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We organize the supplementary materials as follows:

* In Appendix |A] we provide a detailed description of our dataset, including RGB images,
thermal images, and Multi-Spectral Dynamic Imaging (MSX) images |Abdullah| (2023) for
each scene, as well as the training and testing set divisions and relevant temperature ranges.

* In Appendix B} we provide a discussion on the limitations of this work.

* In Appendix |C| we provide a discussion on its applicability.

* In Appendix [D] we provide a discussion on potential future work.

* In Appendix [E] we provide additional detailed results for rendering thermal images.
* In Appendix [F] we include more detailed results for rendering RGB images.

* In Appendix|G| We conducted comparative experiments using different modalities and mul-
timodal images as input to estimate camera poses.

¢ In addition, we have included the code for this work in the folder named “ThermalGaus-
sian_code.zip.” Upon acceptance of the paper, we will make the code and dataset publicly
available.

A SELF-COLLECTED THERAML DATASET: RGBT-SCENES

As shown in table [T] and table 2] We present our dataset, which includes data from ten different
scenes. This dataset contains RGB images, thermal images, and MSX images |Abdullahl (2023).
Similarly to 3DGSKerbl et al.| (2023), we select one image from every eight for testing, with the
remaining images used for training. We also provide the temperature range for the pseudo-color
rendering of the thermal images.

Our dataset features scenes with varying object sizes, from large buildings and medium-sized trucks
to small everyday items. It encompasses both typical daily environments and certain industrial
settings. The dataset includes temperature variations ranging from a 300°C difference to a 4°C
difference and covers both 360-degree and forward-facing scenarios.

This dataset utilizes the FLIR E6 Pro camera, which captures thermal images at a resolution of
240x180 pixels. The temperature measurement accuracy is #2°C, with an optical wavelength range
of 7.5-13 pm and a temperature detection range of -20°C to 500°C. During image capture, we fixed
the maximum and minimum temperatures for each scene to ensure consistent temperature readings
and color representation when capturing the same location from different viewpoints.

We showcase some dynamic scenes on the anonymized website: ThermalGaussian

B LIMITATIONS

Our work builds upon the 3DGS framework to enhance multimodal and thermal field reconstruction
capabilities. However, like most approaches based on 3DGS or designed for static scene reconstruc-
tion, it faces significant challenges in handling dynamic scenes, highly reflective environments, and
extremely low-texture scenarios.

In many practical applications of 3D reconstruction, real-time processing is a desirable feature.
While our method, like other 3DGS-based approaches, supports real-time novel view rendering, it
cannot yet achieve real-time scene reconstruction. Additionally, due to the limitations of infrared


https://thermalgaussian.github.io/

Table 1: Each scene in the RGBT-Scenes dataset is displayed

Scene Thermal views Temp. range
Dimsum 134(train) 23.1°C
20(test)  60.0°C
Daily Stuff 68(train)  17.5°C
10(test)  56.3°C
Electric Bicycle 42(train) 14.5°C
6(test) 18.5°C
Roadblock 62(train)  22.0°C
9(test) 27.0°C
Truck 64(train)  30.6°C
9(test) 249.0°C
Rotary Kiln 92(train)  5.0°C
14 (test) 60.4°C
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Building T T T 238(train) 15.0°C
iyl 35(test)  24.0°C
Iron ingot 53(train)  38.0°C
8(test) 350.0°C
Parterre 57(train)  19.5°C
9(test) 27.5°C
Landscape 90(train)  16.0°C
13(test)  23.0°C




Table 2: Each scene in the expanded RGBT-Scenes dataset is displayed

Scene RGB Thermal MSX view Temp. range

Glass Cup 123(train) 17.0°C

18(test)  36.6°C

Transmission Tower 154(train) -26.4°C

23(test)  23.7°C

Dark Scene 75(train)  17.5°C
11(test)  21.6°C
Plant Equipment 192(train) 27.8°C

28(test)  54.9°C

thermal imaging, which can only measure the temperature of solid surfaces, our method is currently
restricted to reconstructing and measuring surface temperatures rather than estimating temperatures
at arbitrary points in space.

C APPLICABILITY

In Section 2.1, we briefly mentioned some applications of thermal imaging. We believe that any
application requiring thermal imaging could benefit from establishing a 3D thermal field for better
observation and analysis of temperature distributions. For example:

1. Building energy analysis: Reconstructing the 3D thermal field of a building can assist in evaluat-
ing energy efficiency.

2. Battlefield analysis: Combining 3D thermal and RGB reconstructions of localized battlefield
scenarios can aid in strategic planning.

3. Equipment monitoring: Reconstructing 3D thermal fields for high-voltage power equipment or
high-temperature devices can improve fault prevention and diagnosis.

4. Fire rescue: Reconstructing the 3D thermal field of fire scenes can help rescue teams devise
optimal rescue strategies to save lives.

D FUTURE WORK

This work is not only a 3D reconstruction of temperature fields but also a multi-modal 3D recon-
struction study. In the future, we can delve deeper into temperature field reconstruction for practical
applications while also exploring 3D reconstruction in other modalities.

1. Future directions for 3D thermal field reconstruction: Currently, our method is limited to recon-
structing surface temperatures. In future work, we aim to explore the reconstruction of non-surface
thermal fields, including phenomena like flames. High-resolution thermal imaging devices are ex-
pensive, whereas high-resolution RGB cameras are more affordable. We plan to investigate methods
for guiding low-resolution thermal image reconstruction using high-resolution RGB images, achiev-
ing results comparable to high-resolution thermal imaging while significantly reducing application
costs. Many thermal processes are dynamic. To better analyze such processes, we plan to extend
our work to dynamic thermal field reconstruction.



2. Future directions for multimodal reconstruction: With the advancement of technologies like the
metaverse and digital twins, more objects will be digitized through 3D reconstruction. For realis-
tic reconstruction, it is necessary to include not only geometric and color modalities but also other
critical modalities, such as temperature and pressure in chemical digital twin applications. We antic-
ipate that multimodal 3D reconstruction will become an increasingly important research direction.
Moreover, multimodal reconstruction enables complementary advantages, where one modality can
compensate for the limitations of another. For instance, while RGB images are less effective in
low-light conditions, thermal infrared imaging remains largely unaffected. Exploring how thermal
cameras can enhance nighttime 3D reconstruction is an interesting future research topic.

Meanwhile, hyperspectral imaging has extensive applications in agriculture and other fields. Future
work could explore multi-modal 3D reconstruction in additional modalities.

E QUALITATIVE EVALUATION OF THERMAL IMAGES

As shown in Figure 1, we present qualitative results comparing three different multimodal Gaussian
models with direct 3DGS training using thermal images based on multimodal initialization(MI).
The comparison shows that incorporating the color modality into multimodal training results in
significant improvements in many scenes.
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Figure 1: We present qualitative comparison results of our three multimodal Gaussian models and
3DGS+MI in rendering thermal images.

F QUALITATIVE EVALUATION OF RGB IMAGES

Our method not only enhances the rendering quality of thermal images but also improves the quality
of RGB images in certain scenes, as shown in Figure 2. This improvement is particularly notable
in low-light conditions and scenarios where distinguishing between foreground and background is
challenging. By leveraging the thermal modality, we achieve better RGB rendering quality. Addi-
tionally, some other scenes also partial improvements.
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Figure 2: We present qualitative results comparing our method and 3DGS [Kerbl et al.| (2023) in
rendering RGB images.

G QUALITATIVE EVALUATION OF RGB IMAGES

We tested different input images from Sec. 3.2 across several scenes to estimate camera poses.
Subsequently, these poses were used in the baseline 3DGS for thermal field reconstruction. The
quality of the estimated poses was evaluated by comparing the PSNR values of the reconstructed
thermal images from novel views. As shown in table[3] the experiments demonstrate that mixing the
aligned color and thermal modality images with 5 = 0.5 produces the most accurate camera poses.

Table 3: Comparison of different input images for camera pose estimation.

Initialization Modality Ebike Iron Ingot Rotary Kiln parterre

RGB 20.89 29.57 26.59 22.09
Mix(8 = 0.3) 21.09 30.15 27.11 23.02
Mix(8 = 0.5) 22.77 30.45 27.35 24.18
Mix(8 = 0.7) X 12.34 27.78 22.17

Thermal X X X X

MSX 22.20 29.94 27.30 24.02
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