
Under review as a conference paper at ICLR 2021

A A LEARNED OPTIMIZER THAT RECOVERS MOMENTUM

When training learned optimizers on the linear regression tasks, we noticed that we could train a
learned optimizer that seemed to strongly mimic momentum, both in terms of behavior and perfor-
mance. With additional training, the learned optimizer would eventually start to outperform momen-
tum (Figure 2a). We highlight this latter, better performing optimizer in the main text. However, it
is still instructive to go through the analysis for the learned optimizer that mimics momentum. This
example in particular clearly demonstrates the connections between eigenvalues, momentum, and
dynamics.

The learned optimizer that performs as well as momentum learns to mimic linear dynamics (we also
used a GRU for this optimizer). That is, the dynamics of the nonlinear optimizer could be very well
approximated using a linearization computed at the convergence point. This linearization is shown
in Figure 7. We find a single mode pops out of the bulk of eigenvalues (Fig. 7a). Additionally, if we
plot these eigenvalue magnitudes, which are the momentum time scales, against the corresponding
extracted learning rate of each mode, as discussed below in Appendix B), we see that this mode
also has a large learning rate compared to the bulk (top right blue circle in Fig. 7b). Moreover, the
extracted momentum timescale and learning rate for this mode essentially exactly match the best
tuned hyperparameters (gold star in Fig. 7b) from tuning the momentum algorithm directly, which
can also be derived from theory.

Finally, if we extract and run just the dynamics along this particular mode, we see that it matches
the behavior of the full, nonlinear optimizer almost exactly (Fig. 7c). This suggests that in this
scenario, the learned optimizer has simply learned the single mechanism of momentum. Moreover,
the learned optimizer has encoded the best hyperparameters for this particular task distribution in
its dynamics. Our analysis shows how to separate the overall mechanism (linear dynamics along
eigenmodes) from the particular hyperparameters of that mechanism (the specific learning rate and
momentum timescale).

B LINEARIZED OPTIMIZERS AND AGGREGATED MOMENTUM

In this section, we elaborate on the connections between linearized optimizers and momentum with
multiple timescales. We begin with our definition of an optimizer, equations (1) and (2) in the main
text:

hk+1 = F (hk, gk)

xk+1 = xk + wThk+1,

(a) Jacobian eigenvalues (b) Extracted hyperparameters (c) Extracted vs Full

Iteration (k)

Lo
ss

Figure 7: A learned optimizer that recovers momentum on the linear regression task. (a) Eigenvalues of the
Jacobian of the optimizer dynamics evaluated at the convergence fixed point. There is a single eigenmode that
has separated from the bulk. (b) Another way of visualizing eigenvalues is by translating them into optimization
parameters (learning rates and momentum timescales), as described in Appendix B. When we do this for this
particular optimizer, we see that the slow eigenvalue (momentum timescale closest to one) also has a large
learning rate. These specific hyperparameters match the best tuned momentum hyperparametrs for this task
distribution (gold star). (c) When we extract and run just the dynamics along this single mode (orange dashed
line), we see that this reduced optimizer matches the full, nonlinear optimizer (solid line) almost exactly.

12

Under review as a conference paper at ICLR 2021

where h is the optimizer state, g is the gradient, x is the parameter being optimized, and k is the
current iteration. Note that since this is a component-wise optimizer, it is applied to each parameter
(xi) of the target problem in parallel; therefore we drop the index (i) to reduce notation.

Near a fixed point of the dynamics, we approximate the recurrent dynamics with a linear approxi-
mation. The linearized state update can be expressed as:

F (hk, gk) ≈ h∗ +
∂F

∂h

(
hk − h∗) +

∂F

∂g
gk, (3)

where h∗ is a fixed point of the dynamics, ∂F
∂h is a square matrix known as the Jacobian, and ∂F

∂g is
a vector that controls how the scalar gradient enters the system. Both of these latter two quantities
are evaluated at the fixed point, h∗, and g∗ = 0.

For a linear dynamical system, as we have now, the dynamics decouple along eigenmodes of the
system. We can see this by rewriting the state in terms of the left eigenvectors of the Jacobian
matrix. Let v = UTh denote the transformed coordinates, in the left eigenvector basis U (the
columns of U are left eigenvectors of the matrix ∂F

∂h). In terms of these coordinates, we have:

vk+1 = v∗ + B
(
vk + v∗) + agk, (4)

where B is a diagonal matrix containing the eigenvalues of the Jacobian, and a is a vector obtained
by projecting the vector that multiplies the input

(
∂F
∂g

)
from eqn. (3) onto the left eigenvector basis.

If we have an N -dimensional state vector h, then eqn. (4) defines N independent (decoupled)
scalar equations that govern the evolution of the dynamics along each eigenvector: vk+1

j =

v∗j + βj
(
vkj + v∗j

)
+ αjg

k, where we use βj to denote the jth eigenvalue and αj is the jth com-
ponent of a in eqn. (4). Collecting constants yields the following simplified update:

vk+1
j = βjv

k
j + αjg + const., (5)

which is exactly equal to the momentum update (vk+1 = βvk + αgk), up to a (fixed) additive con-
stant. The main difference between momentum and the linearized momentum in eqn. (5) is that we
now have N different momentum timescales. Again these timescales are exactly the eigenvalues
of the Jacobian matrix from above. Moreover, we also have a way of extracting the corresponding
learning rate associated with eigenmode j, as αj . This particular optimizer (momentum with multi-
ple timescales) has been proposed under the name aggregated momentum by Lucas et al. (2018).

Taking a step back, we have drawn connections between a linearized approximation of a nonlinear
optimizer, and a form of momentum with multiple timescales. What this now allows us to do is inter-
pret the behavior of learned optimizers near fixed points through this new lens. In particular, we have
a way of translating the parameters of a dynamical system (Jacobians, eigenvalues and eigenvectors)
into more intuitive optimization parameters (learning rates and momentum timescales).

C SUPPLEMENTAL METHODS

C.1 TASKS FOR TRAINING LEARNED OPTIMIZERS

An optimization problem is specified by both the loss function to minimize and the initial parame-
ters. When training a learned optimizer (or tuning baseline optimizers), we sample this loss function
and initial condition from a distribution that defines a task. Then, when evaluating an optimizer, we
sample new optimization problems from this distribution to form a test set.

The idea is that the learned optimizer will discover useful strategies for optimizing the particular task
it was trained on. By studying the properties of optimizers trained across different tasks, we gain
insight into how different types of tasks influence the learned algorithms that underlie the operation
of the optimizer. This sheds insight on the inductive bias of learned optimizers; i.e. we want to
know what properties of tasks affect the resulting learned optimizer and whether those strategies are
useful across problem domains.

We train and analyzed learned optimizers on three distinct tasks. In order to train a learned opti-
mizer, for each task, we must repeatedly initialize and run the corresponding optimization problem

13

Under review as a conference paper at ICLR 2021

Figure 8: Schematic of a learned optimizer.

(resulting in thousands of optimization runs). Therefore we focused on simple tasks that could be
optimized within a couple hundred iterations, but still covered different types of loss surfaces: con-
vex and non-convex functions, over low- and high-dimensional parameter spaces. We also focused
on deterministic functions (whose gradients are not stochastic), to reduce variability when training
and analyzing optimizers.

Convex, quadratic: The first task consists of random linear regression problems. These are
generated by sampling random matrices A and b, and then building the quadratic loss function:
f(x) = 1

2‖Ax − b‖22. Much of our theoretical understanding of the behavior of optimization al-
gorithms can be derived using quadratic functions, in part because they have a constant Hessian
(ATA) over the entire parameter space. The choice of how to sample the problem data A and b will
generate a particular distribution of Hessians and condition numbers. The distribution of condition
numbers for our task distribution is shown in Figure 2a.

Non-convex, low-dimensional: The second task is minimizing the Rosenbrock function (Rosen-
brock, 1960), a commonly used test function for optimization. It is a non-convex function which
contains a curved valley and a single global minimum. The function is defined over two parame-
ters (x and y) as f(x, y) = (1 − x)2 + 100(y − x2)2. The distribution of problems for this task
consists of the same loss function with different initializations sampled uniformly over a grid. The
rosenbrock loss surface is shown in Figure 2b, on a log scale to highlight the curved valley. The grid
used to sample initializations is the same as the grid shown in the figure; the x-coordinate is sampled
uniformly from (-2, 2) and the y-coordinate is sampled uniformly from (-1, 3).

Non-convex, high-dimensional: The third task involves training a neural network to classify a toy
dataset, the two moons dataset. This is a 2D dataset, which is advantageous for training learned
optimizers when the entire dataset must be kept in memory. The raw dataset is shown in Figure 2c.
As the data are not linearly separable, a nonlinear classifier is required to solve the task. The op-
timization problem is to train the weights of a three hidden layer fully connected neural network,
with 64 units per layer and tanh nonlinearities, by minimizing the logistic loss. The distribution of
problems involves sampling the initial weights of the network.

C.2 TRAINING A LEARNED OPTIMIZER

We train learned optimizers that are parameterized by recurrent neural networks (RNNs). In all
of the learned optimizers presented here, we use gated recurrent unit (GRU) (Cho et al., 2014) to
parameterize the optimizer. This means that the function F in eqn. (1) is the state update function
of a GRU, and the optimizer state is the GRU state. In addition, for all of our experiments, we set
the readout function r in eqn. (2) to be linear. The parameters of the learned optimizer are now the
GRU parameters, and the weights of the linear readout. We meta-learn these parameters through a
meta-optimization procedure, described below.

In order to apply a learned optimizer, we sample an optimization problem from our task distribu-
tion, and iteratively feed in the current gradient and update the problem parameters, schematized in
Figure 5. This iterative application of an optimizer builds an unrolled computational graph, where
the number of nodes in the graph is proportional to the number of iterations of optimization (known
as the length of the unroll). This is sometimes called the inner optimization loop, to contrast it with
the outer loop that is used to update the optimizer parameters.

In order to train a learned optimizer, we first need to specify a target objective to minimize. In
this work, we use the average loss over the unrolled (inner) loop as this meta-objective. In order

14

Under review as a conference paper at ICLR 2021

RM
SP

ro
p

Mo
me

ntu
m

Ad
am

Le
ar

ne
d

0

0.5

1

1.5

M
et

a-
ob

jec
tiv

e

Linear Regression

RM
SP

ro
p

Mo
me

ntu
m

Ad
am

Le
ar

ne
d

Rosenbrock

RM
SP

ro
p

Mo
me

ntu
m

Ad
am

Le
ar

ne
d

Neural network training

Figure 9: Performance summary. Each panel shows the meta-objective (average training loss) over
64 random test problems for baseline and learned optimizers. Error bars show standard error. The
learned optimizer has the lowest (best) meta-objective on each task.

to minimize the meta-objective, we compute the gradient of the meta-objective with respect to the
optimizer weights. We do this by first running an unrolled computational graph, and then using
backpropagation through the unrolled graph in order to compute the meta-gradient.

This unrolled procedure is computationally expensive. In order to get a single meta-gradient, we
need to initialize, optimize, and then backpropagate back through an entire optimization problem.
This is why we focus on small optimization problems, that are fast to train.

Another known difficulty with this kind of meta-optimization arises from the unrolled inner loop.
In order to train optimizers on longer unrolled problems, previous studies have truncated this inner
computational graph, effectively only using pieces of it in order to compute meta-gradients. While
this saves computation, it is known that this induces bias in the resulting meta-gradients (Wu et al.,
2018; Metz et al., 2019).

To avoid this, we compute and backpropagate through fully unrolled inner computational graphs.
This places a limit on the number of steps that we can then run the inner optimization for, in this
work, we set this unroll length to 200 for all three tasks. Backpropagation through a single unrolled
optimization run gives us a single (stochastic) meta-gradient, when meta-training, we average these
over a batch size of 32.

Now that we have a procedure for computing meta-gradients, we can use these to iteratively update
parameters of the learned optimizer (the outer loop, also known as meta-optimization). We do this
using Adam as the meta-optimizer, with the default hyperparameters (except for the initial learning
rate, which was tuned via random search). In addition, we use gradient clipping (with a clip value
of five applied to each parameter independently and decay the learning rate exponentially (by a
factor of 0.8 every 500 steps) during meta-training. We added a small `2-regularization penalty to
the parameters of the learned optimizer, with a penalty strength of 10−5. We trained each learned
optimizer for a total of 5000 steps.

For each task, we ended up with a single (best performing) learned optimizer architecture. These
are the optimizers that we then analyzed, and form the basis of the results in the main text. The final
meta-objective for each learned optimizer and best tuned baselines are compared below in Figure 9.

C.3 HYPERPARAMETER SELECTION FOR BASELINE OPTIMIZERS

We tuned the hyperparameters of each baseline optimizer, separately for each task. For each com-
bination of optimizer and task, we randomly sampled 2500 hyperparameter combinations from a
grid, and selected the best one using the same meta-objective that was used for training the learned
optimizer. We ensured that the best parameters did not occur along the edge of any grid.

For momentum, we tuned the learning rate (α) and momentum timescale (β). For RMSProp, we
tuned the learning rate (α) and learning rate adaptation parameter (γ). For Adam, we tuned the

15

Under review as a conference paper at ICLR 2021

10 2 10 1 100 101 102

Learning rate ()

10 3

10 2

10 1

100

M
om

en
tu

m
 (1

-
)

Momentum

10 2 10 1 100 101 102

Learning rate ()

10 3

10 2

10 1

100

No
rm

ali
za

tio
n

(1
-

)

RMSProp

10 2 10 1 100 101 102

Learning rate ()

10 3

10 2

10 1

100

M
om

en
tu

m
 (1

-
)

Adam

10 2 100 102

Learning rate ()

10 3

10 2

10 1

100

No
rm

ali
za

tio
n

(1
-

)

Adam

0.0

0.2

0.4

0.6

0.8

1.0

Linear regression

Figure 10: Hyperparameter selection for linear regression.

10 4 10 3 10 2

Learning rate ()

10 3

10 2

10 1

100

M
om

en
tu

m
 (1

-
)

Momentum

10 4 10 3 10 2 10 1 100

Learning rate ()

10 3

10 2

10 1

100

No
rm

ali
za

tio
n

(1
-

)

RMSProp

10 4 10 3 10 2 10 1 100

Learning rate ()

10 3

10 2

10 1

100

M
om

en
tu

m
 (1

-
1)

Adam

10 4 10 3 10 2 10 1 100

Learning rate ()

10 3

10 2

10 1

100

No
rm

ali
za

tio
n

(1
-

2)

Adam

Rosenbrock

Figure 11: Hyperparameter selection for Rosenbrock.

learning rate (α), momentum (β1), and learning rate adaptation (β2) parameters. The result of these
hyperparameter runs are shown in Figures 10 (linear regression), 11 (Rosenbrock), and 12 (two
moons classification). In each of these figures, the color scale is the same — purple denotes the
optimal hyperparameters.

16

Under review as a conference paper at ICLR 2021

10 4 10 3 10 2 10 1 100

Learning rate ()

10 3

10 2

10 1

100

M
om

en
tu

m
 (1

-
)

Momentum

10 4 10 3 10 2 10 1 100

Learning rate ()

10 3

10 2

10 1

100

No
rm

ali
za

tio
n

(1
-

)

RMSProp

10 4 10 3 10 2 10 1 100

Learning rate ()

10 3

10 2

10 1

100

M
om

en
tu

m
 (1

-
1)

Adam

10 4 10 3 10 2 10 1 100

Learning rate ()

10 3

10 2

10 1

100

No
rm

ali
za

tio
n

(1
-

2)

Adam

Two Moons

Figure 12: Hyperparameter selection for training a neural network on two moons data.

17

	Introduction
	Background and related work
	Tools for analyzing optimizer behavior
	Parameter update function visualizations
	A dynamical systems perspective

	Results
	Momentum
	Gradient clipping
	Learning rate schedules
	Learning rate adaptation

	Discussion
	A learned optimizer that recovers momentum
	Linearized optimizers and aggregated momentum
	Supplemental methods
	Tasks for training learned optimizers
	Training a learned optimizer
	Hyperparameter selection for baseline optimizers

