorithms” as categorical values. Overall, the
model-generated solutions are more accurate and efficient, display higher description similarity to each other,
and cover a narrower span of algorithms. (More results in Appendix E.5.)

Table 1: The average fraction of valid generations (out of a total of 10) for two models under various
sampling parameters (temperature, top-p, and prompt–denoted (1) and (2)). We regard a “valid” generation as
text of perplexity value ≤ 20—as a support, we present high perplexity samples in Appendix C.1. We observe
that the number drops as the randomness increases (along the increase of both T and top-p values). As a
reference, GPT-4 achieves an average ratio of 1.000 at T = 1.2 and p = 1.0.

LLama-2
-13b-chat

p = 0.90 p = 0.95 p = 0.98 p = 1.00

(1) (2) (1) (2) (1) (2) (1) (2)

T = 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T = 1.0 1.000 1.000 0.999 1.000 0.999 1.000 0.998 0.999
T = 1.5 0.994 0.988 0.930 0.883 0.743 0.649 0.512 0.394

Vicuna
-13b

p = 0.90 p = 0.95 p = 0.98 p = 1.00

(1) (2) (1) (2) (1) (2) (1) (2)

T = 0.5 0.987 0.992 0.987 0.990 0.984 0.989 0.984 0.988
T = 1.0 0.961 0.962 0.951 0.958 0.942 0.953 0.935 0.947
T = 1.5 0.871 0.903 0.835 0.876 0.766 0.840 0.680 0.767

Though prior work showed promise for decaying temperature to encourage diversity while main-
taining quality (Carlini et al., 2021), this too failed to achieve higher diversity (see Fig. 4(d) and Ap-
pendix C.6).

7 RELATED WORK

Diversity and LLMs. Santurkar et al. (2023) demonstrate that LLMs do not give representative
opinions to polling questions when compared to the general U.S. population. Our work focuses on
the narrowing of diversity in LLM output from its human-written training data—while Santukar et
al. demonstrate a narrowing in diversity from actual human survey respondents (and not training
data). Additionally, our work proposes a general framework for measuring monoculture. Padmaku-
mar & He (2023) demonstrate that using LLM assistance can lead to reduced diversity in human-
written argumentative essays when compared to essays written without LLM assistance. While
they mention that this is partially because the models themselves do not produce diverse output,
they do not focus on the narrowing of diversity from LLM training data to LLM-generated data.
Finally, Zhang et al. (2024) propose an approach to fine-tune LLMs to output desired target distri-
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butions, and Sorensen et al. (2024) outline an alignment framework to emphasize pluralism to work
towards creating models which express a variety of opinions and perspectives. While these are cer-
tainly related to our work, generative monoculture as a phenomenon extends beyond differences in
opinion, and expresses the narrowing of any number of task-specific attributes, from code correct-
ness to topics covered to many others. One common thread across many of these works, which our
work adds to, is that current alignment practices—namely RLHF— harms output diversity.

Other Notions of Monoculture. Our notion of generative monoculture relates to, but differs from,
other notions of monoculture in the AI literature. For example, algorithmic monoculture (Kleinberg
& Raghavan, 2021) and outcome homogeneity (Bommasani et al., 2022) describe the societal state
where many decision-making actors rely on the same underlying algorithms to generate (classifica-
tion or ranking) predictions, from the perspective of decision-making actors and individuals subject
to those decisions respectively. These works show that algorithmic monoculture is sub-optimal for
both decision-making actors (due to correlated failures across models) and for those subject to model
decisions, as repeated outcomes across models leave little room for algorithmic recourse. In contrast,
generative monoculture focuses on documenting the phenomenon of individual LLMs narrowing the
diversity of their output in relation to their source data—for example, only returning positive book
reviews about a controversial book. We do, however, document in this work that generative mono-
culture exists to similar extents and in similar directions across a variety of available LLMs, (e.g.,
Llama, Vicuna, ChatGPT-4) leaving open the possibility of concerns brought up by Kleinberg &
Raghavan (2021), but in a generative context.

Connections to Model Collapse: We evaluate models trained on human-curated data, whereas
model collapse evaluates models trained iteratively on synthetic data (either fully, or mixed with
human data). In settings of model collapse where the model is trained only on synthetic data (Shu-
mailov et al., 2023; Taori & Hashimoto, 2023), it is understandable that the generation quality is
low. In contrast, our work shows that the generation quality is good (e.g., model generates correct
coding solutions), but the “diversity” in generations is low. Unlike model collapse which converges
to the mean of the distribution (Shumailov et al., 2023), our observation is there’s an emphasis on a
specific part of the distribution which is not necessarily the mean. In this way, the work is tangen-
tially related to collapse, but is not a special case of it (as the collapse phenomenon necessitates the
distribution to match the mean with many rounds).

8 CONCLUSION AND LIMITATIONS

In this work, we introduce the concept of generative monoculture, a phenomenon where LLMs nar-
row the diversity of their output relative to their source data for a given task. We experimentally
demonstrate its prevalence across text and code generation tasks, and show the difficulty in miti-
gating the behavior. Our work has limitations: first, we did not analyze the full training set of the
LLMs we study due to time and compute restrictions, as the corpora are large and often proprietary.
Further, as we note in § 3, measuring monoculture is difficult as selecting attributes is subjective,
and the attribute extraction process is sensitive to the reliability of extraction techniques. (We ver-
ify our own attribute extraction techniques in the appendix). Further, while generative monoculture
itself can have unfair consequences by enforcing the suppression of minority opinions, mitigating
monoculture without extreme care could lead to the proliferation of harmful ideas or even toxicity
by allowing for representation of the entire distribution of source text. We look forward to future
work mitigating monoculture while maintaining low levels of toxicity and other dangerous behavior.

ACKNOWLEDGEMENTS

This research was supported in part by the Accelerating Foundation Models Research grant from
Microsoft.

10



Published as a conference paper at ICLR 2025

REFERENCES

Abubakar Abid, Maheen Farooqi, and James Zou. Persistent anti-muslim bias in large language
models. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 298–
306, 2021.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Rubayyi Alghamdi and Khalid Alfalqi. A survey of topic modeling in text mining. Int. J. Adv.
Comput. Sci. Appl.(IJACSA), 6(1), 2015.

Anthropic. Claude-3 language model. https://www.anthropic.com/, 2024. Accessed:
2024-04-08.

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational
challenges in assuring alignment and safety of large language models. arXiv preprint
arXiv:2404.09932, 2024.

Adam A Augustine, Matthias R Mehl, and Randy J Larsen. A positivity bias in written and spo-
ken english and its moderation by personality and gender. Social Psychological and Personality
Science, 2(5):508–515, 2011.

Stefan Baack. A critical analysis of the largest source for generative ai training data: Common
crawl. In The 2024 ACM Conference on Fairness, Accountability, and Transparency, pp. 2199–
2208, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Dipto Barman, Ziyi Guo, and Owen Conlan. The dark side of language models: Exploring the
potential of llms in multimedia disinformation generation and dissemination. Machine Learning
with Applications, pp. 100545, 2024.

Steven Bird and Edward Loper. NLTK: The natural language toolkit. In Proceedings of the ACL
Interactive Poster and Demonstration Sessions, pp. 214–217, Barcelona, Spain, July 2004. Asso-
ciation for Computational Linguistics. URL https://aclanthology.org/P04-3031.

Rishi Bommasani, Kathleen A Creel, Ananya Kumar, Dan Jurafsky, and Percy S Liang. Picking on
the same person: Does algorithmic monoculture lead to outcome homogenization? Advances in
Neural Information Processing Systems, 35:3663–3678, 2022.

Rishi Bommasani, Percy Liang, and Tony Lee. Holistic evaluation of language models. Annals of
the New York Academy of Sciences, 1525(1):140–146, 2023.

Jerry Boucher and Charles E Osgood. The pollyanna hypothesis. Journal of verbal learning and
verbal behavior, 8(1):1–8, 1969.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

11

https://www.anthropic.com/
https://aclanthology.org/P04-3031
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/


Published as a conference paper at ICLR 2025

CodeForces. Codeforces. URL https://codeforces.com/. Accessed: 2024-03-20 at
https://codeforces.com/.

OpenAI Community. Web chat default temperature for gpt-3.5 and 4. https://community.
openai.com/t/web-chat-default-temperature-for-gpt-3-5-and-4/
167356/5, 2023. accessed: 2024-04-08.

Matthew Dahl, Varun Magesh, Mirac Suzgun, and Daniel E. Ho. Hal-
lucinating law: Legal mistakes with large language models are per-
vasive, Jan 2024. URL https://hai.stanford.edu/news/
hallucinating-law-legal-mistakes-large-language-models-are-pervasive.

Peter Sheridan Dodds, Eric M Clark, Suma Desu, Morgan R Frank, Andrew J Reagan, Jake Ryland
Williams, Lewis Mitchell, Kameron Decker Harris, Isabel M Kloumann, James P Bagrow, et al.
Human language reveals a universal positivity bias. Proceedings of the national academy of
sciences, 112(8):2389–2394, 2015.

Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794, 2022.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

Dong Huang, Jie M Zhang, Yuhao Qing, and Heming Cui. Effibench: Benchmarking the efficiency
of automatically generated code. arXiv preprint arXiv:2402.02037, 2024.

HuggingFace. Maartengr/bertopic wikipedia, a. URL https://huggingface.
co/MaartenGr/BERTopic_Wikipedia. Accessed: 2024-03-20 at https:
//huggingface.co/MaartenGr/BERTopic_Wikipedia.

HuggingFace. distilbert/distilbert-base-uncased-finetuned-sst-2-
english, b. URL https://huggingface.co/distilbert/
distilbert-base-uncased-finetuned-sst-2-english. Ac-
cessed: 2024-03-20 at https://huggingface.co/distilbert/
distilbert-base-uncased-finetuned-sst-2-english.

HuggingFace. sentence-transformers/all-minilm-l6-v2, c. URL https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2. Accessed: 2024-03-20 at https://
huggingface.co/sentence-transformers/all-MiniLM-L6-v2.

Michael Kerrisk. time(1) — linux manual page, 2023. URL https://man7.org/linux/
man-pages/man1/time.1.html.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of RLHF on LLM generalisation
and diversity. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=PXD3FAVHJT.

Jon Kleinberg and Manish Raghavan. Algorithmic monoculture and social welfare. Proceedings of
the National Academy of Sciences, 118(22):e2018340118, 2021.

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. HaluEval: A large-scale hal-
lucination evaluation benchmark for large language models. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 6449–6464, Singapore, December 2023a. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.397. URL https://aclanthology.org/
2023.emnlp-main.397.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023b.

12

https://codeforces.com/
https://codeforces.com/
https://community.openai.com/t/web-chat-default-temperature-for-gpt-3-5-and-4/167356/5
https://community.openai.com/t/web-chat-default-temperature-for-gpt-3-5-and-4/167356/5
https://community.openai.com/t/web-chat-default-temperature-for-gpt-3-5-and-4/167356/5
https://hai.stanford.edu/news/hallucinating-law-legal-mistakes-large-language-models-are-pervasive
https://hai.stanford.edu/news/hallucinating-law-legal-mistakes-large-language-models-are-pervasive
https://huggingface.co/MaartenGr/BERTopic_Wikipedia
https://huggingface.co/MaartenGr/BERTopic_Wikipedia
https://huggingface.co/MaartenGr/BERTopic_Wikipedia
https://huggingface.co/MaartenGr/BERTopic_Wikipedia
https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://man7.org/linux/man-pages/man1/time.1.html
https://man7.org/linux/man-pages/man1/time.1.html
https://openreview.net/forum?id=PXD3FAVHJT
https://aclanthology.org/2023.emnlp-main.397
https://aclanthology.org/2023.emnlp-main.397


Published as a conference paper at ICLR 2025

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022. doi: 10.1126/science.abq1158.
URL https://www.science.org/doi/abs/10.1126/science.abq1158.

Bryson Lingenfelter. blingenf/copydetect: Code plagiarism detection tool. URL https://
github.com/blingenf/copydetect. Accessed: 2024-03-20 at https://github.
com/blingenf/copydetect.

Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross, and Ziheng Huang. Gener-
ating diverse code explanations using the gpt-3 large language model. In Proceedings of the 2022
ACM Conference on International Computing Education Research-Volume 2, pp. 37–39, 2022.

Microsoft. Openai models - azure openai service. https://learn.microsoft.com/
en-us/azure/ai-services/openai/concepts/models, 2024. accessed: 2024-04-
08.

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers. Using
an llm to help with code understanding. In 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE), pp. 881–881. IEEE Computer Society, 2024.

OpenAI. Chat completions - openai api. https://platform.openai.com/docs/
api-reference/chat/create, 2024. accessed: 2024-04-08.

Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal Ladhak, and Tatsunori B Hashimoto. Proving
test set contamination in black box language models. arXiv preprint arXiv:2310.17623, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Vishakh Padmakumar and He He. Does writing with language models reduce content diversity?
arXiv preprint arXiv:2309.05196, 2023.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri.
Asleep at the keyboard? assessing the security of github copilot’s code contributions. In 2022
IEEE Symposium on Security and Privacy (SP), pp. 754–768. IEEE, 2022.

Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. Do users write more insecure code
with ai assistants? In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2785–2799, 2023.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.
org/abs/1908.10084.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
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APPENDIX

We open source our code at https://github.com/GeMoLLM/GeMO.

A SAMPLING PARAMETERS

1. Temperature: Concretely, the temperature parameter T determines the “dispersion” of the prob-
ability distribution over the next token. Mathematically, the probability of a token w being generated
is given by the softmax function: P (w|x) = exp(s(w|x)/T )∑

w′ exp(s(w′|x)/T ) where s(w|x) is the unnormalized
log-probability of the token w given the context x. Increasing the temperature leads to a more flat
probability distribution and increases the likelihood of sampling from less probable tokens, result-
ing in more diverse generations. This can also be understood from the perspective of entropy of the
next token, H(W ) = −

∑
w P (w|x) logP (w|x), where it can be seen that the increase of entropy

directly follows.

2. Top-p: The top-p parameter Holtzman et al. (2019) (p ∈ (0, 1]) controls the randomness of the
generations by limiting the range of tokens considered. Specifically, it considers the smallest subset
(consisting of the top probability tokens) whose cumulative probability exceeds the threshold p. A
smaller p encourages the model to sample from a more focused set of likely tokens, while a larger
p allows sampling from a broader range and thus increases randomness (p = 1 basically means no
restriction on the vocabulary).

Different platforms have different default values for T and top-p. GPT-3.5-turbo-instruct
(0914) web version adopts T = 0.8 Community (2023). The default values in OpenAI APIs are
T = 1.0 and p = 1.0 OpenAI (2024).
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3. Generation Length: This parameter (max new tokens) dictates at most how many tokens the
model should generate before it stops. We used 500 for book review generation and 2048 for code
generation.

B ADDITIONAL DETAILS: BOOK REVIEWS

B.1 CONSTRUCTION OF THE SOURCE DATASET

To ensure we picked popular books that the LLMs know about, we filtered the books according
to the number of reviews they have. Constraining the number of reviews to be between 1,000 and
2,500, we obtained 750 books. We further filtered out books with non-English titles; we conducted
this filtering because some downstream LLMs (e.g., sentiment classifiers) are not multilingual, and
as a result can not analyze the generated non-English reviews. To ensure high quality of the reviews,
we further filtered the review by length, constraining the length of each review to be between 300
and 700 words. After this step of filtering, we sampled 10 reviews per book. Eventually, we obtained
a dataset of 742 books, where each book comes with 10 reviews.

B.2 NAMES OF THE CELEBRITIES USED IN PROMPT 2

We prompted GPT-4 to provide a list of celebrities suitable for writing diverse book reviews. The
list of names are as follows: Trevor Noah, Janelle Monáe, Yuval Noah Harari, Serena Williams,
Reshma Saujani, Neil deGrasse Tyson, Margaret Atwood, David Attenborough, Malala Yousafzai,
Jordan Peele.

B.3 TEXT PROCESSING FOR ANALYZING WORDING CHOICE

We first concatenated all documents and converted them to lowercase to standardize the text.
We then expanded contractions (e.g., “don’t” to “do not”). We then tokenize the text with
word tokenize() from the NLTK library Bird & Loper (2004), and removed the punctuation.
We continued by filtering out non-alphabetic tokens to focus solely on words. Lastly, we lemmatized
tokens via WordNetLemmatizer() to their base forms, aiding in consistent frequency analysis.
These steps are essential for minimizing textual noise and ensuring the reliability of our word fre-
quency assessments.

C ADDITIONAL RESULTS: BOOK REVIEWS

C.1 FILTERED-OUT REVIEWS

We established a perplexity threshold of 20 to filter out low-quality reviews. To validate our choice,
we randomly sampled reviews with perplexity scores at different intervals and manually inspected
them. For clarity, instead of presenting the entire review text, we selectively extracted chunks that
exemplified the low-quality nature of the sampled reviews.

Perplexity in (20, 25]: This page-turning, and fast-paced gripping story makes excellent use both tropes
and novel ideas by employing both like, for instance, a dystopian setting which uses an exaggeratory
ruminating setting so typically found in series belonging to this genre, only that here the author‘s unique
skill at weaving such plot-lines together in a novel that feels fresh more like Harry Potter but with an
800word length page each chapter instead of JUST 200word paragraph at the end of an excrutiatingly slow
chapter.

Perplexity in (25, 30]: That and artist Adrian Alphona bringing the world-sprawling amazing action and
gorgeous characters from beautifully rendered backgrounds in color by vivid and dazzling color is what
makes the graphic novel in itself even more delightful. With each color panel bringing an explosion of
color onto every page no panel is left the same no character or page lacking the same amount of energy
vivid and gripping from the moment I turned on. the illustrations are bright beautiful detailed it truly does
it live upto its tag line and then some a hero like no other a book like no other definitely worth the dive.
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Perplexity in (30, 35]: One would wonder if she lived some of this amazing journey to unhidden holes
in the ground or lived the stories and characters by the holes they created one will see how amazingly her
fantastic works has a way t connect the reader to a place which feels so real and fascinating! Holes by
Loues Erdrich has a beautifully constructed a magical and a world which transports and takes readers like
on a journey thrifting us so many magical and real places which we might not have an opportunity if it
wasn’t for the eyes and minds eye of Louise Erdrech .

Perplexity in (35, 40]: It made me reflect for a deeper appreciation on both the power of memory in
creating some of literature and art’s most significant works or cultural touchstone masterpieces such as
those listed that our lead female artist was known to adore and how that and the themes that author – a most
wonderful story teller by the way, by way of characters that i wanted or did want to spend more time with
and learn the most in depths exploration of, and not all can reach it. And so a deeper appreciation for the
art of storytelling from great narratives by great narrators? The Little Paris Bookp shop does achieve an
astounding success in that regard, I am thrilled I’d like to shout it out to any and All in ear shot about it!

C.2 GENERATION RESULTS AT HIGHER RANDOMNESS

We experimented with even higher randomness at T = 1.5 motivated by the observation that in-
creasing the randomness does help to increase the diversity. However, as we show in Fig. 6, even at
high randomness, there is still a huge gap between the source and the generations.

Moreover, we notice a significant degradation of the generation quality as a result of the increased
randomness. We present in Table 1 the average number of valid generations for two models under
various sampling parameters. The table shows that the valid number of generations rapidly drops as
the randomness increases, particularly at T = 1.5; the implication is that such a high randomness
setting basically cannot be adopted for practical use.

C.3 TOPIC SHIFTS

We present in Fig. 7 the results of the unconditional topic distribution. Across all three settings
for comparison, we observe highly similar distribution shift signified by the over- and under-
representation of certain topic groups. Concretely, the topic group 15 with the keywords “grace,
rob, nick, anna, house, discovers, realizes, killed, confronts, killer” are under-represented, poten-
tially because certain words like “rob” and “kill” are eliminated from the output as a result of RLHF.
On the other hand, the topic group 333 with the keywords “handmaid, novels, novel, writers, tale,
book, books, literary, novellas, synopsis” and the topic group 666 with the keywords “nonfiction,
bestseller, novelist, autobiography, novels, memoir, author, memoirs, paperback, novel” are over-
represented. The over-representation of topic group 333 in Vicuna-13b is much more severe than
Llama-2-chat, as can be seen from the 3rd subfigure; this could be because a higher exposure to
relevant materials during its fine-tuning.

C.4 PRE-TRAINED MODEL

The aligned model is obtained from performing supervised fine-tuning followed by RLHF alignment
tuning on the basis of the pre-trained model Touvron et al. (2023). We compare the performance of
the aligned model llama-2-13b-chat with the pre-trained model llama-2-13b and present the results
in Fig. 8.

From the 1st and 2nd subfigure, we observe that the pre-trained model is much more diverse than
the aligned model; the pre-trained model is even very close to the source data (see the dark purple
result tagged as T = 1.2, p = 1.0 (c)).

The 3rd subfigure delivers two messages. First of all, there still exists divergence from the pre-
trained model and the source in terms of the covered topics. We attribute this divergence we observe
between the pre-trained model and the source data to the difference between the source data we
use (the Goodreads dataset) and the ground-truth training data (a much broader corpus which we
have no information about). We regard the Goodreads dataset as a proxy of the ground-truth, but
intrinsically Goodreads is smaller and does not fully accurately represent the groundtruth training
distribution, especially in nuanced attributes like the unconditional topic distribution measured on
all samples. Second, the direction and trend of changes in the aligned model is not completely the
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Llama-2-13b (1)
p = 0.9, varying T p = 0.95, varying T p = 0.98, varying T p = 1.0, varying T

T = 0.5, varying P T = 0.8, varying P T = 1.2, varying P T = 1.5, varying P

Vicuna-13b (2)
p = 0.9, varying T p = 0.95, varying T p = 0.98, varying T p = 1.0, varying T

T = 0.5, varying P T = 0.8, varying P T = 1.2, varying P T = 1.5, varying P

Figure 6: Mean sentiment scores across different models (Llama-2-chat, Vicuna-13b) and
prompts ((1) and (2)), and varying sampling parameters (temperature T and top-p). We do observe
an increase of diversity along the increase of generation randomness (i.e., increasing T and p),
but the gap remains high between the source and even the highest generation randomness setting.
Moreover, we put a black cross × on the top of the setting with a concerning low number of valid
number of generations (see Table 1 for a concrete explanation); they mostly only occur for the few
highest randomness settings.
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Varying sampling Varying prompt Varying Model

Percentage Percentage Percentage

Figure 7: Grouped bar charts of the unconditional distribution of the topic (i.e., the distribution
of the topic over all the samples). (Left): generated by Llama-2-chat at different generation
kwargs, where we fixed T = 1.2 and varied p ∈ {0.90, 0.95, 0.98, 1.00}. The prompt used is (1)
as introduced in Section 5.1. (Middle): generated by Llama-2-chat under different prompts (1)
and (2). (Right): generated by two models (a) Llama-2-chat and (b) Vicuna-13b, using the
prompt (1). Across all three subfigures, we observe highly similar distribution shift signified by the
over- and under-representation of certain topics.
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Figure 8: Comparison between (a) the aligned model Llama-2-chat and (c) the pre-trained
model Llama-2, under prompt (1), temperature T = 1.2, and varying top-p parameters. We
present a subset of the results (sentiment, topic, and topic distribution), corresponding to Figure 7.
The figures show that the pre-trained model enjoys much better diversity than the aligned model,
and is much closer to the source.
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Figure 9: Plots for OpenAI models. (Upper row): GPT-3.5 under prompt (1), T = 1.2, and
varing p. (Lower row): comparing GPT-3.5 and GPT-4 at T = 1.2, p = 1.0 and the two
propmts (1) and (2). We present a subset of the results (sentiment, topic, and topic distribution),
corresponding to Figure 7. The figures show that both GPT-3.5 and GPT-4 display severe GeMo,
which cannot be effectively mitigated via varying the sampling parameters or using a diversity-
inducing prompt.

same as the aligned models, e.g., the topic group 15 containing “rob” and “killer” is not inhibited as
much as in the aligned models, potentially due to RLHF.

C.5 RESULTS OF OPENAI MODELS

We repeat the same set of experiments on the proprietary OpenAI models GPT-3.5-turbo-instruct
(0914) and GPT-4-turbo (0125). We present the results in Fig. 9.

The sentiment results (in column 1) suggest that both models are overwhelmingly and invariably
positive in their reviews, across various sampling parameters and prompts.

The results of the conditional topic distribution (in column 2) reveal similar conclusions—there is a
significant deviation between the generated reviews and the source reviews across varying sampling
parameters (see upper low) and for both GPT-3.5-instruct and GPT-4 (see lower row). Nevertheless,
using a diversity-inducing prompt, i.e., prompt (2) does lead to increased diversity (see lower row).

The results of the unconditional topic distribution (in column 3) also demonstrate the distribution
shift, though in a slightly different way than observed for llama family models (see presented in Ap-
pendix C.3). Concretely, the topic group 333 does not experience a significantly over-representation,
while the topic group 30 does. As discussed previously, we attribute the difference in the nuanced
topic distribution mainly to the difference in the training data.

C.6 MITIGATION VIA TEMPERATURE DECAY

We describe the decaying temperature scheme. Concretely, we choose the starting temperature
T = 10.0 and follow a linear schedule for temperature decay, over the course of 50 timesteps (i.e.,
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Sentiment Topic
Llama-2-chat, p = 1.0 Vicuna-13b, p = 1.0 Llama-2-chat, p = 1.0 Vicuna-13b, p = 1.0

Figure 10: Effect of temperature decay during decoding time for two models Llama-2-chat
and Vicuna-13b, with top-p parameter 1.0 and two prompts (1) and (2). We compare the fixed
temperature (T = 1.2) with the decaying temperature (decay T ) and we present the results for
sentiment and topic. The figures reveal the ineffectiveness of the temperature decay method.

from the 1-st output token to the 50-th output token), with an ending temperature T = 1.2. The
method is inspired by Carlini et al. Carlini et al. (2021) which reported this scheme as one sampling
method that induce diversity and high quality output1.

We present the results in Fig. 10. For both the sentiment and the topic, we see that the fixed temper-
ature scheme achieves a higher diversity compared to the decaying temperature scheme.

C.7 EVALUATION ON ADDITIONAL PROMPTS
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Figure 11: Stacked barplots for the mean sentiment scores. Left and middle for Llama-2-13b-
chat and right for GPT-4. The label “celeb” corresponds to Prompt (2) in the main submission; the
prompts for other labels can be found below. The all black bar for the label “negative” means that
all the generations for this prompt achieve extremely low scores (refer to the hue legend).

Aside from prompts (1) and (2) introduced in the main paper in § 5.1, we additionally experimented
with three groups of prompts for comprehensiveness.

Group 1 [specifying detailed roles]:

• Prompt (role): “Write a book review for the book titled {title} as if
you are a {role}:”, where role ∈ {”teenage fantasy enthusiast”, ”critical literature pro-
fessor”, ”romance novel lover”, ”tech-savvy sci-fi geek”, ”history buff”, ”casual weekend reader”,
”book club moderator”, ”non-fiction aficionado”, ”poetry appreciator”, ”mystery thriller addict”}

• Prompt (creative): “Write a book review for the book titled {title},
from the viewpoint of different personas, such as ’aspiring

1We refer to https://github.com/shreyansh26/Extracting-Training-Data-from-Large-Langauge-Models/
blob/main/extraction_temperature_decay.py for an implementation of the temperature decay
sampling scheme for HuggingFace models.
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Llama-2-chat (1) Llama-2-chat (2) Vicuna-13b (1) Vicuna-13b (2)

Figure 12: Heatmap of the entropy of the (unconditional) distribution of the word choice
in model-generated reviews. We present results of two models (Llama-2-chat and
Vicuna-13b) and two prompts ((1) and (2)). As a reference, the entropy of the source is 9.99,
higher than all the entropy values of model generations.

writer’, ’history enthusiast’, ’teenage sci-fi fan’, or
’career-focused parent’, etc. Be creative!”

Group 2 [Steering attributes such as sentiment]:

• Prompt (negative): “Write a negative review of the book titled
{title}:”

• Prompt (neutral): “Write a neutral review of the book titled {title}:”
• Prompt (positive): “Write a positive review of the book titled {title}:”

Group 3 [Other variations]:

• Prompt (critical): “Write a critical review of the book titled {title}:”

We conducted the additional experiments on a) Llama-2-13b-chat and b) GPT-4. For the
former, we evaluated two sampling parameters (T = 0.8, p = 0.9 for relatively low randomness,
and T = 1.2, p = 1.0 for high randomness); for GPT-4, we considered only the high randomness
parameter and only the prompt (critical) due to the long runtime. For each combination of
model, prompt, and sampling parameter, we generated n = 10 reviews.

We present the results in Figure 11 and discuss the takeaways below.

1. Prompt (critical) achieves the best diversity among all. However, there is still a signifi-
cant gap from the src, which holds true for both models.

2. Prompt (role) achieves a similar level of diversity compared to Prompt (person),
showing that specifying a diverse set of detailed roles do not bring improvement over speci-
fying a diverse set of celebrities. Giving the LLM extra freedom to explore using different roles
(i.e., Prompt (creative)), however, leads to even worse diversity.

3. Using sentiment words (i.e., negative, neutral, positive) can indeed steer the sentiment of the
generations very effectively. Yet we clarify that the model being a good instruction follower does
not directly translate into it preserving diversity, without a good instruction giver. Moreover, as
per our definition, we care about diversity of multiple attributes. Explicitly steering one attribute
is insufficient for achieving diversity across numerous attributes. More generally speaking, the
issue resides in—what we can control/steer is a limited set of knowns, but what we hope to gain
is w.r.t. a more broader set of knowns and unknowns.

C.8 MORE RESULTS

For the attribute word choice, we present the count of unique words in Table 2 and the entropy for
the word distribution in Fig. 12, showing that model-generated reviews use a narrower vocabulary
and is less diverse than the human-written reviews.

We present more results for various attributes and metrics in Fig. 13 and 14 where we vary sev-
eral factors for detailed comparisons. Overall, the results suggest the prevalence and severity of
generative monoculture, as well as the ineffectiveness of naive mitigations.
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Figure 13: (Row 1): Stacked bar charts of the mean sentiment scores. In each bar, darker hues
(bottom) correspond to the lower scores while the lighter hues (upper) are the higher scores. See the
legend for the detailed value range of each hue. (Row 2): Histograms of the entropy of the sentiment
scores. Each bar group corresponds to a range of entropy values in [x, x+0.2] where x is the number
under the bar group. (Row 3): Kernel density estimate (KDE) plots of the entropy of the topic.
(Left): generated by Llama-2-chat at different generation kwargs, where we fixed T = 1.2 and
varied p ∈ {0.90, 0.95, 0.98, 1.00}. More variations can be found in Figure 6 in Appendix C. The
prompt used is (1); see later for the detail. (Middle): generated by Llama-2-chat under prompts
(1) and (2). (Right): generated by two models (a) Llama-2-chat and (b) Vicuna-13b, using
the prompt (1).
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Figure 14: (Rows 1-2): varying T under fixed p: (upper) entropy of the sentiment for the conditional
distribution and (lower) Entropy of the topic for the conditional distribution. (Rows 3-4): varying p
under fixed T : (upper) entropy of the sentiment for the conditional distribution and (lower) entropy
of the topic for the conditional distribution. Results are obtained via Llama-2 under prompt (1).
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Table 2: Count of unique words produced by different models (left: llama-2-13b-chat, right: GPT-
3.5-instruct) under varying sampling parameters and prompt (1). As a reference, the count in the
source dataset is 85,334.

p = 0.90 p = 0.95 p = 0.98 p = 1.00

T = 0.5 18,900 19,041 19,145 19,275
T = 0.8 20,020 20,516 20,935 21,688
T = 1.0 21,295 22,024 23,181 24,738
T = 1.2 23,509 25,742 28,532 33,908

p = 0.90 p = 0.95 p = 0.98 p = 1.00

T = 0.5 15,782 15,794 15,778 15,841
T = 0.8 16,563 16,915 17,096 17,235
T = 1.0 17,044 17,543 17,960 18,674
T = 1.2 17,368 18,077 18,894 21,059

D ADDITIONAL DETAILS: CODING

D.1 RESTRICTION TO LEVEL-A PROBLEMS

We limit our scope to Codeforces level-A problems only for the coding scenario, which are the
easiest problems on the Codeforces competitive programming platform2. We note that even though
these are the easiest problems on the platform, they still require non-trivial intellectual efforts to
solve3.

There are two main reasons we restrict to level-A problems:

1. Most LLMs perform best on level-A problems and much worse on more difficult ones. We started
off evaluating a set of 81 problems ranging from difficulty A to G, and obtained an average
accuracy of 50% on the 16 level-A problems, and less than 10% on others. Since we perform
attribute extraction on the correct solutions only, a low accuracy means that to ensure reaching
a minimum number of correct generations (20 in our experiments), a huge number of solutions
need to be generated (e.g., over 200), which is prohibitively expensive in both time and money.
Thus we settle with the level-A problems.

2. We manually verify the correctness of the attribute extraction (e.g., code summary, runtime com-
plexity). Relatively simpler problems are easier to verify.

D.2 CORRECTNESS TESTING: AUTOJUDGE WITH TESTCASES

We simulated an Autojudge using the test cases provided in the dataset. Concretely, for each prob-
lem, we obtain 10 test cases in the format of input and output4. We then measure each solution
against the set of 10 test cases. We regard the solution that passes all 10 test cases as a correct
solution.

D.3 MEASURING ACCURACY

We calculate accuracy as ncorrect
i /nall per problem (where ncorrect

i is the number of correct solutions
and nall is the number of all solutions). For the source, both ncorrect

i and nall are available in the
CodeContests dataset Li et al. (2022). For the generations, we test the correctness of the solutions
via autojudge (see Appendix D.2) and measure the accuracy as ncorrect

i /k.

D.4 MEASURING RUNTIME EFFICIENCY

For runtime efficiency, we use the bash command /usr/bin/time Kerrisk (2023) to measure
the elapsed real time (via %E) as well as the maximum resident set size of the process during its
execution (via %M). Concretely, for each solution, we run it on all 10 test cases with our autojudge

2https://codeforces.com/problemset
3Interested readers can refer to this problem https://codeforces.com/problemset/problem/

1198/A to get a sense of the difficulty in problem understanding and solving
4In Codeforces, each test case is often consisted of multiple small tests; see an example at https://

codeforces.com/problemset/problem/1406/A. As explained in the Input section on the page,
“The input consists of multiple test cases.”. Thus, 10 test cases is adequate in testing the correctness of a
solution
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and measure the runtime and memory. We take the max value on all 10 test cases as a proxy of the
runtime efficiency of the tested code.

D.5 PROMPTING GPT-3.5 TO GENERATE CODE SUMMARY (BOTH TEXT DESCRIPTIONS
AND CATEGORICAL VALUES)

We present below the instruction we provide to GPT-3.5. We bold keywords in the prompt simply
for the ease of reading. When calling the GPT-3.5 API, we used temperature T = 0 (i.e., greedy
decoding) and max tokens=500.

The list of tags (in the 1st prompt below) were collected from the CodeContests Li et al. (2022)
dataset—we traverse all the problems in the dataset and union all the “tags” attribute.

The lists of algorithms and data structures (in the 2nd prompt below) were obtained from analyzing
Wikipedia and querying GPT-4-turbo (0125) for a suggested list.

These categorical attributes serve as a complement to the text description described above and en-
hance the reliability of the results.

Please provide a description to the following code in natural language. Explain the functionality, algo-
rithm, data structure, time complexity, space complexity of the code.
Finally, assign a few tags to the code. Here is a list of tags you can choose from:
”binary search, math, special, trees, dp, greedy, games, dfs and similar, expression parsing, number theory,
chinese remainder theorem, geometry, bitmasks, sortings, graph matchings, matrices, meet-in-the-middle,
graphs, combinatorics, probabilities, constructive algorithms, schedules, two pointers, brute force, dsu,
shortest paths, hashing, interactive, data structures, strings, ternary search, fft, flows, implementation”
Answer each in a line in the example format of: ’Description: description\nFunctionality: functionality’
{code}

Please read the following code and infer the algorithms and data structures used in it.
For algorithms, select (a few) from the following list:
”Sorting Algorithms, Searching Algorithms, String Algorithms, Divide and Conquer Algorithms, Greedy
Algorithms, Dynamic Programming, Recursion, Bit Manipulation, Backtracking, Graph Algorithms, Oth-
ers”
For data structures, select (a few) from the following list:
”Arrays, Linked Lists, Stacks, Queues, Trees, Heaps, Hash Tables, Sets, Maps, Priority Queues, Others”
Answer each in a line following the format of: ’Algorithms: candidate 1, candidiate 2, ..\nData structures:
candidate 1, candidiate 2, ..\n’
{code}

E ADDITIONAL RESULTS: CODING

E.1 EXAMPLES FOR PLAGIARISM SCORES

We present example model-generated code and human-written code as well as the plagiarism scores
associated with the pairs in Fig. 15, 16,and 17. All the code are correct solutions to the problem
409A. The Great Game5.

From the demonstrations it is evident that model-generated code (Fig. 15, 16) are highly similar in
their style and structure; even the low score pair (Fig. 16) bear a significant level of similarity. In
comparison, human-written code (Fig. 17) are clearly distinctive. These results support the validity
of using the plagiarism score to evaluate code similarity.

E.2 ATTEMPTS ON VARYING PROMPTS

We experimented with four prompts on GPT-4, one plain prompt, one instructing the model to gen-
erate only the code solution, one employing role-playing Salewski et al. (2024) and one integrating
chain-of-thought prompting Wei et al. (2022b). We present the concrete prompts in Fig. 18.

5Link to the problem: https://codeforces.com/problemset/problem/409/A
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Figure 15: An example for a pair of model generated code with high plagiarism score.

Figure 16: An example for a pair of model generated code with relatively low plagiarism score.

29



Published as a conference paper at ICLR 2025

Figure 17: An example for three human-written code with zero plagiarism score for all the pairs.

Prompt 1: Please read the below problem description and generate a python code to solve the problem:

{problem description}

Prompt 2: Please read the below problem description and generate a python code to solve the problem:

{problem description}

Please only generate code and nothing else.

Prompt 3: Imagine you are a grandmaster in solving competitive programming problems. Your skills
in algorithms, data structures, and problem-solving are unparalleled. You have a deep understanding of
various programming paradigms and can easily navigate through complex problems with efficiency and
elegance.

Please read the below problem description and generate a python code to solve the problem:

{problem description}

Please only generate code and nothing else.

Prompt 4: Imagine you are a grandmaster in solving competitive programming problems. Your skills
in algorithms, data structures, and problem-solving are unparalleled. You have a deep understanding of
various programming paradigms and can easily navigate through complex problems with efficiency and
elegance.

Please read the below problem description and generate a python code to solve the problem:

{problem description}

Please think through the problem step by step, and then provide your solution. Then, test your
code against the provided test cases in the problem. If your code fails to pass all the tests, please revise
your code and try again until your code passes all the tests.

Figure 18: Four prompts for instructing the model GPT-4 to generate code solution to a provided
problem in {problem description}. Prompt 1 is the most plain prompt; Prompt 2 additionally in-
structs the model to generate only the code without additional explanations; Prompt 3 employs the
technique of role-playing Salewski et al. (2024), and Prompt 4 additionally integrates the technique
of chain-of-thought prompting Wei et al. (2022b).
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Figure 19: Accuracy achieved by using the four prompts on Codeforces problems of varying
difficulties. The “Correct” and “Incorrect” refer to the results achieved by the human-written so-
lutions in the source dataset CodeContests. Overall, we see that prompt 2 performs the best across
different difficulty levels.

We evaluate the four prompts on Codeforces problems of varying difficulties and present the accu-
racy achieved by each prompt in Fig. 19. Overall, prompt 2 achieves the best results among the
four.

E.3 HUMAN ANNOTATIONS FOR THE QUALITY OF LLM SUMMARY

We annotate the quality of the LLM-generated summary of code given by GPT-3.5.

Step 1: We randomly sample 20 solutions of different problems, and review the LLM-generated
attributes for these solutions; the attributes include the textual ones (description, functionality, algo-
rithm, data structure), the inferred asymptotic complexity (time complexity, space complexity), as
well as the categorical ones (tags, algorithm, data structures).

Step 2: We read through the problem description, the code solution, and the model-generated sum-
mary to evaluate the quality of model-generated summary.

Step 3: We follow the instruction “In each cell please give a score from 1-3 – 3 meaning absolutely
correct, 2 meaning with some minor errors but acceptable, 1 meaning entirely incorrect” to score
each attribute.

Step 4: We calculate the average score received by each attribute across the 20 sample and present
the results in Table 3.

The high scores indicate that GPT-3.5 can provide fairly accurate summary of the given code,
supporting our choice of relying GPT-3.5 to reliably extract the attributes.

Table 3: The average scores given by human annotators on each attribute. We adopted a 3-point
scale where 3 means absolutely correct, 2 means with some minor errors but acceptable, 1 means
entirely incorrect. The high scores indicate that GPT-3.5 can provide fairly accurate summary of
the given code.

Attribute
textual complexity categorical

description functionality algorithm data
structure

time
complexity

space
complexity tags algorithms data

structures

Score 2.65 2.55 2.90 3.00 2.95 2.70 2.90 2.50 2.90
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E.4 FAILURE RESULTS WITH OPEN-SOURCE MODELS

We experimented with two open-source code models on these competitive programming problems:
CodeLlama Roziere et al. (2023)6 and StarCoder Li et al. (2023b)7. However, neither of the models
were able to produce code solutions in our trials. We present one example interaction in Fig. 20,
where the model demonstrated the memorization of a problem dataset but failed to produce a code
solution to the given problem.

E.5 A COMPLETE SET OF RESULTS FOR THE EXPERIMENTS ON GPT-4

Accuracy The histogram of the accuracy can be found in Fig. 21(left).

Plagiarism score The histogram along with the KDE plot for the plagiarism scores can be found
in Fig. 21(right).

Efficiency The efficiency results in terms of the asymptotic complexity (specifically, the histogram
of the time complexity and space complexity) can be found in Fig. 22. The efficiency results in
terms of the runtime efficiency (specifically, the density plots of runtime and memory) can be found
in Fig. 23.

Code summary The KDE plots of the mean pairwise embedding cosine similarity of the code
summary (textual) can be found in Fig. 24. The stacked bar plots of the mean pairwise Jaccard
similarity of the code summary (categorical) can be found in Fig. 25.

E.6 CLAUDE

Accuracy The histogram of the accuracy can be found in Fig. 26(left). In comparison to GPT-4
(see Fig. 21(left)), the accuracy of Claude-3 is much lower.

Plagiarism score The histogram along with the KDE plot for the plagiarism scores can be found
in Fig. 26(right). The plagiarism scores achieved by Claude-3 remain high, similarly to that on
GPT-4.

Efficiency The efficiency results in terms of the asymptotic complexity (specifically, the histogram
of the time complexity and space complexity) can be found in Fig. 27. The efficiency results in
terms of the runtime efficiency (specifically, the density plots of runtime and memory) can be found
in Fig. 28. Different from GPT-4, solutions generated by Claude-3 are less efficient than source
solutions. This result, together with the accuracy result, indicates that the code generation ability of
Claude-3 is inferior than GPT-4.

Code summary The KDE plots of the mean pairwise embedding cosine similarity of the code
summary (textual) can be found in Fig. 29. The stacked bar plots of the mean pairwise Jaccard
similarity of the code summary (categorical) can be found in Fig. 30. Similar to GPT-4, Claude-3
also demonstrate a narrower range of expressed ideas.

F COMPUTE RESOURCES AND DATA LICENSES

F.1 COMPUTE

The book review generation (N = 742, n = 10, max new tokens=500) on open-source models
took around 10 hours on one H100 card per run, i.e., per combination of sampling parameters (T
and p) and prompts. The number increased to around 80 hours for GPT-4.

The code generation (N = 100, n = 100, max new tokens=2048) on GPT-4 took around
60 hours per run. The rate of generation was similar on Claude-3-Sonnet; the total runtime
doubled since we generated twice many solutions (n = 200) due to its lower accuracy.

6Link at https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf
7Link at https://huggingface.co/bigcode/starcoder
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Prompt
Please read the below problem description and generate a python code to solve the
problem:

Gregor is learning about RSA cryptography, and although he doesn’t understand
how RSA works, he is now fascinated with prime numbers and factoring them. Gregor’s
favorite prime number is P. Gregor wants to find two bases of P. Formally, Gregor is
looking for two integers a and b which satisfy both of the following properties.

* P mod a = P mod b, where x mod y denotes the remainder when x is divided
by y, and
* 2 ≤ a < b ≤ P.

Help Gregor find two bases of his favorite prime number!

Response
Input Format

The first line contains an integer T, the number of test cases. T lines follow.
Each line contains an integer P, Gregor’s favorite prime number.

Output Format

For each test case, print two lines. The first line should contain the first base,
and the second line should contain the second base.

Constraints

* 2 ≤ T ≤ 1000 * 2 ≤ P ≤ 109

Sample Input

2
3
5

Sample Output

2
3
2
5

Explanation

For the first test case, the two bases are 2 and 3. For the second test case, the
two bases are 2 and 5.\n\n\n\n. . .\n

Figure 20: Generation result of StarCoder. The model was unable to generate the requested code
solution as instructed; instead, it generated some boilerplate content such as input format and output
format, which often exists in datasets of this kind of problems. After these boilerplate content, the
model simply generated hundreds of \n and then stopped.
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Figure 21: Model: GPT-4. (Left) Stacked bar charts of the accuracy values achieved by the source
solutions as well as GPT-4 generated solutions under various kwargs. (Right) Histogram plus
kernel density estimation (KDE) plots of the plagiarism scores.
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Figure 22: Model: GPT-4. (Left) Histograms (or grouped bar charts) for the time and space
complexity for the unconditional distribution. (Right) Histograms for the entropy of the time and
space complexity for the conditional distribution. The figures suggest that the generated code is
more efficient than the source code, while showing a decrease in diversity.
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Figure 23: Model: GPT-4. Histograms of the mean and standard deviation (std) of runtime
(in milliseconds) and memory usage (in kilobytes). We filtered out some datapoints for better
visualization, specifically, runtime above 200 ms, and memory usage above 30,000 KB.
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Figure 24: Model: GPT-4. Kernel density estimation (KDE) plots of the mean pairwise cosine
similarity for the four attributes (description, functionality, algorithm, and data structure) repre-
sented as extracted embeddings of natural language descriptions.
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Figure 25: Model: GPT-4. Stacked bar charts of the mean pairwise Jaccard index for the three
attributes (tags, algorithms, and data structures) represented as sets of categorical variables.
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Figure 26: Model: Claude-3-Sonnet. (Left) Stacked bar charts of the accuracy values achieved
by the source solutions as well as Claude generated solutions under various kwargs. (Right) His-
togram plus kernel density estimation (KDE) plots of the plagiarism scores for source solutions and
Claude generated solutions.
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Figure 27: Model: Claude-3-Sonnet. (Left) Histograms (or grouped bar charts) for the time
and space complexity for the unconditional distribution. (Right) Histograms for the entropy of the
time and space complexity for the conditional distribution. The figures suggest that the generated
code is more efficient than the source code, while showing a decrease in diversity.
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Figure 28: Model: Claude-3-Sonnet. Histograms of the mean and standard deviation (std)
of runtime (in milliseconds) and memory usage (in kilobytes). We filtered out some datapoints for
better visualization, specifically, runtime above 200 ms, and memory usage above 30,000 KB.
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Figure 29: Model: Claude-3-Sonnet. Kernel density estimation (KDE) plots of the mean
pairwise cosine similarity for the four attributes (description, functionality, algorithm, and data
structure) represented as extracted embeddings of natural language descriptions.
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Tags Algorithms Data structures

Figure 30: Model: Claude-3-Sonnet. Stacked bar charts of the mean pairwise Jaccard
index for the three attributes (tags, algorithms, and data structures) represented as sets of categorical
variables.

F.2 LICENSES

We used the Goodreads dataset Wan et al. (2019)8 for the book review scenario. Their license is
Apache License9 as provided in their repository.

We used the CodeContests dataset Li et al. (2022)10 for the coding scenario. Their license is Apache
License11 as provided in their repository.

G EXTENDED INVESTIGATIONS

G.1 INFLUENCE OF MODEL SIZE ON MONOCULTURE

(a) Prompt (1) (b) Prompt (2)

Figure 31: Monoculture persists despite model scaling.

We conducted experiments to understand the pervasiveness of monoculture as a function of model
size. To this end, we conducted the sentiment analysis study (on generated book-reviews) for Llama
70b (instruction fine-tuned + aligned) – denoted 70b-c(x) in the figure, where x denotes the prompt
(refer § 5.1); we compare this with the 13b model from the same family. For the 70b model, we
used a quantized version for faster inference times given the narrow window of the rebuttal period.
Our results, in Figure 31 show that while this larger model has “greater diversity” than the smaller
model (potentially due to an increase in the diversity of the training dataset used to train this model),

8Link to the dataset website: https://mengtingwan.github.io/data/goodreads.html
9Link to the license: https://github.com/MengtingWan/goodreads/blob/master/

LICENSE
10Link to the dataset: https://github.com/google-deepmind/code_contests
11Link to the license: https://github.com/google-deepmind/code_contests/blob/

main/LICENSE
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the phenomenon of monoculture (i.e., decreased diversity compared to the source reviews) remains.
This is the case across both prompts, and despite variations in sampling.

G.2 INFLUENCE OF LENGTH ON SENTIMENT SCORES

Figure 32: Average sentiment score is agnostic of length of reviews.

In Appendix B.1, we state that our book-reviews curation process involved discarding those reviews
less than 300 words. From Figure 32, we find that there is little correlation between a sample’s
length and sentiment i.e., no biases are introduced by discarding shorter samples.

G.3 MORE TRAINING DATA CONTROL & CONNECTIONS TO MONOCULTURE

While one might be skeptical about the assumption that book-reviews are present in the training
data, circumventing this skepticism would involve (a) full knowledge of the training dataset, and (b)
picking a downstream generative task that is influenced only one sub-component of dataset (in some
provable manner). However, satisfying both of these requirements is challenging because:

• Should we have full control of the training dataset, training our own model from scratch
remains prohibitively expensive.

• Open source models, where the training set is known, demonstrate extremely low-
performance on the tasks we perform in this paper: for example OLMO is incapable of
generating acceptable coding solutions, or reviews that are coherent in a consistent/reliable
manner.

We begin by obtaining a new, unseen dataset (denoted src): We filter out books published af-
ter October 1, 2023 from the GoodReads dataset12. In this dataset, a majority of the book (72
out of 79) come with 5 reviews and the remaining books have fewer reviews. We thus retain
the 72 books with 5 reviews, and compose a dataset of 360 samples. We then instruction-tune
Llama-13b (both the pre-trained and chat versions) using the aforementioned dataset. The tem-
plate we used was {‘‘instruction’’: ‘‘Write a book review for the book

12https://www.kaggle.com/datasets/dk123891/books-dataset-goodreadsmay-2024
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(a) Prompt 1 (b) Prompt 2

Figure 33: Even with full control of the fine-tuning dataset, monoculture persists.

titled {title}’’, ‘‘response’’: ‘‘{review}’’}. We perform parameter effi-
cient fine-tuning (LoRA dimension=4) and fine-tuned for 3 epochs with learning rate=10−3 and
batch size=2. We ensured that the perplexity (measured on “wikitext-2-raw-v1”) of the model after
fine-tuning does not increase a lot, to avoid overfitting.

We then proceed to generate book-reviews for the aforementioned books, and measure if the di-
versity of sentiment has changed. Our results, in Figure 34 suggest that with either the pre-trained
model (PT) or the aligned/chat (Chat) model as the initialization, fine-tuning on the curated small
review dataset resulted in the average sentiment becoming more positive after fine-tuning on the
pre-trained model (but still being close to the data distribution), and the average sentiment becom-
ing more negative after fine-tuning on the Chat model. The implication of this experiment is that
while fine-tuning may provide some reprieve, RLHF skews the sentiment significantly. Thus, mono-
culture still persists in this case.

G.4 EVIDENCE OF GOODREADS IN COMMONCRAWL

Figure 34: Screenshot of goodreads.com being present in the common crawl index
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Baack (2024) highlight that Llama v1 is trained on CommonCrawl13. Upon closer inspection (using
the common crawl interface), one can see that the goodreads.com website and its associated URLs
are part of this dataset (see Figure 34). This suggests that the training data of Llama v1 includes
book reviews from the GoodReads dataset. While Baack (2024) note that there is limited visibility
into the training dataset for Llama 2, we can safely assume that it was built atop of the data collected
for Llama 1, including CommonCrawl. Thus, we would like to stress that the experiments in our
paper are valid.

13https://index.commoncrawl.org/

40

https://index.commoncrawl.org/

	Introduction
	Defining Generative Monoculture
	Measuring Generative Monoculture
	Data Curation
	Attribute Extraction
	Metric Calculation

	Mitigating Generative Monoculture
	Experimental Setup
	Generating Book Reviews
	Generating Code Solutions

	Results and Takeaways
	Related Work
	Conclusion and Limitations
	Sampling Parameters
	Additional Details: Book Reviews
	Construction of the Source Dataset
	Names of the Celebrities Used in Prompt 2
	Text Processing for Analyzing Wording Choice

	Additional Results: Book Reviews
	Filtered-out Reviews
	Generation Results at Higher Randomness
	Topic Shifts
	Pre-trained Model
	Results of OpenAI models
	Mitigation via Temperature Decay
	Evaluation on Additional Prompts
	More Results

	Additional Details: Coding
	Restriction to Level-A Problems
	Correctness Testing: Autojudge with Testcases
	Measuring Accuracy
	Measuring Runtime Efficiency
	Prompting GPT-3.5 to Generate Code Summary (both Text Descriptions and Categorical Values)

	Additional Results: Coding
	Examples for Plagiarism Scores
	Attempts on Varying Prompts
	Human Annotations for the Quality of LLM Summary
	Failure Results with Open-Source Models
	A Complete Set of Results for the Experiments on GPT-4
	Claude

	Compute Resources and Data Licenses
	Compute
	Licenses

	Extended Investigations
	Influence of Model Size on Monoculture
	Influence of Length on Sentiment Scores
	More Training Data Control & Connections to Monoculture
	Evidence of GoodReads in CommonCrawl


