
Are AlphaZero-like Agents Robust to
Adversarial Perturbations?

Li-Cheng Lan1 Huan Zhang2 Ti-Rong Wu3

Meng-Yu Tsai4 I-Chen Wu3, 4 Cho-Jui Hsieh1

1UCLA 2CMU 3Academia Sinica, Taiwan 4NYCU

lclan@cs.ucla.edu huan@huan-zhang.com tirongwu@iis.sinica.edu.tw
adam0923686343@gmail.com icwu@cs.nctu.edu.tw chohsieh@cs.ucla.edu

Abstract

The success of AlphaZero (AZ) has demonstrated that neural-network-based Go
AIs can surpass human performance by a large margin. However, do these superhu-
man AZ agents truly learn some general basic knowledge that can be applied to
any legal state? In this paper, we first extend the concept of adversarial examples
to the game of Go: we generate perturbed states that are “semantically” equivalent
to the original state by adding meaningless actions to the game, and an adversarial
state is a perturbed state leading to an undoubtedly inferior action that is obvious
even for amateur players. However, searching the adversarial state is challeng-
ing due to the large, discrete, and non-differentiable search space. To tackle this
challenge, we develop the first adversarial attack on Go AIs that can efficiently
search for adversarial states by strategically reducing the search space. This method
can also be extended to other board games such as NoGo. Experimentally, we
show that both Policy-Value neural network (PV-NN) and Monte Carlo tree search
(MCTS) can be misled by adding one or two meaningless stones; for example,
on 58% of the AlphaGo Zero self-play games, our method can make the widely
used KataGo agent with 50 simulations of MCTS plays a losing action by adding
two meaningless stones. We additionally evaluated the adversarial examples found
by our algorithm with amateur human Go players, and 90% of examples indeed
lead the Go agent to play an obviously inferior action. Our code is available at
https://PaperCode.cc/GoAttack.

1 Introduction

AlphaZero (AZ) [1] like algorithms have achieved state-of-the-art in Go – one of the most challenging
games for artificial intelligence. The success of Go AIs like AZ can be contributed to the use
of Policy-Value Neural Networks (PV-NN), and Monte Carlo tree search (MCTS) [2, 3]. Silver
et al. [4] demonstrated that pure PV-NN can achieve human professional level (Elo 3055) even
without any lookahead using MCTS. It has been widely believed that AZ-based agents significantly
outperform humans, and even professional Go players can often learn novel strategies from these Go
AIs. However, we question if the agents truly learn some basic but general knowledge that can be
applied to any legal state.

On the other hand, it is well-known that deep neural networks can be easily fooled by “adversarial
examples”, which are created by adding small and semantically invariant perturbations to benign
inputs [5, 6]. This naturally leads to the following question: are AZ-like Go agents robust to
adversarial perturbations? Although adversarial examples have been well-studied in many applications

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



(a) KataGo plays black at E1 ♦
before perturbation.

(b) KataGo plays black at E11 ♦ after adding
two meaningless stones marked as 1 and 2.

Figure 1: Fig. 1b is an adversarial state perturbed from an AlphaGo Zero self-play record (Fig. 1a).
After adding two meaningless stones (marked as 1 and 2), a well-trained KataGo agent with 50
MCTS simulations will switch its best action from playing black at ♦ (E1) to ♦ (E11). Even amateur
human players can tell that playing at ♦ is wrong since playing black at ♦ can kill all the white
stones marked with triangles. However, confused by the adversarial perturbation, KataGo ends up
playing ♦ to save the four black stones marked with squares and gives up the opportunity to occupy
much more territories by playing at ♦.

of deep neural networks, they have not been thoroughly explored in Go agents because of several
challenges. First, the states of Go are discrete. We cannot directly apply gradient-based attacks in
this setting, and efficiently searching a large combinatorial space is challenging. Second, Go agents
use MCTS to systematically search for the best action, which can be much harder to mislead - in fact,
an agent would be able to always find the best action by enumerating all possible outcomes if infinite
steps of MCTS simulations were allowed. Third, unlike computer vision and NLP, humans can not
serve as the oracle for superhuman Go agents. Hence, even if the target agent does make a mistake,
we may not be able to identify it. Because of these challenges, adversarial attack algorithms that have
been developed for computer vision [6], NLP [7, 8], and reinforcement learning [9, 10, 11, 12] can
hardly be applied to attacking Go agents.

In this paper, we first give the definition of adversarial perturbations for Go. We restrict the adversary
to perturb the state (game board) by only playing one or two “meaningless” actions that do not affect
the win rate and the game’s best action. That is, the perturbed state is “semantically similar” to the
original one. An adversarial example is defined as a perturbed state leading to an undoubtedly inferior
action from the Go agent that is obvious even for Go beginners. Then, we proposed a novel method
to systematically find adversarial states where the AZ agents perform much worse than usual. We
carefully designed the constraints on perturbed states during the search so that they are semantically
similar to the original states and are also easy enough for human players to verify the correct move.
If a Go agent cannot find the correct move for this perturbed state, we say we found an adversarial
example. Finally, we test AZ-based agents with thousands of these perturbed states. Surprisingly, we
find that agents make trivial mistakes on these adversarial examples, even when MCTS is used.

Fig. 1b shows one of the perturbed states found by our algorithm that AZ agents will fail. B19 and P1
(marked in purple) are the two “meaningless” stones we added as adversarial perturbations. Adding
them won’t change the turn player’s best action and win rate. However, those actions can mislead
KataGo [13], a well-known Go agent with 50 MCTS simulations, to “forget” to kill the white stones
marked with squares (action A) and instead want to save the black stones marked with triangles
(action B), even if doing so will be at a big disadvantage and likely to lose the game. This mistake is
very trivial such that even amateur human players can identify it.

The contributions of this paper can be summarized below:

2



• For the first time, we reveal the vulnerability of both PV-NN and MCTS-based AZ agents. Our
proposed attack found adversarial examples (e.g., Fig. 1b) that are semantically equivalent to a
“natural” state (from a real game record) while leading to catastrophic behavior of the target agent.
The mistakes made by a super-human agent can be identified by Go amateur players.

• Our attack involves an efficient method to speed up the search of adversarial states in the large
discrete state space without relying on gradients and is usually more than 100 times faster than
brute force search.

• We conduct a comprehensive study on the robustness of four state-of-the-art public AZ agents with
six different datasets for the game of Go. By generating adversarial states with two meaningless
moves, our attack can consistently achieve over 90% success rates on PV-NNs and achieve over
58% success rates on MCTS agents with 50 simulations. Moreover, our method can also be applied
to other games: we found adversarial examples on 50% of data in our NoGo [14] experiment.

2 Background and Related Works

Terminology Games like Go can be described as a two-player zero-sum deterministic game [15]
and can be defined as a tuple ⟨S,A, T ,R⟩, where S is the state space, A is the action space,
T ∶ S ×A ↦ S is the transition function and R ∶ S ↦ {1, 0,−1} is the reward. Each game starts
from an initial state s0 ∈ S (empty board) at time 0. At the current state st, the turn-player, defined
as st.c, can play an action at ∈ A(st). In Go, players take turns placing a stone of their color on
the board. Therefore, all actions are composed of a color c and a position p, indicating placing a c
stone on p. The only exception is the pass move apass, which means the turn-player does not place
any stone (gives up on his turn). After playing action at on state st, we can get the next state by
st+1 = T (st, at). The game ends when reaching a terminal state sT , where we can determine who
wins the game and each player receives a reward. Since the games are zero-sum, the reward of the
opponent player is −R(s). For the non-terminal states, the reward is R(s) = 0 for any player.

Policy Value Neural Network (PV-NN) and Policy Value MCTS (PV-MCTS) PV-NN is proposed
in AlphaGo Zero paper [4]. PV-NN takes a state s as input and outputs a value v(s) and a policy p(s).
Value 0 ≤ v(s) ≤ 1 is a scalar from 0 to 1 that indicates the estimated win-rate of current state. For
example, v(s) < 0.5 means that PV-NN believes the turn-player of state s is losing. Note that if the
value output range is −1 ≤ v(s) ≤ 1, the win-rate can be calculated by (v(s)+1)/2. Policy p(s) is a
vector that indicates each action a’s probability 0 ≤ p(a∣s) ≤ 1. A high probability for an action, e.g.,
p(a∣s) > 0.9, indicates that the the PV-NN highly recommends action a at state s. Besides PV-NN,
AlphaGo Zero [4] also adopted Policy Value MCTS (PV-MCTS) to choose the best action. Unlike
MCTS, PV-MCTS uses the value output of PV-NN instead of Monte Carlo simulation to evaluate the
selected state values. Moreover, PV-MCTS utilized the policy of PV-NN to narrow down the search
space with the PUCT algorithm [16]. The search efficiency of PUCT highly depends on the prior
probability P (s, a∗) of best action a

∗. Therefore, if the root’s prior policy is incorrect, the search
efficiency will drop dramatically. Take Fig. 1b as an example; even after 50 MCTS simulations,
KataGo still hasn’t discovered action E1 ♦ is a good action because the prior probability of action
E1 ♦ is too small. As more states have been evaluated by PV-NN, PV-MCTS can provide stronger
policy π(s), value V (s), and action values Q(s, a) of a given root state s.

Adversarial Example It has been observed that many neural networks used in computer vision,
NLP, and reinforcement learning are vulnerable to adversarial examples [5, 17, 9]. Traditionally, an
adversarial example, created by minimally modifying a natural example, is semantically equivalent
to the original natural example for humans but can make the target model produce a totally different
output. Note that the perturbed state should also look natural [18]. To define an adversarial example
for a particular task, one has to define a reasonable perturbation set around original examples and
design an algorithm to find an example within the set that leads to incorrect behavior of the model
(e.g., misclassification). In computer vision, the perturbation set is usually defined as a small ℓp
norm ball, as small perturbations to images are usually imperceptible to humans. And due to the
continuous search space, existing image attacks often rely on gradient-based optimization to find
adversarial examples [19, 20, 21, 22]. On the other hand, for discrete models like text, there exists
multiple definitions for the perturbation set such as synonym substitution [23, 24], edit distance [25],
or language model-based scores [26]. For example, if the maximum edit distance is one, given
a natural sentence, "This movie had terrible acting." an adversarial example can be "This movie

3



had awful acting." where we only change one word in the sentence to its synonym. Note that such
examples are not humanly imperceptible, and the synonyms are defined by humans. Due to the
discrete nature of the text domain, finding an adversarial example leads to a combinatorial search
problem, and several attacks have been proposed for this [27, 28, 23]. However, none of these attack
methods can be directly applied to attack AZ agents for the following reasons: 1) Unlike the image
or NLP domain, the semantically invariant perturbation in Go is difficult to define (see Sec. 3.1). 2)
Unlike other applications, the AI’s ability is much stronger than humans in Go, so it is non-obvious
how to find adversarial examples that can be understood by humans. Although some recent works
have studied perturbations to states [12], actions [29], observations [9, 10, 30, 31] or rewards [32] in
the reinforcement learning setting, none of them consider discrete input domains like Go or against
super-human planning based agent like AZ agents.

Studies on the weaknesses of Go agents Go AI agents have several weaknesses. First, it is
well-known that the existence of several patterns such as ladders and long dragons will confuse
the agents. This is due to the local nature of convolutional neural networks (CNN). Second, when
researchers use Go AI to study Tesuji problems [33], they observe that some of the problems require
millions of simulations to find the correct action. Third, some researchers [13] find some states that
the agent will ignore the best action (prior probability almost equal to zero), which sometimes refer
as “blind spots” of the agents. Our work is different from those works in the following ways. First,
our adversarial examples can find bugs at which the model (agent) is used to be good. The mistakes
caused by ladders and long dragons are some bugs the model will make in normal states. Second, we
find the adversarial examples automatically and systematically. We show that ≥ 58% of the games
we selected exist adversarial examples that normal humans can be better than state-of-the-art AIs. By
finding “bugs” efficiently, researchers may have enough training data to improve their AIs.

3 Method

Given a state s, a target agent (e.g., PV-NN or AZ agents), and a much weaker verifier (e.g., humans),
our goal is to find an adversarial example s

′ that satisfies the following conditions:

C1 The perturbed state s
′ is very close to the original state s in terms of ℓ0 distance.

C2 The perturbed state s
′ is semantically equivalent to s, and the verifier can verify that.

C3 The target agent performs correctly on s but wrongly on s
′, and the verifier can identify that.

Both C1 and C2 define a set of perturbed states, B(s), for a given natural state s. The problem
of finding adversarial examples is then equivalent to finding a s

′
∈ B(s) that satisfies the success

criterion (C3). In previous image attacks, B(s) is a small ℓp ball [6, 19] and in text attacks B(s) is
usually defined by word substitutions with synonyms [23]. However, in our case, the definition of
B(s) is much more sophisticated and computationally expensive to check.

The existence of a much weaker verifier is to define the adversarial examples we want to find. We
hope that the target agent’s mistake on the adversarial examples is verifiable to the verifier. Hence, the
playing strength of the verifier determines the difficulty of finding adversarial examples. The weaker
the verifier is, the harder it is to find an example. In addition, our method finds the s

′ without the
help of verifiers since verifiers, like humans, are hard to include in an automatic process. Therefore,
we need to carefully design the B(s) and the success criterion so that the s

′ satisfies the conditions
automatically. In the following, we will discuss how to define B(s) and the success criterion in
Subsections 3.1 and 3.2, respectively. A search algorithm will then be introduced in Subsection 3.3 to
speed up the search.

3.1 Defining the Perturbation Set

We define the perturbation set B(s) of a given state s based on conditions C1 and C2. For C1, we
use actions as perturbation and the number of actions we added as distance. In our experiments, we
set distance ℓ0 as 2. Since each state in Go can be represented by its trajectory (a list of actions),
the perturbed state s′ can be presented as a0, a1, . . . , at−1, b0, b1, where a0, . . . , at−1 is the trajectory
of s and b0, b1 are the extra actions. For 1STEP attack, one of the b0, b1 has to be the pass action
(denoted as apass). This means we place an additional stone on the board without changing the turn
player. On the other hand, for 2STEP attack, both b0, b1 are not the pass action, which means we add

4



one black and one white stone on the board. We do not include states created by replacement like
word substitution in text attacks since there are no similar actions in Games like Go.

For condition C2, we aim to maintain the semantic meaning after perturbation. Since there is no
ground truth in Go, we resort to an “examiner” agent to verify the equivalence of states. The
examiner should be able to provide an accurate value V (s), the policy π(s), and the action values
Q(s, a) for a given state s. For example, the examiner we used is the strongest PV-MCTS agent that
runs 800 simulations. To distinguish the output of the examiner and the target agent, we use v(s) and
p(a∣s) as the output of the target agent. With the examiner, we define two states s, s′ are semantically
equivalent if the two states have the same turn players and similar winrate according to the examiner,
which is shown in the following equation.

s.c = s
′
.c and ∣V (s) − V (s′)∣ ≤ ηeq, (1)

where s.c denotes the turn player (c for color) of state s and ηeq is the threshold used to define that
the win rate is close.

Although the examiner is normally better than the target agent, it is still not perfect. The examiner
may also make a low-level mistake on s

′ since the PV-NN it uses is wrong on s
′. To improve the

examiner on s
′, we provide it with its best action a

∗
s on s as a hint. That is, we evaluate the examiner

value of s′ by forcing the examiner to evaluate the state T (s′, a∗s ). Since T (s′, a∗s ) has a different
turn player, so the new V (s′) is

max(V (s′), 1 − V (T (s′, a∗s )). (2)

Note that one can provide more hints to the examiner by forcing it to consider more actions or even
paths that are reasonable in s. This method makes it possible to find adversarial examples even if the
target agent is the same as the examiner.

Besides ensuring s, s
′ to be semantically equivalent, such equivalence should be verifiable to the

much weaker verifier like humans. Unlike standard image or text applications where humans are
treated as oracles, the AI agents for Go are much more powerful than a human. When the game is too
complicated, humans cannot even tell who has the advantage. Therefore, even though both states s
and s

′ are semantically equivalent (Eq. 1) to the examiner, the verifier may not be able to tell.

Fortunately, we observe that humans can identify most of the “meaningless” actions which do not
help their turn players to gain any benefits. Here, we define an action as meaningless if its effect on
the winrate is equal to playing a pass action. The following is the formal definition:

∣V (s) − V (F (s, a))∣ ≤ ηeq, (3)

where F (s, a) ∶ S × A ↦ S returns the state after playing action a on state s without changing
the turn player by playing an additional pass action (Appendix F). Based on this definition, all the
actions that satisfy Eq. 1 in the 1STEP attack are already “meaningless” since one of b0, b1 is a pass
action. Therefore, humans can verify that s and s

′ are semantically equivalent in the 1STEP attack.
For 2STEP attack, we require both b0, b1 to be meaningless (Eq. 3). In this way, humans can verify
that s and s

′ are semantically equivalent by checking that both b0 and b1 are meaningless.

In addition, in the game of Go, we found that most meaningless actions are in one of the player’s
territories (Appendix E). Also, humans can usually verify such actions faster. Therefore, in the
experiments of Go, we further restrict the perturbation action’s position a.p within one of the
territories a.p ∈ TerrW ∪ TerrB , where TerrW and TerrB is the territory of each color. The results
show that we can find adversarial examples even with this stronger constraint. See Appendix G for
the comparison without the territory constraint.

3.2 Success Criteria of Adversarial Attack

Next, we define our attack’s success criteria (C3). We consider two types of attacks: value attacks
and policy attacks. For value attack, the goal is to change the prediction of the target agent’s value
network. Therefore, we define the attack to be successful if

∣v(s) − V (s)∣ ≤ ηcorrect and ∣v(s′) − V (s′)∣ ≥ ηadv. (4)

5



The first criterion ensures that the target agent produces the correct value on the original state s, and
the second criterion ensures that the target value network becomes incorrect after the perturbation.
Note that we already enforce V (s) ≈ V (s′) in Subsection 3.1, so (4) implies that the perturbation
will change the target agent’s value but not the examiner’s value. Constants ηcorrect and ηadv are the
thresholds to define “correct” and “wrong” in C3. For example, if we want to find an example that
PV-NN misclassified the winner of a state, we can set ηadv = 0.5. We can further increase ηadv if
we want the target’s output to be wrong by a larger margin. In addition, the verifier can easily tell
that target is wrong since s, s′ are supposed to have the same winrate (C2) but v(s) and v(s′) are
different.

For policy attack, we aim to fool the policy output. However, unlike classification settings, there
is more than one best action for a state. Therefore, even when the perturbation can significantly
change the output policy, it doesn’t mean the new policy is incorrect. We thus have to define the
successfulness of the policy attack by checking whether the value (computed by the examiner) will
be changed after playing the predicted action. With these in mind, we say the policy attack leads to a
“wrong” move if

∣Q(s, a∗s ) − V (s)∣ ≤ ηcorrect and ∣Q(s′, a∗s′) − V (s′)∣ ≥ ηadv (5)

where a
∗
s = argmaxa(p(a∣s)) and a

∗
s′ = argmaxa(p(a∣s′)) are the target agent’s recommended

actions on s and s
′. The first criterion in (5) ensures that the target agent can predict a proper

action for the original state s, and the second criterion checks whether the target agent will output a
significantly worse action in the perturbed state s

′. With Eq (5), although the examiner can verify
that the target agent plays a losing action on the perturbed state; the verifier may be uncertain that
the action a

∗
s′ is truly bad. Luckily, in our qualitative study, by providing a

∗
s to humans as a hint,

humans can immediately tell that a∗s is much more important to play than a
∗
s′ in the state s′ and certify

that the target agent is wrong on most pairs (s, s′) we found. Hence, we add two more restrictions:
∣Q(s′, a∗s ) − V (s′)∣ ≤ ηeq, and ∣Q(s, a∗s′) − V (s))∣ ≥ ηadv. These restrictions ensure that a∗s is a
good action and a

∗
s′ is a bad action for both s and s

′, so that the verifier can use them as an anchor.

3.3 An Efficient Attack Algorithm

Algorithm 1 Two-Step Value Attack

1: Input: a game s1, s2, . . . , sT , target agent t,
examiner e

2: for i = T to 0 do
3: if ∣e.V (si) − t.v(si)∣ > ηcorrect then
4: continue
5: cands = getMeaninglessActions (e, si)
6: for b0 in cands[0] do
7: for b1 in cands[1] do
8: s

′
= T (T (si, b0), b1)

9: if ∣t.v(s′) − e.V (si)∣ ≥ ∣ηadv − ηeq∣
then

10: if ∣t.v(s′) − e.V (s′)∣ ≥ ηadv and
∣e.V (s) − e.V (s′)∣ ≤ ηeq then

11: return s
′

12: return NULL

Like other adversarial attacks on reinforcement
learning [9, 10], we apply our attack to perturb
a state in a given game since it only takes one
mistake for an agent to lose a game. Formally,
given a game G = {s0, s1, . . . , sT }, if we can
find one pair of (si, s′i), where s

′
i is an adver-

sarial example of si, then we have successfully
attacked the agent on that game. We will first
apply the 1STEP attack to a game, and if it fails,
we then conduct the 2STEP attack.

Since the search space is countable, a naive
way to find an adversarial example is to con-
duct a brute-force search to check all states in
the search space. However, this will lead to
very high complexity, and the search cannot be
finished in practice. Taking the 2STEP attack
as an example, let T ≈ 300 denote the game
length, N ≈ 150 denote the average number of
actions for a state, and M ≥ 800 denote the sim-
ulation count of the examiner. Then, we need
O(TNM) time to obtain the search space for
all B(si), i ∈ {0, 1, . . . , T} by checking which actions are meaningless. Furthermore, assume that
there are averagely N̄ meaningless moves for each state.

Then, we need O(TN̄2
M) to check the success criteria of each perturbation. Note that in both stages,

the running time of the examiner will dominate, as we need to run the examiner with much more
MCTS steps. Hence, we propose the following two approaches to reduce the search complexity.

6



Table 1: Our attack results on 4 Go agents, av-
eraged over all datasets. EXECUTED NUM
shows the average number of target and exam-
iner calls for the attack, and SPEEDUP indicates
the speedup of the proposed method over the
brute-force search. High attack success rates are
observed in all settings.

SUCCESS RATE EXECUTED NUM

AGENT 1STEP 2STEP TARGET EXAMINER SPEEDUP

VALUE
ηadv = 0.5

KATAGO 0.99 1.00 6152 68 80
LEELA 0.90 0.98 37533 182 163

ELF 0.92 1.00 11108 108 90
CGI 1.00 1.00 40 2 14

VALUE
ηadv = 0.7

KATAGO 0.86 0.94 44638 299 125
LEELA 0.70 0.84 96134 518 150

ELF 0.65 0.87 42503 398 94
CGI 1.00 1.00 45 2 15

POLICY
ηadv = 0.5

KATAGO 0.70 0.92 128228 666 155
LEELA 0.92 0.97 17218 118 123

ELF 0.93 0.97 16387 113 122
CGI 0.87 0.96 16495 103 133

POLICY
ηadv = 0.7

KATAGO 0.55 0.82 231895 707 232
LEELA 0.75 0.93 36438 150 186

ELF 0.77 0.88 31258 159 157
CGI 0.75 0.89 24915 139 146

Table 2: Our attack results on 6 datasets, aver-
aged over all Go agents. EXECUTED NUM
shows the average number of target and exam-
iner calls for the attack. The first five datasets
are described in experiment settings. FOX is the
dataset of non-professional players.

SUCCESS RATE EXECUTED NUM

GAMES 1STEP 2STEP TARGET EXAMINER

VALUE
ηadv = 0.7

ZZ 0.78 0.89 14691 316
ZM 0.90 0.95 12977 197
MH 0.60 0.81 173844 663
LG 0.85 0.95 12650 161

ATV 0.88 0.95 14988 185
FOX 0.83 0.94 53792 213

POLICY
ηadv = 0.7

ZZ 0.57 0.82 33314 502
ZM 0.84 0.94 13374 178
MH 0.51 0.80 227202 258
LG 0.84 0.96 52055 274

ATV 0.75 0.88 79688 232
FOX 0.75 0.87 141120 225

First, we reduce the time of finding meaningless actions by the following observation. If an action a
is a meaningful action (not meaningless) of state st, then it is likely that a is also a meaningful action
of state st−1. Intuitively, if an action a is a meaningful action at st, it means that a can occupy some
extra territory that is not occupied at st. Hence, if a position is not occupied in st, it is likely that the
position is not occupied in st−1 and can be occupied by action a too. So action a is also a meaningful
action for st−1. We formally prove this property under some assumptions in Appendix A. Based on
this observation, we run the search in a backward manner from the final state sT to the initial state s1.
Once an action is identified as meaningful at state st, we do not need to check it again on any state
{si ∶ i < t}. This will significantly save the computational time to enumerate B(s). The details of
getting meaningless actions are shown in Appendix C.

Second, for the part of checking the attack success criterion, we derive a bound to filter out unsuc-
cessful perturbations quickly. Taking the value attack as an example, checking (1) and (4) requires
running the examiner on the perturbed state s

′, which is the bottleneck of the algorithm. To reduce
this cost, we show that the condition of (1) and (4) implies

∣v(s′) − V (s)∣ = ∣(v(s′) − V (s′)) − (V (s) − V (s′))∣
≥ ∣v(s′) − V (s′)∣ − ∣V (s) − V (s′)∣
≥ ηadv − ηeq. (6)

Since (6) only requires running examiner on the original state s instead of s′, we can check (6) first
before checking (1) and (4). We observe this step can filter out more than 99% of the s

′.

The overall attack algorithm is presented in Algorithm 1. The input includes a game s1, s2, . . . , sT , a
target agent t, and an examiner agent e. As mentioned before, the search is conducted in a backward
manner from sT back to s1 (line 2). For each si, we first check whether si is too hard for the target
(line 3). If so, we will skip this state (line 4). We then compute all the meaningless actions of state si
using the examiner with the efficient implementation mentioned above and store the meaningless
actions separately in cands[0] and cands[1] according to their color (line 5) as the candidates of
perturbation. We then check whether each 2STEP perturbation will lead to a successful attack (lines
9-11). Note that line 9 is based on (6), and the examiner does not need to compute e.V (si) again since
it has evaluated it on line 3. For policy attack, we can skip all the states that are losing V (s) < ηadv
since for those states, there is no correct answer to attack. (More details in Appendix B).

4 Experiments

Experiment Settings We evaluate our method on 19x19 Go. The four open-source programs we
used are KataGo [13], Leela Zero [34], ELF OpenGo [35], and CGI [36]. The strengths of these

7



5 25 100 400 1600

0

0.25

0.5

0.75

1

KataGo 20 blocks simulation count

A
tta

ck
su

cc
es

s
ra

te

VALUE 1STEP
VALUE 2STEP
POLICY 1STEP
POLICY 2STEP

Figure 2: The attack success rate of ηadv = 0.7 on
datasets that are generated by KataGo 40 blocks
with 800 simulations vs KataGo 20 blocks with
different numbers of simulations.

Table 3: KataGo with different simulations on ZZ
dataset. EXECUTED NUM shows the average
number of target and examiner calls for the attack.

SUCCESS RATE EXECUTED NUM

SIM 1STEP 2STEP TARGET EXAMINER

VALUE
ηadv = 0.5

1 1.00 1.00 1016 41
5 0.89 0.95 4454 2322

10 0.89 0.95 6501 3147
25 0.84 0.89 18516 13903
50 0.53 0.58 76426 42974

POLICY
ηadv = 0.5

1 0.84 1.00 18347 869
5 1.00 1.00 3309 1318

10 0.95 1.00 6666 2662
25 0.79 1.00 12466 5487
50 0.21 0.68 89512 41702

AI agents are KataGo ≫ Leela > ELF = CGI, where KataGo has more than 99% winrate against
Leela. We use KataGo (40 blocks) with 800 simulations as our examiner. For the thresholds, we set
ηeq = 0.1, ηcorrect = 0.15, since after testing several different ηeq and ηcorrect values, this pair leads
to more human-understandable results. For the datasets, we selected 99 games from five different
sources, which are AlphaGo Zero 40 blocks training self-play record (ZZ), AlphaGo Zero vs AlphaGo
Master (ZM), AlphaGo Master vs Human champions (MH), the final games of LG Cup World Go
Championship (2001-2020) (LG), and the final games of Asian TV Cup (2001-2020) (ATV). Note
that the thinking time for ATV Cup is much shorter than LG Cup, so we expect them to reflect human
games with different strengths. All the datasets have 20 games, except ZZ has 19 games since the
first game is played by two random agents.

Results on Different PV-NNs We first evaluate the robustness of the four agents’ PV-NNs since
PV-MCTS is much slower. The results are shown in Table 1, where we attack each agent’s PV-NN
with both 1STEP and 2STEP attacks with various ηadv. We also present the average number of
evaluations required for the target agent and the examiner agent to show the speedup. The first two
groups in Table 1 demonstrate the robustness of these agents against the value attack. Group one
(ηadv = 0.5) shows that even the 1STEP attack can achieve above 90% success rate on all agents and
mostly achieve 100% on the 2STEP attack. For those that have the same attack success rate, we can
still compare the attack difficulties by the number of target evaluations. For example, although the
2STEP success rates of KataGo, ELF, and CGI are all 100%, the number of states that they have
visited is totally different. For CGI, we are able to find an adversarial example after visiting 40 states,
while ELF requires visiting 11, 108 states. Hence, we conclude that Leela > ELF > KataGo > CGI
in terms of their robustness against value attack when ηadv = 0.5 and ηadv = 0.7. Interestingly, this
ranking does not match the playing strength of each agent. The third and fourth groups of Table 1
show the results of the policy attacks. In general, we observe that it is harder to attack the policy than
the value. Interestingly, the ranking of four agents in terms of their policy’s robustness is KataGo ≫

Leela > ELF ≈ CGI, which aligns with the playing strengths of those agents.

In Table 1, we also demonstrate our algorithm’s speedup in the SPEEDUP column compared to the
brute force algorithm. In the brute force algorithm, the examiner must evaluate all the states the target
agent has evaluated. Hence, the speed up is almost equal to (ntarget × nMCTS)/(ntarget + nexaminer ×
nMCTS), where ntarget and nexaminer are the numbers of states that the target and the examiner have
executed. nMCTS is the number of simulations that the examiner use for the PV-MCTS. The results
show that the proposed efficient search method is usually more than a hundred times faster than a
brute-force search, especially for harder problems that require the 2STEP attacks to succeed.

Results on Different Datasets We also study the robustness of all agents on different types of game
records. We consider the 5 datasets used in the previous subsection, plus an additional FOX 1 dataset,
to represent amateur players and see if the games played by weaker players are harder to attack

1https://www.foxwq.com/

8



19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

1
B

A

(a)

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

1

(b)

Figure 3: Adversarial example of policy attack
(a) and value attack (b) on FOX. Both examples
are 1STEP attacks with turn player white. Their
perturbation actions are marked as 1. For (a), the
agent plays B instead of A. For (b), the agent
predicts a very different winrate (> 0.9) on the
original state and the perturbed state.

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

1

A
B

2

(a)

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

1

(b)

Figure 4: Adversarial examples generated by pol-
icy attack (a) and value attack (b) that cannot be
easily verified by humans. For (a), it is hard for
humans to verify that playing white on B is a bad
action even if A is provided. For (b), perturba-
tion action marked as 1 does help white get some
benefits, but not enough to change the winrate.
Hence, it is meaningless. However, humans can
not verify it unless they thoroughly calculate both
sides’ territories.

since those games are easier for humans to understand. The results in Table 2 show that PV-NNs are
vulnerable to all levels of games, regardless of AI agents, professional players, or non-professional
players. We observe that the AlphaGo Master vs. Human champions (MH) dataset has the lowest
success rate on both policy and value attacks compared to other datasets. Since AlphaGo Master
is much stronger than human champions (60 ∶ 0), we hypothesize that "when one player is much
stronger than the other, the winner of the game may be too obvious and easy for agents to judge."
To support this hypothesis, we generate games of KataGo 40 blocks (K40) with 800 simulations
vs. KataGo 20 blocks (K20) with different simulations to simulate games played by players with
different strengths. Note that K20 is already much weaker than K40. Fig. 2 shows the results of
attacking KataGo’s PV-NN with those games. We can see that when the games have larger gaps,
both the policy and value output of KataGo’s PV-NN will be harder to attack. This suggests that the
playing strength between game players will likely affect the difficulty of finding adversarial examples.

Robustness of PV-MCTS In this paragraph, we investigate the robustness of PV-MCTS with
different simulations. Since PV-MCTS is much slower than PV-NN, we only test KataGo on the
AlphaGo Zero self-play (ZZ) dataset with ηadv = 0.5. The results are shown in Table 3. The first
column is the simulation count of KataGo. When the simulation equals one, it is the same as using
PV-NN directly. The first group shows the results of the value attack. Even with 25 simulations, the
2STEP success rate is still 89%. For group two, we observe that the policy of small simulations is
even less robust than PV-NN’s policy. For example, when the simulations of KataGo is 10, the 1STEP
success rate is 95%, while the policy of PV-NN is 84%. Therefore, we conclude that with a small
number of MCTS simulations, the agent will not be able to recover from the bad PV-NN outputs
and will still be fooled by adversarial examples. However, when using more MCTS simulations, the
attack success rates will still drop since the agent has more chances to discover correct actions.

Quality of adversarial examples Although the AZ agents do make mistakes on the adversarial
examples we found, we still need to make sure that those mistakes are so low-level that even humans
can verify them. Hence, we randomly selected 100 examples from all the experiments and conducted
the following two human studies to see how many percent of mistakes are human verifiable mistakes.
Fig. 3 4 show four examples that we samples, and more can be found in Appendix H. In the first
study, we examine whether humans can verify that perturbed state s

′ is semantically equal to the
original state s. For each adversarial example, we present both the original board and the additional
stones to three amateur human players (with level 2K, 3D, 5D) who served as verifiers. For 90% of
those perturbations, they can certify that the perturbations are meaningless with a short thinking time.
Fig. 4 (right) shows one of the fail examples, where the meaningless action J3 seems meaningful to

9



humans since it can capture the black stone J2. However, with a longer thinking time and discussion
with each other, verifiers can understand that the rest 10% of actions are meaningless.

In the second study, we examine whether the “wrong” actions resulting from our policy attack can be
verified by humans. Similar to the previous experiment, we present the original board, original action,
perturbed board, and the action after perturbation to the examiners. When the target agent is a PV-NN,
humans can identify 100% that the recommended actions after perturbation will change the result
from winning to losing. However, for the adversarial examples where the target is PV-MCTS agents,
only 70% of the recommended actions after perturbation can be identified as wrong by humans. The
main reason is that as PV-MCTS agents are able to lookahead, they tend to avoid actions that are
clearly wrong, so the errors become more subtle to humans. Fig. 4 (left) shows one of the states,
where the white should play at A to save the stones marked with squares, but with two meaningless
moves added the PV-MCTS agent with 100 simulations will play at B. Although after playing B all
the stones marked with squares will be dead, it is hard for humans to verify the outcome of this play.

Agents are sensitive to the ordering of actions in the trajectory Finally, after viewing those
adversarial examples, we find that the policy attack succeeds often because the target agents are too
reliant on the information of the last action. For example, if KataGo knows the last action of Fig. 1b
besides the actions we add is white playing E3, even PV-NN knows that it needs to play E1. Based on
this observation, we can improve the robustness of PV-NNs using the following method. Given a state
s with trajectory a0, a1, . . . , at, we define an augmented state s̄ as a0, a1, a2, . . . , at−1, at, at−2, at−3.
If s̄ is a legal state, we can define a robust policy pr(a∣s) = (p(a∣s) + p(a∣s̄))/2. With this method,
PV-NNs can evaluate the state s with different actions being the last. We evaluated this method on
the same setting as Table 3 (attacking KataGo’s PV-NN with ZZ dataset and ηadv = 0.5). The success
rate of 1STEP and 2STEP policy attacks dropped to 58% and 89%, even better than the original
PV-NN and PV-MCTS with 25 simulations.

Experiments on the game of NoGo Our “action perturbation” method can also be used to find
severe bugs automatically on other games by removing the territory constraint. We use the following
9x9 NoGo [14] experiments to demonstrate it. We use an AZ agent [37] with 800 simulations as the
examiner and use its PV-NN as the target agent. Since NoGo is a game without any human experts,
we use a traditional MCTS agent[38] with 1000 simulations as the weaker verifier. Note that the
target agent has a 100% winrate against the verifier in 1000 games. Intuitively, the target network
will not make a critical mistake that the verifier will not make. However, on 20 self-play games of
the target network (the average search space is about 10000), 50% of the games exist adversarial
policy examples with ηadv = 0.5 that the verifier can verify. Moreover, our proposed efficient search
method based on Eq. 6 is 307x faster than the brute force search.

5 Conclusion and Future Works

In this paper, we first properly define the perturbation set B(s) and the success criteria with the help
of an examiner, which become even more reliable after giving it some hints. The adversarial examples
we find are understandable to a much weaker verifier like amateur human players. We also proposed
a new efficient search algorithm by reducing the usage of the examiner. Our experiments found that
even the strongest AZ agent with a small number of simulations is vulnerable to our adversarial
attack. We hope our work can raise the attention that even for AI agents that surpass humans by a
large margin, they still can easily make simple mistakes that humans will not. We also hope that the
examples we found can be used to improve AI agents. For example, for Go, we have shown that the
agents are sensitive to the ordering of actions in the trajectory.

A limitation of this paper is that we are only able to identify adversarial states but haven’t been
able to guide the AZ agents to those states systematically. Potentially, this can be done by training
an agent to play against a particular target agent and incorporating some blind spots found by our
attacks. Although [39] try this after our publication, their agents cannot beat KataGo under realistic
judgments, so this is still an interesting open problem to pursue in the future.

Finally, we hope our work can serve as a generalization benchmark for Go AI. If a Go AI is generalized
enough, it should be able to provide a decent action on any state in Go, just like humans. One of the
solutions is to use the numerous examples we found to train a better agent.

10



Acknowledgments and Disclosure of Funding

This work is supported in part by NSF under IIS-2008173, IIS-2048280, and by Army Research
Laboratory under W911NF-20-2-0158.

References
[1] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur

Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science,
362(6419):1140–1144, 2018.

[2] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence
and AI in games, 4(1):1–43, 2012.

[3] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European
conference on machine learning, pages 282–293. Springer, 2006.

[4] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. Nature, 550(7676):354–359, 2017.

[5] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[6] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[7] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial training methods for semi-
supervised text classification. arXiv preprint arXiv:1605.07725, 2016.

[8] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Semantically equivalent adversarial
rules for debugging nlp models. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 856–865, 2018.

[9] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

[10] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min
Sun. Tactics of adversarial attack on deep reinforcement learning agents. arXiv preprint
arXiv:1703.06748, 2017.

[11] Jernej Kos and Dawn Song. Delving into adversarial attacks on deep policies. arXiv preprint
arXiv:1705.06452, 2017.

[12] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell.
Adversarial policies: Attacking deep reinforcement learning. arXiv preprint arXiv:1905.10615,
2019.

[13] David J Wu. Accelerating self-play learning in go. arXiv preprint arXiv:1902.10565, 2019.

[14] Martin Müller. Nogo history and competitions. https://webdocs.cs.ualberta.ca/
~mmueller/nogo/history.html (visited on 2021/03/14), 2015.

[15] Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine Learning Proceedings 1994, pages 157–163. Elsevier, 1994.

[16] Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and
Artificial Intelligence, 61(3):203–230, 2011.

11

https://webdocs.cs.ualberta.ca/~mmueller/nogo/history.html
https://webdocs.cs.ualberta.ca/~mmueller/nogo/history.html


[17] Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems.
arXiv preprint arXiv:1707.07328, 2017.

[18] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Xiaodong Song.
Natural adversarial examples. 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15257–15266, 2021.

[19] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE, 2017.

[20] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[21] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead: elastic-net
attacks to deep neural networks via adversarial examples. In Thirty-second AAAI conference on
artificial intelligence, 2018.

[22] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In International conference on machine learning,
pages 2206–2216. PMLR, 2020.

[23] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei
Chang. Generating natural language adversarial examples. arXiv preprint arXiv:1804.07998,
2018.

[24] Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. Generating natural language adversarial
examples through probability weighted word saliency. In Proceedings of the 57th annual
meeting of the association for computational linguistics, pages 1085–1097, 2019.

[25] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. Black-box generation of adversarial
text sequences to evade deep learning classifiers. In 2018 IEEE Security and Privacy Workshops
(SPW), pages 50–56. IEEE, 2018.

[26] Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. Bert-attack: Adversar-
ial attack against bert using bert. arXiv preprint arXiv:2004.09984, 2020.

[27] Qi Lei, Lingfei Wu, Pin-Yu Chen, Alexandros G Dimakis, Inderjit S Dhillon, and Michael
Witbrock. Discrete adversarial attacks and submodular optimization with applications to text
classification. arXiv preprint arXiv:1812.00151, 2018.

[28] Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, and Michael I Jordan. Greedy
attack and gumbel attack: Generating adversarial examples for discrete data. J. Mach. Learn.
Res., 21(43):1–36, 2020.

[29] Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and
applications in continuous control. In International Conference on Machine Learning, pages
6215–6224. PMLR, 2019.

[30] Chaowei Xiao, Xinlei Pan, Warren He, Jian Peng, Mingjie Sun, Jinfeng Yi, Mingyan Liu,
Bo Li, and Dawn Song. Characterizing attacks on deep reinforcement learning. arXiv preprint
arXiv:1907.09470, 2019.

[31] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-
Jui Hsieh. Robust deep reinforcement learning against adversarial perturbations on state
observations. arXiv preprint arXiv:2003.08938, 2020.

[32] Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla. Policy teaching
in reinforcement learning via environment poisoning attacks. Journal of Machine Learning
Research, 22(210):1–45, 2021.

[33] Chung-Chin Shih, Ti-Rong Wu, Ting Han Wei, and I-Chen Wu. A novel approach to solving
goal-achieving problems for board games. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 10362–10369, 2022.

12



[34] G.-C. Pascutto. Leela-zero. https://github.com/leela-zero/leela-zero, 2017.

[35] Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton,
and Larry Zitnick. Elf opengo: An analysis and open reimplementation of alphazero. In
International Conference on Machine Learning, pages 6244–6253. PMLR, 2019.

[36] Ti-Rong Wu, Ting-Han Wei, and I-Chen Wu. Accelerating and improving alphazero using
population based training. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 1046–1053, 2020.

[37] Li-Cheng Lan, Meng-Yu Tsai, Ti-Rong Wu, I Wu, Cho-Jui Hsieh, et al. Learning to stop:
Dynamic simulation monte-carlo tree search. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 259–267, 2021. URL https://ojs.aaai.org/
index.php/AAAI/article/view/16100.

[38] LC Lan. Hahanogo: An open source nogo program. https://github.com/lclan1024/
HaHaNoGo (visited on 2021/03/14), 2016.

[39] Tony Tong Wang, Adam Gleave, Nora Belrose, Tom Tseng, Joseph Miller, Michael D Dennis,
Yawen Duan, Viktor Pogrebniak, Sergey Levine, and Stuart Russell. Adversarial policies beat
professional-level go ais. arXiv preprint arXiv:2211.00241, 2022.

13

https://github.com/leela-zero/leela-zero
https://ojs.aaai.org/index.php/AAAI/article/view/16100
https://ojs.aaai.org/index.php/AAAI/article/view/16100
https://github.com/lclan1024/HaHaNoGo
https://github.com/lclan1024/HaHaNoGo


A Proof of Meaningful Action

In this section, our goal is to prove that a meaningful action b0 of the state st will also be the
meaningful action of the state st−1 under following two assumptions.

a1 Changing the order of the trajectory a0, a1, . . . , at−1 of state st will not change the state st.
a3 The action at−1 is the best action of both st−1 and s

′
t−1

a2 Adding an extra action to the board will not reduce the winrate of the action’s color.

Both assumptions are true in the most states on Go and NoGo. For convenience, we assume the turn
color is of st is black and b0 is one of its meaningful action. We also define VB(s) as the state value
of black for state s. Now our goal is to prove that b0 is still meaningful action to st−1.

Figure 5: Proof illustration

Since adding an extra action will only benefit to the action’s player and the turn player of b0 is black.
According to Fig. 5 We just need to prove that

Given VB(st) < VB(s′t), prove that VB(st−1) < VB(s′t−1). (7)

First since at−1 is the best action of st−1, we have VB(st) = VB(st−1). Also, since at−1 is the best
action of s′t−1, we have VB(s′t−1) = VB(s′′).

Next, due to the a1 assumption, we have s
′
t = s

′′.

Finally, we have VB(s′t−1) = VB(s′′) = VB(s′t) > VB(st) = VB(st−1)

14



B Algorithm of the 2STEP Policy Attack

The algorithm is shown in algorithm 2.

Algorithm 2 Two-Step Policy Attack

1: Input: a seq states si, target agent t, examiner e
2: for i = T to 0 do
3: as = argmaxa(t.p(a∣s))
4: if ∣e.Q(si, as) − e.V (si)∣ > ηcorrect or e.V (si) < ηadv then
5: continue
6: actions = getMeaninglessActions (e, si)
7: for b0 in actions[0] do
8: for b1 in actions[1] do
9: s

′
= T (T (si, b0), b1)

10: as′ = argmaxa(t.p(a∣s′))
11: if ∣e.Q(si, as′) − e.V (si)∣ ≥ ηadv then
12: if ∣e.Q(s′, as′) − e.V (s′)∣ ≥ ηadv and

∣e.V (s) − e.V (s′)∣ ≤ ηeq and
∣e.Q(s′, as) − e.V (s′)∣ ≤ ηcorrect then

13: return s
′

14: return NULL

C Algorithm of Getting Meaningless Action

The algorithm is shown in algorithm 3.

Algorithm 3 Get Meaningless Actions

1: Member variable a set of actions that are meaningful meaningful_actions
2: Input: a state si, target agent t, examiner e
3: ret = [[], []]
4: terr = e.get_territory(si)
5: as = e.get_best_action(si)
6: Vs′ = e.get_value(T (si, as))
7: for a in A(si)⋃A(T (si, apass)) do
8: if −0.8 ≤ terr[a.p] ≤ 0.8 then
9: continue

10: if a.c == si.c then
11: s

′′
= T (T (T (s, a), apass), as)

12: else
13: s

′′
= T (T (T (s, apass), a), as)

14: vs′′ = e.get_quick_value(s′′)
15: if a in meaningful_actions and isEq(vs′′ , Vs′ ) then
16: if isEq(e.get_value(s′′), Vs′ ) then
17: meaningful_actions.remove(a)
18: else if a not in meaningful_actions and not isEq(vs′′ , Vs′ ) then
19: if not isEq(e.get_value(s′′), Vs′ ) then
20: meaningful_actions.add(a)
21: if a not in meaningful_actions then
22: if a.c == si.c then
23: ret[0].add(a)
24: else
25: ret[1].add(a)
26: return ret

15



D The Input of PV-NN

The inputs of PV-NN are not independent. Take AlphaGo Zero as an example, given a state st at step
t, it will generate 17 feature planes as the input of PV-NN. Each feature plane is a 19 × 19 binary 2D
array that includes the information the latest eight states. For example, there are eight feature planes
{Xt, Xt−1, . . . , Xt−7} indicates the presence of the current player’s stones of st, st−1, . . . , st−7. If
position p = (i, j) has current player’s stone at time t, then Xt[i][j] = 1 else Xt[i][j] = 0. Since
each player can only place on stone at a time, Xi will mostly be the same. Hence, the legal inputs
feature are not independent. Additionally, most AIs have more complex feature planes as input,
including the domain knowledge of Go. For example, a common feature is "liberty," which means
how many additional enemy stones are needed to capture the position. This kind of input is also not
independent to other feature planes.

E Territory

Starting from an empty board, one player places a stone on a vacant part of the board to surround
more territory or defend our territory from being “captured" by the opponent’s stones. It is critical to
select actions that can gain more territory. Normally, once a position belongs to a color, it is hard to
change it. Hence, putting a stone in any color’s territory is usually wasting a turn.

Since territory is so important in Go, many agents’ PV-NNs ([13]) has an additional output to
predict the territory. Given a state s, the territory output terr(s) is a vector of scalar. Each element
of the vector −1 ≤ terr(s)[i] ≤ 1 shows how a position i is likely to belong to. For example,
terr(s)[i] <= −0.8 means that position i is likely belongs to the color white and terr(s)[i] >= 0.8
means position i is likely belongs to the color black. In our experiment, we define the positions of
meaningless actions should be one of the players’ territory. That is, we will not consider an action a
as meaningless action if its position p is not one of the player’s territory −0.8 ≤ terr(s)[i] ≤ 0.8.

F Formal Definition of the Skip Function

Function F (s, a) ∶ S ×A ↦ S will play the action a on state s without changing the turn player by
skipping the opponent’s turn. Since action’s color a.c might not be the turn color of s, in that case,
we need to play action pass apass first. Finally, F is formulated as follow:

F = {T (T (s, a), apass) s.c = a.c

T (T (s, apass), a) s.c ≠ a.c

where s.c, a.c are the color of the state and the action, apass is the pass action.

16



G Go Experiments without Territory

In this section, we attack KataGo’s PV-NN without using the territory constraint. The results are
shown in Table 4 and can be compared with Table 5 which is the normal setting with territory.
Without the territory constraint, it is easier for our method to attack the target model. For example, the
2STEP success rate on policy attack become 100% after removing the territory constraint. Another
observation is that without the territory constraint, it is more likely to call the examiner. This might
because the meaningless actions under territory constraint are more stable. Hence, if v(s′) is different
form V (s), it is more likely that it is and adversarial example, instead of s′ is semantically different
form s.

Table 4: Attack KataGo’s PV-NN without territory constraint.
SUCCESS RATE EXECUTED NUM

GAMES 1STEP 2STEP TARGET EXAMINER

VALUE
ηadv = 0.7

ZZ 0.89 0.95 61164 797
ZM 0.90 1.00 57258 2242
LG 0.95 0.95 60770 835

ATV 1.00 1.00 5447 83

POLICY
ηadv = 0.7

ZZ 0.80 1.00 58895 2716
ZM 0.95 1.00 16748 560
LG 0.60 1.00 199201 4832

ATV 0.75 1.00 258985 5300

Table 5: Attack KataGo’s PV-NN with territory constraint.
SUCCESS RATE EXECUTED NUM

GAMES 1STEP 2STEP TARGET EXAMINER

VALUE
ηadv = 0.7

ZZ 0.84 0.95 24044 476
ZM 0.85 1.00 24904 347
LG 0.9 0.95 13405 194

ATV 0.95 1.00 9215 138

POLICY
ηadv = 0.7

ZZ 0.68 0.89 98739 1077
ZM 0.85 1.00 26028 303
LG 0.45 0.80 295151 686

ATV 0.5 0.85 189696 870

H Visualized Examples

Fig. 6 provides some examples we found on different agents and different types of games. The
perturbation actions are marked as 1 and 2. If it is a policy attack, the best action of both s and s

′ is
mark as A and the bad action that the target model want to play is marked as B. The subcaption of
each examples first shows the which dataset it is form. For example, "FOX_12k" means that the game
from dataset FOX and was generate from level 12k player. For another example, "ZZ_8" means the
number 8 game of AlphaGo Zero self-play. Second, the subcaption describe the target model. If it is
just PV-NN, we will present it using the first letter of the agent. For example, ’K’ for KataGo, ’C’ for
CGI. On the other hand, if the target model is MCTS, we will add a ’M’ and simulation count after
the first letter of the model. For example, "KM25" means KataGo MCTS agent with 25 simulation.
Finally, the third component of the subcaption show the type of attack and the threshold ηadv. For
example, "P0.7" means policy attack and ηadv = 0.7.

17



19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

B
A

2

(a) FOX_12k K P 0.9

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

B
2

A

(b) MH_Dang C P 0.7

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

1

(c) ZM_2 E V 0.7

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

1

(d) FOX_15k K V 0.9
19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

A
B

1

(e) FOX_17K K P 0.9

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

1

(f) FOX_18k K V 0.9

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

1

(g) ZM_3 E V 0.7

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

A

B 1

(h) ATV_2 K P 0.9
19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

1

(i) ATV_3 K V 0.9

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

B

1
2

A

(j) ZZ_8 KM25 P 0.7

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

A

B
1 2

(k) LG_12 K P 0.7

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

A

2
B

(l) ZZ_10 LM25 P 0.7
19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

B 2

A

(m) LG_15 K P 0.7

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

2

(n) LG_16 K V 0.7

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

2 B

A

(o) ZZ_17 LM50 P 0.7

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

2
A

B

(p) MH_KE E P 0.7
19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

B 2

A

(q) MH_LIU C P 0.7

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

B 1 2

A

(r) LG_3 K P 0.9

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

1

(s) MH_MEN E V 0.7

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

M

M

N

N

O

O

P

P

Q

Q

R

R

S

S

T

T

2

(t) MH_CHEN E V 0.7

Figure 6: Each subfigure present an adversarial example. The subcaption provides the name of dataset,
the program to be attacked (K = KataGo, L = Leela, E = Elf, C=CGI, KMXX = KataGo MCTS with
XX simulations), and the policy attack (P) or value attack (V) concatenating with ηadv, separating
by space. For example, in (a), "FOX_12k K P 0.9" represents a policy attack with ηadv = 0.9 on
KataGo, where the game record is chosen from FOX dataset, and in (j) "ZZ_8 KM25 P0.7" means
the attacking policy with ηadv = 0.7 KataGo MCTS with 25 simulation on ZZ dataset.

18


	Introduction
	Background and Related Works
	Method
	Defining the Perturbation Set
	Success Criteria of Adversarial Attack
	An Efficient Attack Algorithm

	Experiments
	Conclusion and Future Works
	Proof of Meaningful Action
	Algorithm of the 2STEP Policy Attack
	Algorithm of Getting Meaningless Action
	The Input of PV-NN
	Territory
	Formal Definition of the Skip Function
	Go Experiments without Territory
	Visualized Examples

