
A Appendix Overview

In this appendix, we present:

• Axiomatic Properties of Shapley Value (Section B).

• Proofs of Equation 7 and Equation 10 (Section C).

• Hyperparameters and Implementation Details (Section D).

• Pre-Training and Evaluation Details (Section E).

• More Experiment Results on Downstream Vision-Language Generation Task (Section F).

• Further Analysis on the Image Encoder (Section G).

• More Qualitative Examples on Object Detection and Visual Grounding (Section H).

• Linear Probing Evaluation (Section I).

• Training Efficiency Discussion (Section J).

• Detailed Discussion with Some Related Works (Section K).

B Axiomatic Properties of Shapley Value

In this section, we mainly introduce the axiomatic properties of Shapley value. Weber et al. [17]
have proved that Shapley value is the unique metric that satisfies the following axioms: Linearity,
Symmetry, Dummy, and Efficiency.

Linearity Axiom. If two independent games u and v can be linearly merged into one game w(S) =
u(S) + v(S), then the Shapley value of each player i ∈ N in the new game w is the sum of Shapley
values of the player i in the game u and v, which can be formulated as:

ϕw(i|N ) = ϕu(i|N ) + ϕv(i|N ) (1)

Symmetry Axiom. Considering two players i and j in a game v, if they satisfy:

∀S ∈ N \ {i, j}, v(S ∪ {i}) = v(S ∪ {j}) (2)

then ϕv(i|N ) = ϕv(j|N ).

Dummy Axiom. The dummy player is defined as the player that has no interaction with other players.
Formally, if a player i in a game v satisfies:

∀S ∈ N \ {i}, v(S ∪ {i}) = v(S) + v({i}) (3)

then this player is defined as the dummy player. In this way, the dummy player i has no interaction
with other players, i.e., v({i}) = ϕv(i|N ).

Efficiency Axiom. The efficiency axiom ensures that the overall reward can be assigned to all players,
which can be formulated as: ∑

i∈N
ϕv(i) = v(N )− v(∅) (4)

C Proofs of Equation 7 and Equation 10

In this section, we provide detailed proofs for Equation 7 in Section 3.2.2 and Equation 10 in
Section 3.2.3.
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We first provide proof for Equation 7. The token-level Shapley interaction for Ri can be decomposed
as follows:
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We then provide proof for Equation 10. The semantics-level Shapley interaction between region i
and phrase j can be decomposed as follows:

I([Hij ]) = ϕ([Hij ]|H \ Hij ∪ {[Hij ]})− ϕ(hI
i |H \ Hij ∪ {hI

i })− ϕ(hT
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j })

(11)
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D Hyperparameters and Implementation Details

In this section, we summarize the hyperparameters in our LOUPE model in Table 1, including the
hyperparameters of the image encoder, text encoder, and pre-training process. For the uncertainty-
aware neural Shapley interaction learning module, we attempt three kinds of models (i.e., Conv1D,
3-Layer MLP + Attention, 3-Layer Transformer) to implement it for token-level and semantics-level
Shapley interaction approximation.

For token-level Shapley interaction approximation, it takes the patch token sequence X I = {xI
i }

L1
i=1,

word token sequence X T = {xT
i }

L2
i=1, and the visual region Ri = {xI

i,k}
Ki

k=1 as input, and estimates
the corresponding token-level Shapley interaction value for Ri along with the uncertainty σ.

Conv1D model first performs Avg-Pooling over learned patch representations of Ri to obtain
the region representation hI

i , and then fuse the word and patch token representations with the region
representation hI

i , respectively. Specifically, we project them into an unified semantic space by
fully-connected layers and then fuse them through Hadamard product as:

FI = (W1h
I
i 1

T )⊙ (W2X I) (15)

where W1 and W2 are the learnable projection parameters, 1T is the transpose of an all-ones vector,
and ⊙ represents Hadamard product. We can obtain FT in a similar manner. Then, we apply 1D
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Table 1: A summary of various hyperparameters in LOUPE.
Hyperparameter Value

Image Encoder - Swin-L
input image size 224× 224
stage 1 - patch size 4× 4
stage 1 - hidden size 192
stage 1 - window size 7× 7
stage 1 - number of heads 6
stage 2 - patch size 8× 8
stage 2 - hidden size 384
stage 2 - window size 7× 7
stage 2 - number of heads 12
stage 3 - patch size 16× 16
stage 3 - hidden size 768
stage 3 - window size 7× 7
stage 3 - number of heads 24
stage 4 - patch size 32× 32
stage 4 - hidden size 1536
stage 4 - window size 7× 7
stage 4 - number of heads 48

Text Encoder - BERT-Small
maximum length of word tokens 60
vocabulary size 30522
attention dropout probability 0.1
hidden activation function GELU
hidden dropout probability 0.1
initializer range 0.02
intermediate size 2048
layer norm eps 1e−12

hidden size 512
number of attention heads 8
number of hidden layers 4

Pre-Training
number of epochs 20
batch size 512
learning rate 2e-4
learning schedule OneCycle
cycle momentum Ture
base momentum 0.85
max momentum 0.95
AdamW weight decay 0.01
AdamW β1 0.9
AdamW β2 0.999

convolution operation with kernel size = 4 and stride = 2 over FI and FT , respectively. Following
with Max-Pooling operation, we obtain f̃ I ∈ Rd and f̃T ∈ Rd. Next, we concatenate them
with hI

i and feed them to two separate 1-layer fully connected layers to get the Shapley interaction
estimation and corresponding uncertainty.

3-Layer MLP + Attention model first performs Avg-Pooling over learned patch representations
of Ri to obtain the region representation hI

i . Then, we use hI
i as the query to attend the patch token

sequence and compute a weighted sum of the patch token representations as:

α̃I
j =W3(tanh(W4h

I
i +W5x

I
j )) (16)

αI =softmax([α̃I
1, ..., α̃

I
L1
]) (17)

eI =
∑
j=1

αI
ix

I
j (18)
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Where L1 is the number of patch tokens. We can obtain eT for word token sequence in a similar
manner. Consequently, we concatenate them and hI

i and feed them to two separate 3-layer fully
connected layers to get the Shapley interaction estimation and corresponding uncertainty.

3-Layer Transformer model takes the concatenated sequence X I and X T as input. We add position
embeddings and three kinds of token type embeddings (i.e., word token, context patch token, region
patch token) to them. We then apply three layers of transformer blocks to jointly encode the
input sequence and take the output [CLS] token to predict the Shapley interaction estimation and
corresponding uncertainty, separately.

For semantics-level Shapley interaction approximation, it takes the M regions HI = {hI
i }Mi=1, N

phrases HT = {hT
j }Nj=1, and the target region-phrase pair < hI

i ,h
T
j > as input, and estimates the

corresponding semantics-level Shapley interaction value for < hI
i ,h

T
j > along with the uncertainty σ.

The architectures of the three models are consistent with their token-level implementations.

E Pre-Training and Evaluation Details

E.1 Pre-Training Dataset Details

As recent works [6, 14, 18] have shown that pre-training models can obtain great performance gain
by scaling up the dataset, we construct a large-scale dataset, which consists of 240 million image-text
pairs and covers a broad set of visual concepts. Concretely, we elaborate more details in the following.

Raw image-text pair collection. We first harvest large-scale noisy image-text pairs from the web
and design multiple filtering rules to improve the quality of the web data.

Image-based filtering. Following ALIGN [6], we remove pornographic images and keep only
images where both dimensions are larger than 200 pixels. Also, we remove the images whose aspect
ratio is larger than 10. To prevent from leaking testing data, we remove the images that appear in all
downstream evaluation datasets (e.g., MSCOCO, Flickr30K).

Text-based filtering. We remove the repeated captions and keep only English texts. The texts that
are shorter than 3 words or longer than 100 words are discarded. As ALIGN [6], we also remove the
texts that contain any rare token (outside of 100 million most frequent unigrams and bigrams from
the raw dataset).

Joint image-text filtering. Although the above filtering rules have filtered out many noisy data, it is
hard to detect the mismatched image-text pairs, where the texts do not accurately describe the visual
content of the images, resulting in undesirable noisy signals to vision-language pre-training. Inspired
by BLIP [9], we train a discriminator as a filtering model to predict whether the text is matched to the
image. Specifically, the filtering model consists of an image encoder and an image-grounded text
encoder, which takes the cross-attention to fuse image features and text features. The filtering model
is trained on CC12M dataset using image-text contrastive loss and image-text matching loss.

E.2 Evaluation Details

Zero-Shot Image-Text Retrieval. We evaluate the zero-shot performance of LOUPE on the image-
text retrieval task over the widely used Flickr30K [13] and MSCOCO [11] datasets. The image-text
retrieval consists of two subtasks: image-to-text retrieval and text-to-image retrieval, where a model
is required to identify an image from candidates given a caption describing its content, or vice
versa. The MSCOCO dataset consists of 123,287 images, and each image is aligned with five
captions. The Flickr30K dataset contains 31,783 images and five captions for each image. Following
previous works [6, 18], we evaluate the zero-shot performance on the 1K and 5K test sets of
Flickr30K and MSCOCO, respectively. We take the final representation of [CLS] tokens as the
global representations of images and texts, and use them to measure the image-text similarity. We
first compute the similarity scores for all image-text pairs. Then, we take the top-K candidates for
ranking and report the top-K retrieval results.

Zero-Shot Transfer to Object Detection. Without any fine-tuning, we evaluate the zero-shot transfer
performance of LOUPE on the object detection task [16] over the COCO [11] and PASCAL VOC [4]
datasets. For the COCO Objects dataset, we use their 2017 validation split for evaluation. Previous
zero-shot object detection models [2, 15, 24] follow the split proposed by [2], which consists of 48
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Table 2: Image captioning evaluation results on COCO “Karpathy” test split.
Image Captioning

BLEU@4 METEOR CIDEr SPICE
VLP [23] 36.5 28.4 117.7 21.3
OSCARlarge [10] 37.4 30.7 127.8 23.5
VinVLlarge [21] 38.5 30.4 130.8 23.4
BLIPViT−L [9] 40.4 - 136.7 -
LEMONlarge [5] 40.6 30.4 135.7 23.5
LOUPE 40.9 31.5 137.8 24.3

base classes and 17 novel classes. They train models on base classes and evaluate models on novel
classes. Differently, we directly evaluate the zero-shot transfer performance on both the base and
novel classes, without fine-tuning on the base classes. Totally, we evaluate models on 4,836 test
images that contain 33,152 instances of 65 classes. PASCAL VOC is a widely used object detection
dataset, which contains 20 object classes. For PASCAL VOC, we evaluate models on 9657 instances
of 5072 images. To complete object detection, we first use the region generation module to generate
a set of candidate regions and then use prompt text (i.e., an image of [object class name].) to expand
each detection label to a sentence. Next, we encode sentences for each object class by the learned text
encoder and measure their similarity with the candidate regions as the classification scores. Following
most zero-shot object detection methods, we use mean Average Precision (mAP) at IoU of {0.3, 0.5}
as evaluation metrics.

Zero-Shot Transfer to Visual Grounding. Visual grounding [19] (also known as phrase localization
and referring expression comprehension) aims to locate a specific visual region of the input image,
according to the language referring expression. Visual grounding can be seen as generalized object
detection, where the pre-defined class labels are replaced by language referring expression sentences.
Without any fine-tuning, we evaluate the zero-shot transfer performance of LOUPE on the visual
grounding task over the RefCOCO [19] and RefCOCO+ [19] datasets. These two datasets are
collected by the ReferitGame [7], where a player is asked to write a language expression to refer to a
specific object in the image, and another player is required to locate the target object given the image
and the referring expression. RefCOCO dataset consists of 142,209 refer expressions for 50,000
objects in 19,994 images, which is split into train (120,624 expressions), val (10,834 expressions),
testA (5,657 expressions), testB (5,095 expressions) sets. The images in testA set involve multiple
persons and the images in testB set involve multiple objects. RefCOCO+ dataset consists of 141,564
expressions for 49,856 objects in 19,992 images, which is split into train (120,191 expressions),
val (10,758 expressions), testA (5,726 expressions), testB (4,889 expressions) sets. We report the
zero-shot transfer performance on the val, testA, and testB sets of both datasets.

F More Experiment Results on Vision-Language Generation Task

To further validate the generalization ability of the learned cross-modal representations by our LOUPE,
we adapt the pre-trained LOUPE to vision-language generation task, i.e., image captioning [1]. Image
captioning is the task of describing images with natural languages, which requires models to identify
and describe the fine-grained semantics of images. The input images are encoded by the learned
image encoder. As BLIP [9], we train an image-grounded text decoder which shares the feed forward
layers with the learned text encoder and adopts cross-attention to attend to the image features. The
text decoder is trained with a language modeling loss to generate captions according to the images.

We evaluate the image captioning performance on the MSCOCO [11] dataset, which is split into
train (113, 287 images), val (5,000 images), “Karpathy” test split (5,000 images). Each image
has 5 captions. We use the train split to train the image-grounded text decoder and report the
performance on the public “Karpath” 5k test split. Following standard metrics, we use BLEU@4,
METEOR, CIDEr, and SPICE as evaluation metrics. We compare our LOUPE model with recent
vision-language pre-training generation models [5, 9, 10, 21, 23]. All methods are fine-tuned with
cross-entropy loss only, without CIDEr optimization. As shown in Table 2, our LOUPE achieves
competitive performance on all metrics, which verifies the strong generalization ability of our model
on downstream vision-language generation tasks.
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Table 3: Further ablation results (R@1) with respect to different image encoders.

Image Encoder Flickr30K MSCOCO
image-to-text text-to-image image-to-text text-to-image

1 ALIGN [6] EfficientNet 88.6 75.7 58.6 45.6
2 FILIP [18] ViT-L 89.8 75.0 61.3 45.9
3 CLIP [14] ViT-L 88.0 68.7 58.4 37.8
4 CLIP∗ Swin-L 88.7 74.3 59.3 46.2
5 LOUPE Swin-L 90.5 76.3 62.3 50.1

Figure 1: Qualitative examples of object detection on COCO Objects dataset.

Figure 2: Qualitative examples of object detection on PASCAL VOC dataset.

G Further Analysis on the Image Encoder
In our work, we adopt the Swin-L [12] as our image encoder due to the following considerations.
(1) The shifted windowing scheme of Swin Transformer achieves linear computational complexity
with respect to image size, which is more efficient than ViT [3]. This merit is particularly beneficial to
the vision-language pre-training as we need to process large-scale images (240M). (2) The hierarchical
architecture of Swin Transformer is more flexible to model semantic regions at various scales.

To further verify the performance gain from our proposed fine-grained semantically aligned vision-
language pre-training framework, we implement a variant version of CLIP that adopts Swin-L as
the image encoder (Row 4 in Table 3), using the same training dataset as our LOUPE. It can also be
viewed as the backbone of our LUOPE (without optimization from our token-level and semantics-
level Shapley interaction modeling). As shown in Table 3, comparing CLIP∗ with CLIP, the Swin-L
image encoder does bring some improvements over CLIP. However, there is still a clear performance
gap between CLIP∗ and our LOUPE. With the same architecture, our LOUPE has 2.68 points higher
average R@1 than the CLIP∗ over two datasets. This further verifies that the main performance gain
comes from our proposed fine-grained semantically aligned vision-language pre-training framework.
Notably, we observe that the text-to-image retrieval of our implementation is obviously higher than
CLIP. This phenomenon has also been confirmed by [6, 18] (see Row 1 and Row 2 in Table 3). We
suppose that it might be caused by some training details or the dataset collection of CLIP.

H More Qualitative Examples on Object Detection and Visual Grounding
For a more intuitive view of the performance of our model on object detection and visual grounding,
we visualize more qualitative examples. Concretely, Figure 1 and Figure 2 show more object detection
examples on the COCO [11] and PASCAL VOC [4] datasets. Figure 3 and Figure 4 show more visual
grounding examples on the RefCOCO [19] and RefCOCO+ [19] datasets.
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2. giraffe head near boy
1. left part of suitcase
2. part of suitcase that cat is sitting in

1. girl heading towards man in red shirt
2. man in red 3. player

1. giraffe neck on the left

Figure 3: Qualitative examples of visual grounding on RefCOCO dataset.

2. a man catching a frisbee
1. black shirt player

2. woman
1. man with a brown jacket 1. white clothing guy

2. black shirt guy

Figure 4: Qualitative examples of visual grounding on RefCOCO+ dataset.

Table 4: Linear probing performance (top-1 accuracy) over 11 datasets.
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CLIP 98.0 95.2 90.9 81.8 99.2 46.4 72.9 69.4 95.1 96.5 83.9
LOUPE 97.6 96.0 92.1 82.6 99.5 49.3 70.7 80.2 95.5 97.5 85.7

Table 5: Comparison of training cost and architecture parameters.
Pre-Training Image-Text Pairs Parameters GPUs Days GPU Days

CLIP 400M 425M 256 V100 12 days 3072
ALIGN 1800M 820M 1024 TPUv3 - -
FILIP 340M 417M 192 V100 24 days 4608
LOUPE 240M 226M 128 V100 20 days 2560

I Linear Probing Evaluation

In this section, we evaluate the linear probing performance of our LOUPE on image classification.
Following the same evaluation setting as CLIP [14], we freeze the whole backbone network and only
fine-tuning the last linear classification layer, which takes the [CLS] token as input. We report the
linear probing performance over 11 datasets in Table 4. Our LOUPE outperforms CLIP with average
improvement of 1.6%. Notably, on ImageNet, the largest dataset among 11 datasets, our LOUPE
surpasses CLIP by 1.8%.

J Training Efficiency Discussion

Although our proposed Shapley interaction modeling increases the training time per iteration, it
enables our model to converge with fewer total iterations by encouraging our model to learn fine-

7



grained region-phrase alignment beyond coarse image-text alignment. As shown in Table 5, our
LOUPE achieves the best performance while using relatively small GPU days (128 GPUs × 20 days).

Indeed, the proposed Shapley interaction modeling increases the training time per iteration, but it
enables our model to learn fine-grained region-phrase alignment from raw image-text pairs without
any object-level human annotations. Our LOUPE can be used as a zero-shot object detector without
any fine-tuning. Compared with the expensive cost of human annotations, the increased training time
might be acceptable. Meanwhile, manual annotations for extremely diverse object categories in the
real world are unscalable and even impossible while our model demonstrates a promising alternative,
that is, learning fine-grained semantics from raw texts about images, which are easily available and
contain a broader set of visual concepts. For example, the right case of Figure 4 in the main paper
shows that LOUPE successfully recognizes the leash region and aligns it with the “a leash” phrase.
Note that the “leash” category has never appeared in any existing object detection datasets.

On the other hand, our method is much more efficient than methods that rely on off-the-shelf object
detectors (e.g., Faster R-CNN) to extract visual features. Recent studies [8, 18] have noticed that
extracting visual features using object detectors greatly slows down the training (about 20 FPS per
GPU) and requires more GPU memory. Thus, our model avoids such a heavy burden while being
able to identify semantic-rich visual regions without any pre-training detectors or human annotations.

Methods

Coarse-
grained 

image-text 
alignment

Fine-grained 
region-
phrase 

alignment

Ways to learn fine-grained 
region-phrase alignment

CLIP, ALIGN, 
DeCLIP

- -

ImageBERT, 
UNITER, 
FILIP, ViLT, 
ALBEF

Implicit supversion signals from 
end-to-end training (e.g., Image-

Text Contrastive loss)

GLIP, X-VLM, 
RegionCLIP

Human bounding-box annotations 
and supervised pre-trained Region 

Proposal Network

LOUPE
Explicit alignment information 
quantified by game-theoretic 

interactions

the RPN can only detect regions belonging to the pre-defined categories of pre-training object
detection datasets. Thus, the methods that use human bounding-box annotations or pre-
trained RPN usually suffer from detecting novel objects beyond the pre-defined categories. In
contrast, our LOUPE learns from large-scale raw image-text pairs, which are more scalable and
contain a broader set of visual concepts. For example, as shown in the right case of Figure 4,
LOUPE successfully recognizes the leash region and aligns it with the “a leash” phrase. Note that
the “leash” category has never appeared in any existing object detection datasets. We will
include these analyses in the next version according to your valuable suggestion.

Q2: The reviewer is unclear how Shapley value could be used as soft pseudo labels. For
example, in line 180, the paper mentions that the game score v1, which is used to
compute the Shapley interaction, is the similarity between image and text. However, it
appears that the paper does not mention any training phase for learning image-textual
similarity. Then how would this similarity be computed correctly? Are there any
pretraining phases or pretrained models employed for similarity computation?

A2: We appreciate the reviewer's concern about the reliability of Shapley value. As you nicely
point out, the reliability of Shapley value depends on the performance of computing image-text
similarity. In practice, we first pre-train the image encoder and text encoder only based on the
image-text contrastive loss in the first epoch and add Shapley interaction modeling in the
remaining epochs. Also, the zero-shot transfer performances on object detection and visual
grounding verify the reliability of Shapley value. We will clarify this in the next version.

Q3: The paper lacks convincing motivation on why using Shapley value instead of token-
wise alignment (FILIP [42]) is beneficial. Although in lines 97-99, the paper mentions that
FILIP has quadratic complexity, the proposed method also suffers from combinatorial
complexity, which could be worse.

Figure 5: Comparison of the LOUPE with existing methods.

K Detailed Discussion with Some Related Works

In this section, we first provide comparison table to highlight key differences of our LOUPE with
various methods. Then, we provide a detailed discussion with three recent works (i.e., FILIP [18],
RegionCLIP [22], X-VLM [20]), which also investigate fine-grained semantic alignment.

We highlight key differences in Figure 5. Our LOUPE differs as it explicitly learns fine-grained
region-phrase alignment from the novel perspective of game-theoretic interactions, without resorting
to any object-level human annotations and pre-trained Region Proposal Network (RPN). Notably, the
human bounding-box annotations are usually limited to the pre-defined object categories, and the
RPN can only detect regions belonging to the pre-defined categories of pre-training object detection
datasets. Thus, the methods that use human bounding-box annotations or pre-trained RPN usually
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suffer from detecting novel objects beyond the pre-defined categories while LOUPE learns from
large-scale raw image-text pairs, which are more scalable and contain a broader set of visual concepts.

Compared with FILIP, the superiorities of using Shapley Interaction modeling are mainly three-fold:
1) We suppose that directly computing token-wise alignment between every patch token and word
token is not efficient and meaningful because an individual word token or patch token might not
contain complete semantics. A semantic-rich phrase (e.g., “a girl in a blue coat”) usually consists of
multiple words, and its corresponding visual region is composed of multiple patches. Also, some
words (e.g., "is", "the") and patches (e.g., background pixels) are not meaningful. Based on this
insight, our LOUPE differs as we first propose token-level Shapley interaction modeling to aggregate
patches into semantic-meaningful regions, and then introduce semantics-level Shapley interaction
modeling to explicitly model the fine-grained semantic alignment between semantic-meaningful
regions and phrases. 2) Although FILIP computes token-wise similarity to simulate the fine-grained
alignment, it can only learn implicit alignment from the supervision of image-text contrastive loss,
lacking training signals to explicitly encourage semantic alignment between visual regions and textual
phrases. In contrast, our Shapley interaction modeling provides explicit supervision signals (e.g.,
the alignment matrices visualized in Figure 4) to learn the fine-grained alignment. The consistently
superior performance of our LOUPE than FILIP over all metrics also demonstrates the benefit of
explicit fine-grained alignment learning. 3) FILIP can not be directly applied to object detection and
visual grounding through implicit token-wise alignment learning while our LOUPE can immediately
transfer to these tasks without any fine-tuning. It is because the proposed Shapley interaction modeling
enables our model to identify semantic regions and align these regions with language. As shown in
Table 2, without any bounding-box annotations and fine-tuning, our LOUPE achieves competitive
performance across four object detection and visual grounding benchmarks.

Our LOUPE is different from RegionCLIP in the following aspects: 1) RegionCLIP uses pre-trained
Region Proposal Network (RPN) to detect regions in images. However, RPN is usually pre-trained on
pre-defined object categories (e.g., 80 classes for MSCOCO), which can not cover extensive categories
of objects in the large-scale pre-training dataset. Furthermore, since the RPN casts excessive demand
on memory and computation, existing methods (i.e., RegionCLIP) usually fix the parameters of RPN
and regard region detection as pre-processing step, disconnected with vision-language pre-training.
Thus, the performance of RegionCLIP is also restricted by the quality of the RPN. In contrast, our
LOUPE learns to identify semantic regions of images by token-level Shapley interaction modeling,
which is more scalable and enables our LOUPE to learn a broader set of visual concepts from
large-scale pre-training dataset. 2) RegionCLIP constructs a pool of object concepts from image-text
corpus and aligns visual regions with these concepts. These concepts are usually individual nouns
(e.g., boy, kite, bus). In contrast, our LOUPE focuses on phrases that involve rich context (e.g., "a boy
running on the grass"). By aligning visual regions with phrases that contain rich semantic context,
our LOUPE can learn a boarder set of visual concepts (e.g., objects, actions, relations) from the
large-scale pre-training dataset.

As for X-VLM, the main differences lie in three-fold: 1) X-VLM is trained on well-annotated datasets,
where regions with bounding-box annotations are provided and each of them is associated with a
description text. Such a manner is time-consuming and hard to scale to larger raw image-text data
from the web. Our LOUPE differs as we are trained on noisy image-text pairs from the Internet. 2) X-
VLM takes ground-truth regions as input and is trained to predict the bounding-box supervised by the
regression loss on the ground-truth coordinates. In contrast, our LOUPE learns to identify semantic
regions of images without such strong supervision signals from human annotations. 3) X-VLM has
ground-truth alignment information between regions and their corresponding description texts, which
provide strong supervision signals for region-text matching. By comparison, our LOUPE learns the
fine-grained region-phrase alignment from game-theoretic interactions.
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