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A VISUALIZATION OF TRANSFORMER LAYERS

Following Piotrowski et al. (2019), we also attempt to understand what the Transformer networks
are learning through layer-wise visualization of attention (Vig, 2019). We take model trained on
COARSE granularity proofs using INFIX representation for 1 variable using the SMALL COEFF con-
figuration. We take the following example:

P0 = (4 ∗ x2
1) ∗ (5 ∗ x3

1 + 4 ∗ x1) + (12 ∗ x1), /* MULSTEP */

= (20 ∗ x5
1 + 16 ∗ x1 ∗ ∗3) + (12 ∗ x1)

In Figure 1, we observe that in layer 2 encoder-decoder attention indicates that while generating the
number 16, the Transformer network is clearly able to attend to the two digits 4 and 4 required for
the multiplication. In Figure 2, we observe that the Transformer networks, in the same time also
learns to copy the expression 12 + x1 in Layer 1. Even though such clear logical patterns emerge
quite frequently, in some cases patterns become hard to interpret.

B ALGORITHMS

The polynomial sampling algorithms buildProduct and buildFactor are provided in Algo-
rithms 1 and 2 respectively.
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Figure 1: The layer 2 encoder-decoder attention for the output digits 16 in the first simplified product
for the output (20 ∗ x5

1 + 16 ∗ x1 ∗ ∗3) + (12 ∗ x1). As expected, the digits 1 and 6 attends to the
coefficients of the first and third monomial in the input expression (4 ∗ x2

1) ∗ (5 ∗ x3
1 + 4 ∗ x1) +

(12 ∗ x1). Config: COARSE, SMALL COEFF, INFIX, 1 variable.
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Figure 2: The layer 1 encoder-decoder attention for the coefficient 12 in the last product (20 ∗ x5
1 +

16 ∗ x1 ∗ ∗3) + (12 ∗ x1). It is expected, that in this step, this product remains unchanged and
simply copied o the output. Therefore, we see that the layers learn to copy the coefficients directly
by attending to the corresponding digits (i.e. 1 attends to 1 in the last product). Config: COARSE,
SMALL COEFF, INFIX, 1 variable.
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Algorithm 1: BuildProduct (Sampling Products)
Input: xP , mdeg
Constraints: nvars prod, max coeff prod, max fac prod, max terms prod
Output: A list of factors Fseq

1 Sample nvar ∈ {num vars fac, . . . ,nvars prod}
2 nvar = min(|xP |, nvar)
3 Sample nvar variables from xP as xPi

// Variable set for this product
4 Sample nfac ∈ {2, . . . ,max fac prod} // #Factors for this product
/* Get maximum degree, terms and coefficient available */

5 rdegree = mdeg, rterms = max terms prod, rcoeff = max coeff prod
6 cprod = 1 // Keeping track of product built till now
7 Fseq = [ ]
8 for j ← 1 to nfac 1 do
9 fj = buildFactor(xPi , rdegree, rterms, rcoeff)

/* Update degree, terms and coefficient for next factor */
10 cprod = cprod ∗ fj
11 rdegree = rdegree− degree(fj)
12 rterms = max terms prod/|terms(cprod)|
13 rcoeff = max coeff prod/max(coeffs(cprod))
14 Append fj in Fseq

15 if rdegree == 0 then
16 break
17 end
18 end
19 Shuffle Fseq

Algorithm 2: BuildFactor (Sampling A Factor)
Input: xPi

, rdegree, rterms, rcoeff
Constraints: num vars fac, max coeff fac, max terms fac,

max degree fac
Output: A factor fj , Number of terms ntermsj

1 Sample nvar ∈ {1, . . . ,num vars fac}
2 cvars = Sample nvar variables from xPi

// Variable set for this factor
3 Sample nterms ∈ {1, . . . ,min(max terms fac, rterms)}

// # Terms for this factor
4 Sample {dk}nterms

k=1 , s.t. dk ∈ {0, . . . ,min(max degree fac, rdegree)}
// Term degrees: degree 0 allows for constant terms

5 Sample {ck}nterms
k=1 , s.t. ck ∈ {1, . . . ,min(max coeff fac, rcoeff)}

// Term coefficients
6 for k ← 1 to nterms 1 do
7 selects d[k] variables from cvars with replacement

// E.g. if d[k] = 4, cvars = [x1, x2]. May sample [x1, x2, x1, x1]
8 Convert the selected d[k] variables to a term // tk = ck ∗ x3

1 ∗ x2,
9 end

10 fj =
∑nterms

k=1 tk
11 return fj ;
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C TABLE OF CONSTRAINTS AND NOTATIONS

We provide the full list of constraints and notations in Table 1.

Term
Constraints

#Products
#Factors in Pi

#Terms in fij
#Terms in P̂i

nprod ∈ {2, . . . ,maxPP}
nfaci ∈ {2, . . . ,maxfP},∀i ∈ {1, . . . ,nprod}
|terms(fi)| ∈ {1, . . . ,maxTf},∀fij ∈ fP
|terms(P̂i)| ≤ maxTP∀Pi ∈ P0

Degree
Constraints

#Degree in P̂
#Degree in fij

∑
dmn ≤ DP , ∀m ˆtm ∈ terms(P̂ ),∀n xn ∈ vars( ˆtm)∑
dkl ≤ Df ,∀k terms(fij),∀fij ∈ fP

Variable
Constraints

#Variables in P0

#Variables in Pi

#Variables in fi

|xP | ≤ VP
|vars(Pi)| ≤ VP,∀Pi ∈ P0

|vars(fij)| ≤ Vf ,∀fj ∈ fP

Coefficient
Constraints

Coeff in P̂
Coeff in P̂i

Coeff in fi

âj ≤ CP ,∀âj ∈ coeffs(P̂ )

âij ≤ CP,∀a coeffs(P̂i),∀Pi ∈ P0

ak ≤ Cf ,∀a coeffs(fij),∀fij ∈ fP

Table 1: List of notations, and corresponding constraints that a generated polynomial satisfies.

D PROBLEM SPACE SIZE ESTIMATION

We present the problem space size estimates here in Table 2.

Config NVAR = 1 NVAR = 2
Equation

Size Estimate
Endpoint

Size Estimate
Equation

Size Estimate
Endpoint

Size Estimate
SMALL COEFF 104M 8.24M 184M 27.4M

MEDIUM COEFF 179M 16.3M 325M 42.4M
LARGE COEFF 289M 32M 507M 68.8M

NO BACKTRACK 324M 54.9M 538M 104M
MEDIUM DEG 459M 67.4M 902M 144M

MEDIUM TERMS 866M 31.5M 1.73B 801M

Table 2: Size Estimates for the problem space, after generating sets of size 5M.

E INPUT REPRESENTATION (ADDITIONAL RESULTS)

We present the results for FINE configuration for 2 variable setting here in Table 3. The errors made
by the models for 1 Variable and 2 Variable settings are presented in Tables 4 and 5 respectively.

F ANNOTATED PROOF (ADDITIONAL RESULTS)

We present the results for COARSE and FINE configuration for 2 variable setting for annotated
proofs here in Table 6. The errors made by the models for 1 Variable and 2 Variable settings are
presented in Tables 7 and 8 respectively.

G FULLY SYMBOLIC PROOFS

As > 80% of the errors occurred in multiplication step, we separately tested the Transformer’s
ability to do arithmetic, by creating datasets involving multiplication and addition of 4-digit and
9-digit numbers. While the models quickly achieved an accuracy of close to 99% for addition; for
multiplication, they could not go beyond even 1% after seeing 2M examples. Hence, we envision
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Config Proof
Type

Endpoint #Train Full Proof Stepwise Calibration

#EE Endpoint
Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.

Top-1
Acc.

Beam-5
Acc.

Sure
Rate P R F1

SMALL
COEFF

Infix/Fine 4.3M 94.7 4.6M 88.1 97.19 90.7 92.2 83.47 100 92.02 0.96
Prefix/Fine 4.5M 93.93 5.4M 90.3 97.83 94.63 96.2 87.9 99.96 92.85 0.96

MEDIUM
COEFF

Infix/Fine 7M 95.3 4.4M 82.2 96.25 94.28 95.76 86.24 100 91.47 0.96
Prefix/Fine 5.2M 92.77 2.9M 72.4 93.6 91.53 94.33 81.97 100 89.55 0.94

LARGE
COEFF

Infix/Fine 9M 91.8 3.2M 73 93.85 77.94 82.2 63 99.9 80.75 0.89
Prefix/Fine 6.1M 86.6 4.7M 78.6 95.6 91.93 93.47 83.87 100 91.23 0.95

NO
BACKTRACK

Infix/Fine 8.6M 83.8 5.8M 72.5 94.64 81.54 84.82 72.34 100 88.72 0.94
Prefix/Fine 7.1M 79.2 4.1M 60.7 90.48 81.73 85.67 70.2 99.91 85.81 0.92

MEDIUM
DEG

Infix/Fine 4.9M 87.9 3.6M 73.5 94.21 89.78 92.46 77.22 100 86.01 0.92
Prefix/Fine 5.2M 83.73 4.6M 73.6 94.57 86.5 89.4 76.93 100 88.94 0.94

MEDIUM
TERMS

Infix/Fine 8.5M 90 4.8M 64 92.98 79.04 81.86 66.92 99.88 84.56 0.92
Prefix/Fine 6.6M 87.07 4.5M 62.9 92.74 86.4 89.07 73.67 100 85.26 0.92

Table 3: Results for FINE configuration for 2 Variables for Infix and Prefix representation (No cur-
riculum, No annotation).

Config Proof Type Full Proof Error Percentage

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

First
FacStep

Total
FacStep

First
MulStep

Total
MulStep

First
SumStep

Total
SumStep

SMALL
COEFF

Coarse/Infix 95 98.83 8 9.43 88 84.91 4 5.66
Fine/Infix 98.9 99.79 0 0 100 100 0 0

Coarse/Prefix 95.3 98.97 4.26 4.08 72.34 71.43 23.4 24.49
Fine/Prefix 96.9 99.4 9.68 9.68 77.42 77.42 12.9 12.9

MEDIUM
COEFF

Coarse/Infix 92.8 98.24 1.39 1.25 95.83 92.5 2.78 6.25
Fine/Infix 90.3 97.99 11.34 11.32 85.57 84.91 3.09 3.77

Coarse/Prefix 93.6 98.58 3.12 2.94 95.31 95.59 1.56 1.47
Fine/Prefix 91.7 98.37 2.41 2.33 96.39 96.51 1.2 1.16

LARGE
COEFF

Coarse/Infix 82.1 95.97 3.35 3.02 93.85 91.46 2.79 5.53
Fine/Infix 82.5 96.44 2.86 2.56 93.71 90.77 3.43 6.67

Coarse/Prefix 83.5 96.25 4.24 3.78 93.94 92.97 1.82 3.24
Fine/Prefix 82 96.32 3.33 2.97 90.56 86.63 6.11 10.4

NO
BACKTRACK

Coarse/Infix 75.6 94.62 2.87 3.13 93.44 86.83 3.69 10.03
Fine/Infix 74.5 94.76 3.14 3.56 93.33 78.63 3.53 17.81

Coarse/Prefix 79.7 95.38 7.39 6.57 89.16 83.94 3.45 9.49
Fine/Prefix 74.7 95.23 2.37 2.41 96.44 89.16 1.19 8.43

MEDIUM
DEG

Coarse/Infix 92.8 98.26 5.56 6.02 86.11 79.52 8.33 14.46
Fine/Infix 83.4 96.12 6.63 5.56 89.76 83.33 3.61 11.11

Coarse/Prefix 87.7 96.82 4.07 3.57 93.5 90.71 2.44 5.71
Fine/Prefix 90.6 97.92 8.51 7.55 89.36 87.74 2.13 4.72

MEDIUM
TERMS

Coarse/Infix 72.7 93.99 25.64 24.18 73.26 69.72 1.1 6.1
Fine/Infix 75.1 95.42 21.29 20.51 75.1 69.94 3.61 9.55

Coarse/Prefix 76.3 95.78 7.59 8.71 88.61 84.67 3.8 6.62
Fine/Prefix 74.8 95.55 14.68 16.76 79.76 74.28 5.56 8.96

Table 4: Errors for 1 variable in the COARSE and FINE configuration for both Infix and Prefix input
representation. (No curriculum, No annotation).
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Config Proof Type Full Proof Error Percentage

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

First
FacStep

Total
FacStep

First
MulStep

Total
MulStep

First
SumStep

Total
SumStep

SMALL
COEFF

Coarse/Infix 87.9 97.01 5.79 4.9 88.43 79.72 5.79 15.38
Fine/Infix 88.1 97.19 8.4 7.98 75.63 68.1 15.97 23.93

Coarse/Prefix 91.2 98.08 1.14 1.03 88.64 84.54 10.23 14.43
Fine/Prefix 90.3 97.83 8.25 6.35 80.41 73.02 11.34 20.63

MEDIUM
COEFF

Coarse/Infix 88.5 97.35 4.35 3.73 83.48 76.87 12.17 19.4
Fine/Infix 82.2 96.25 2.25 1.83 76.4 68.81 21.35 29.36

Coarse/Prefix 84.5 96.03 3.87 3.68 88.39 81.58 7.74 14.74
Fine/Prefix 72.4 93.6 12.68 9.95 76.09 67.74 11.23 22.31

LARGE
COEFF

Coarse/Infix 80.4 95.18 6.12 4.84 82.65 75.81 11.22 19.35
Fine/Infix 73 93.85 11.85 8.74 70.74 62.3 17.41 28.96

Coarse/Prefix 83.7 96.23 4.29 3.61 87.12 82.99 8.59 13.4
Fine/Prefix 78.6 95.6 5.14 4.2 81.31 74.43 13.55 21.37

NO
BACKTRACK

Coarse/Infix 72.7 93.13 4.4 3.15 87.55 75.79 8.06 21.07
Fine/Infix 72.5 94.64 3.27 2.54 85.09 73.79 11.64 23.66

Coarse/Prefix 63.2 89.87 3.26 2.24 91.3 78.73 5.43 19.03
Fine/Prefix 60.7 90.48 2.29 1.58 89.31 72.64 8.4 25.79

MEDIUM
DEG

Coarse/Infix 80.5 95.13 6.67 5.44 81.54 71.97 11.79 22.59
Fine/Infix 73.5 94.21 7.17 6.55 68.3 57.83 24.53 35.61

Coarse/Prefix 83.4 96.41 4.82 4.19 81.33 75.39 13.86 20.42
Fine/Prefix 73.6 94.57 7.58 6.38 75.38 67.48 17.05 26.14

MEDIUM
TERMS

Coarse/Infix 64 92.03 25 19.05 72.5 66.5 2.5 14.45
Fine/Infix 64 92.98 13.61 8.62 79.44 69.59 6.94 21.79

Coarse/Prefix 67.8 93.58 10.25 7.69 87.89 80.98 1.86 11.32
Fine/Prefix 62.9 92.74 9.16 5.97 85.71 74.37 5.12 19.65

Table 5: Errors for 2 variables in the COARSE and FINE configuration for both Infix and Prefix input
representation. (No curriculum, No annotation).

Config Proof Type Endpoint # Train
Examples

Full Proof Stepwise Calibration

# Endpoint
Examples

Endpoint
Accuracy

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

Top-1
Accuracy

Beam-5
Accuracy Sure Rate P R F1

SMALL COEFF Fine 4.3M 94.7 3.6M 82.3 97.93 86.47 87.5 81.83 100 94.64 0.97
Coarse 5.1M 85 98.31 93.5 94.03 90.27 100 96.54 0.98

MEDIUM COEFF Fine 7M 95.3 5.4M 78.8 97.78 93.8 94.5 90.2 99.93 96.09 0.98
Coarse 5M 80.1 97.69 89.37 90.27 86.77 99.96 97.05 0.98

LARGE COEFF Fine 9M 91.8 4.1M 70.1 96.59 84.8 86.63 77.77 99.83 91.55 0.96
Coarse 4M 73.2 96.66 92.77 93.8 87.23 100 94.04 0.97

NO BACKTRACK Fine 8.6M 83.8 3.5M 46.5 92.93 84.9 87.67 74.5 99.96 87.71 0.93
Coarse 6.7M 65.5 95.7 67.8 69.37 63.3 99.79 93.17 0.96

MEDIUM DEG Fine 4.9M 87.9 3.9M 59.6 95.28 94.13 95.7 86.4 100 91.78 0.96
Coarse 4.1M 65.1 95.61 85.43 87.43 78.2 99.96 91.49 0.96

MEDIUM TERMS Fine 8.5M 90 4.8M 56.9 95.7 92.4 93.83 85.77 99.88 92.71 0.96
Coarse 4.2M 52.8 94.57 84 85.93 75.93 99.82 90.24 0.95

Table 6: Results for FINE and COARSE configurations for 2 Variables for annotated proofs (No
curriculum).

Config Proof Type Full Proof Error Percentage

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

First
FacStep

Total
FacStep

First
MulStep

Total
MulStep

First
SumStep

Total
SumStep

First
MarkStep

Total
MarkStep

SMALL COEFF Fine 88.5 98.82 3.48 2.99 89.57 83.58 6.09 11.19 0.87 2.24
Coarse 91.9 99.16 1.23 1.19 98.77 96.43 0 1.19 0 1.19

MEDIUM COEFF Fine 78.6 97.66 18.69 15.19 74.77 74.44 3.27 6.67 3.27 3.7
Coarse 84.2 98.29 4.43 4.65 84.81 84.88 6.33 5.81 4.43 4.65

LARGE COEFF Fine 75.5 97.37 11.43 9.21 72.65 66.35 10.61 19.68 5.31 4.76
Coarse 80.3 97.86 5.58 5.86 90.86 87.39 1.02 4.5 2.54 2.25

NO BACKTRACK Fine 68 96.78 7.19 6.46 86.56 78.54 5.62 12.71 0.62 2.29
Coarse 59.7 95 6.2 5.25 88.09 76.88 3.72 15.41 1.99 2.45

MEDIUM DEG Fine 76 97.37 11.67 10.85 82.5 80.34 3.75 6.78 2.08 2.03
Coarse 78.7 97.38 6.1 5.84 86.38 81.32 4.69 9.73 2.82 3.11

MEDIUM TERMS Fine 70.4 97.48 16.89 16.27 75 69.14 3.72 8.85 4.39 5.74
Coarse 66.2 96.34 25.44 25.28 68.05 63.48 2.37 5.81 4.14 5.43

Table 7: Errors for FINE and COARSE configurations for 1 Variable for annotated proofs (No cur-
riculum).
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Config Proof Type Full Proof Error Percentage

Full Proof
Accuracy

Greedy
Stepwise
Accuracy

First
FacStep

Total
FacStep

First
MulStep

Total
MulStep

First
SumStep

Total
SumStep

First
MarkStep

Total
MarkStep

SMALL COEFF Fine 82.3 97.93 4.52 3.07 86.44 68.97 7.34 24.14 1.69 3.83
Coarse 85 98.31 2 1.68 88.67 78.21 8 18.44 1.33 1.68

MEDIUM COEFF Fine 78.8 97.78 8.96 6.79 80.19 68.21 9.43 22.5 1.42 2.5
Coarse 80.1 97.69 9.05 7.79 87.94 80.33 3.02 10.66 0 1.23

LARGE COEFF Fine 70.1 96.59 13.38 10 69.9 59.32 13.38 25.45 3.34 5.23
Coarse 73.2 96.66 10.45 7.84 79.85 70.87 7.84 18.49 1.87 2.8

NO BACKTRACK Fine 46.5 92.93 9.16 5.15 74.21 57.9 14.58 33.69 2.06 3.25
Coarse 65.5 95.7 3.19 2.61 90.14 77.31 5.22 18.27 1.45 1.81

MEDIUM DEG Fine 59.6 95.28 7.43 5.48 72.03 57.1 15.35 32.9 5.2 4.52
Coarse 65.1 95.61 6.88 5.26 78.51 67.79 11.46 24.63 3.15 2.32

MEDIUM TERMS Fine 56.9 95.7 21.58 13.3 67.29 57.72 8.58 23.96 2.55 5.02
Coarse 52.8 94.57 23.94 15.6 68.22 62.77 3.6 16.67 4.24 4.96

Table 8: Errors for FINE and COARSE configurations for 2 Variable for annotated proofs (No cur-
riculum).

a setting where polynomial simplification steps only involve symbolic addition and multiplication,
without any arithmetic manipulation. For example, instead of multiplying 3 and 4 as 12, the model
will output c1 ∗ c2 given coefficients c1 and c2. The results for 1 Variable setting are presented in
Table 9. Here, MEDIUM COEFF and MEDIUM DEGREE denote the same configuration as the case
with integer coefficients. The only difference being that the limits of coefficients no longer apply.
The errors made by the model for each kind of step are summarized in Table 10. We observe that
the proof accuracy is about 20% less than

Config Proof
Type

Endpoint #Train Full Proof

#EE Endpoint
Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.

MEDIUM
COEFF

Coarse/Infix 5M 93.5 4.3M 78.5 94.19
Fine/Infix 2.8M 63.5 90.64

Coarse/Prefix 4.9M 89.77 3.7M 70.9 91.53
Fine/Prefix 4.3M 70.9 93.2

MEDIUM
DEGREE

Coarse/Infix 5.6M 88 3.7M 65.2 89.55
Fine/Infix 6.3M 75.5 94.59

Coarse/Prefix 6.3M 83.93 3.4M 57.6 85.98
Fine/Prefix 6.7M 67.7 92.76

Table 9: Results for Symbolic Coeff setting. (No curriculum, No annotation).

Config Proof
Type

Endpoint #Train Full Proof

#EE Endpoint
Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.

MEDIUM
COEFF

Coarse/Infix 5M 93.5 4.3M 78.5 94.19
Fine/Infix 2.8M 63.5 90.64

Coarse/Prefix 4.9M 89.77 3.7M 70.9 91.53
Fine/Prefix 4.3M 70.9 93.2

MEDIUM
DEGREE

Coarse/Infix 5.6M 88 3.7M 65.2 89.55
Fine/Infix 6.3M 75.5 94.59

Coarse/Prefix 6.3M 83.93 3.4M 57.6 85.98
Fine/Prefix 6.7M 67.7 92.76

Table 10: Errors made by models in Symbolic Coeff setting. (No curriculum, No annotation).

H OUT-OF-DISTRIBUTION EVALUATION

We present the results for Out-of-Distribution evaluation here. Table 11 contains results for best 2
variable models (Prefix/Coarse) tested on 1 Variable setting.
Table 12 contains results for best 1 variable models (Prefix/Coarse) tested on SMALL, MEDIUM and
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LARGE coefficient setting. As expected, the SMALL and MEDIUM models perform much worse
when tested on higher coefficients.

Config Train/Test= 2 Var/1 Var Train/Test= 1 Var/1 Var Train/Test= 2 Var/2 Var
Full

Proof Acc.
Greedy

Stepwise Acc.
Full

Proof Acc.
Greedy

Stepwise Acc.
Full

Proof Acc.
Greedy

Stepwise Acc.
SMALL
COEFF 95.34 99.12 95.3 98.97 91.2 98.08

MEDIUM
COEFF 87.4 97.11 93.6 98.58 84.5 96.03

LARGE
COEFF 89.4 97.13 83.5 96.25 83.7 96.23

NO BACK
TRACK 84.2 98.29 79.7 95.38 63.2 89.87

MEDIUM
DEG 87.7 97.83 87.7 96.82 83.4 96.41

MEDIUM
TERMS 78.5 96.16 76.3 95.78 67.8 93.58

Table 11: Results for OOD Testing. NVAR = 2 COARSE/PREFIX models tested on corresponding
NVAR = 1 setting (No curriculum, No annotation).

Train
Config

Test Config
SMALL
COEFF

MEDIUM
COEFF

LARGE
COEFF

Full
Proof
Acc.

Greedy
Stepwise

Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.

Full
Proof
Acc.

Greedy
Stepwise

Acc.
SMALL
COEFF 95.3 98.97 33.4 69.05 31 68.02

MEDIUM
COEFF 96.6 99.29 93.6 98.58 33.6 68.96

LARGE
COEFF 95.8 99.1 94.4 98.64 83.5 96.25

Table 12: Prefix/Coarse 1 Variable Models tested on various coefficient limit configurations
(SMALL, MEDIUM and COARSE). (No curriculum, No annotation).

I CURRICULUM LEARNING

Learning the simplification steps should entail learning the sub-tasks, such as addition and mul-
tiplication (of numeric coefficients and symbolic variables); where multiplying variables precludes
learning to add exponents of similar variables. As these sub-tasks are well-defined and dependencies
among them are clear, we explore different types of curriculums based on the Mastering-Rate-based
(MR) curriculum learning algorithm proposed in Willems et al. (2020). Authors in Willems et al.
(2020) define curriculum learning by 1) a curriculum i.e. a set of tasks C = {c1, . . . , cn}, where
a task is set of examples of similar type with a sampling distribution, and 2) a program which for
each training step defines the tasks to train the learner given its learning state and the curriculum.
Formally, the program d : N → DC , is a sequence of distributions over C. The authors estimate the
program function through an attention function which defines attention over the tasks at a time-step,
and an attention-to-distribution converter which converts the attention to a distribution over C. Au-
thors observe that other algorithms (Matiisen et al., 2019; Graves et al., 2017) are special cases of
the above setting with different choices for program.

To learn on tasks that are learnable but not learnt yet, authors define an ordered curriculum OC

which is a directed graph over tasks in C. An edge from A to B indicates that learning task A before
B is preferable. For supervised learners, the learnability for each task depends on mastering rate
(Mc(t)) computed from the normalized mean accuracy for that task at time-step t. At each time-
step, the MR algorithm computes attention over a task (ac(t)) from mastering rates of its ancestors
and successors. During training to sample batches, a hyperparameter Nb for the curriculum deter-
mines the number of batches to be considered at a step, before re-computing the attention over tasks.
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Using the program d, we first sample Nb ∗ b examples from tasks in C. The model is then trained on
randomly sampled Nb minibatches are sampled updating the mastering rates.

For polynomial simplification for 1 variable, we define the following tasks ADD, MUL2, MUL3,
SCOEFF and MIXED. For ADD, only one factor per product is allowed, so there is no multiplication.
For MUL2 and MUL3 only 1 product is allowed with maximum two factors and three factors re-
spectively. SCOEFF points to the SMALL COEFF configuration and MIXED is the final variable size
configuration of the target variable configuration. We define the following curriculums:
• C: {(ADD, MUL3), (MUL3, MIXED), (ADD, MIXED)}.
• C2: {(ADD, MUL2), (MUL2, MUL3), (MUL3, MIXED), (ADD, MIXED)}.
• C4: {(ADD, MUL2), (MUL2, MUL3), (MUL3, SCOEFF), (ADD, SCOEFF) (SCOEFF, MIXED)}.
For all our experiments, we use the MR algorithm with gAmax Linreg A2D converter functions de-
scribed in Willems et al. (2020). Model parameters and the training configurations remains the same
as before1. We show the results in Table 13 for COARSE configuration. As coefficient size grows
from SMALL, MEDIUM, LARGE to NO BACKTRACK - the improvements in full proof accuracy
steadily increase from 1% to 10.84%. For NO BACKTRACK, the improvement in top-1 accuracy is
by 20% from a no curriculum setting. However, we observe for MEDIUM TERMS, there is a drop in
accuracy for all curriculums and input representations. It is possible that, more carefully designed
curriculums may improve the results. There is no conceivable pattern observed for infix or prefix
representations. However, compared to learning without curriculum, the improvement observed for
infix representation is larger than prefix.

Full Proof Step-wise Calibration
Curri
culum #Train Full Proof

Accuracy
Stepwise
Accuracy

Top-1
Acc

Beam-5
Acc

Sure
Rate P R F1

C 2.8M 94.38 98.76 94.84 96.68 89.36 100 94.22 0.97Infix C2 2M 95.98 99.0 91.64 93.24 86.16 99.9 93.98 0.97
C 2.02M 94.26 98.65 77.76 80.46 70.62 99.94 90.77 0.95

Small
Coeff Prefix C2 2.29M 94.6 98.56 93.44 95.28 88.02 99.89 94.09 0.97

C2 3.9M 95.44 99.02 94.86 96.44 91.18 100 96.12 0.98Infix C4 2M 93.86 98.59 88.22 90.24 84.68 99.91 95.90 0.98
C2 3.7M 94.78 98.82 91.98 93.66 88.08 99.93 95.69 0.98

Medium
Coeff Prefix C4 4.4M 94.8 98.87 85.3 87.82 80.62 99.98 94.49 0.97

C2 6.9M 91.26 97.92 96.4 98.06 90.24 99.89 93.51 0.97Infix C4 7.6M 91.62 98.16 91.54 93.3 87.38 99.84 95.3 0.98
C2 6.5M 92.2 98.31 85.38 87.78 81.42 99.95 95.32 0.98

Large
Coeff Prefix C4 6.97M 92.46 98.42 91.3 93.34 87.54 100.0 95.88 0.98

C2 4.8M 86.44 97.27 93.68 95.46 88.72 99.98 94.68 0.97Infix C4 5.1M 85.96 97.21 94.64 96.1 89.5 100 94.57 0.97
C2 7M 86.16 97.30 82.24 84.44 77.46 99.95 94.14 0.97

No
Backtrack Prefix C4 5.5M 86.48 97.45 92.6 94.3 87.78 99.95 94.75 0.97

C2 3.5M 87.12 97.01 84.16 87.44 78.46 99.95 93.18 0.96Infix C4 3.4M 94.12 98.65 90.62 81.984 86.66 99.93 95.56 0.98
C2 5.35M 94.28 98.71 80.8 82.84 75.76 100 93.51 0.97

Medium
Degree Prefix C4 3.5M 92.38 98.30 83.7 85.48 78.94 99.92 94.24 0.97

C2 4.4M 59.54 75.76 65.6 69.56 60.84 95.36 88.45 0.92Infix C4 3.8M 56.94 76.72 69.84 73.44 60.76 97.5 84.82 0.91
C2 2.8M 41.84 51.24 40.62 45.36 36.9 92.57 84.10 0.88

Medium
Terms Prefix C4 3.37M 49.02 65.41 58.56 64.64 45.44 96.83 75.14 0.85

Table 13: Curriculum Learning results for 1 variable for the COARSE configuration for both Infix
and prefix representations.
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