Under review as a conference paper at ICLR 2025

ITERATIVE TRAINING OF PHYSICS-INFORMED
NEURAL NETWORKS WITH FOURIER-ENHANCED
FEATURES

Anonymous authors
Paper under double-blind review

A CONTENTS

We organize this supplementary document as follows:

* Section B provides the formulation for the QP problem and proof of Proposition 1.
 Section C provides the proofs for the convergence analysis of our method.

* Section D provides the proofs for the projection error analysis of our method.

* Section E details the hyperparameter settings of our method.

* Section F describes the experimental setup for all PDEs, models, and datasets.

* Section G presents additional results considered in our numerical experiments.

B QP FORMULATION DETAILS AND PROOF OF PROPOSITION 1

Let X, = (z,,,...x)") € RN«*" be boundary collocation points and X; = (z7},... x]fvf) €
RY7 %" be interior collocation points. We define
* B,(w) € RN«*2D with rows B[ypoh,](zf) " € R™ fori = 1,..., N, as boundary values;

* G, € RNv withrows g(2)" € R" fori = 1,..., N, as boundary measurement;
¢ Ry(w) € RN7*2P with rows §[¢) o hw](l})—r fori =1,..., Ny as residual values;

« F; € RN with rows f(a:éc)T fori=1,..., Ny as source terms.

Note that the linearity of the B and § operators leads to Bu., ¢](X,) = B0 and F|uw, ¢](Xs) =
R 6. Consequently, using the standard PIML loss with boundary and PDE residual terms, we get:

() = HB )6~ Gul’ +7HRf )6 — Fy||" M

The loss expands to the quadratic form

1l 2 g 2A\LL T 2 T 2MLL 7
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Q) = 1 Bule) Bale) + Ry ) Ry ), ) = Bl G~ Ry () By

leads to Liower (0 | w) = %QTQ(W)Q + ¢(w) T+ b, where b is a constant term and Ar, is the physics
weight used in the lower-level problem.
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B.1 ANALYSIS OF THE RANK CONDITION AND REGULARIZATION OF PROPOSITION 1

The positive semi-definiteness of Q(w) follows from the factorization Q(w) = M (w) ' M(w) €
R2P*2D " with the stacked design matrices M (w) as follows:

\/73
M Rp(w)

where A > 0is always ensured. Then we have rank(Q(w)) = rank(M (w)). Hence, Q(w) is strictly
positive definite if and only if M (w) has full column rank, i.e.,

rank(M(w)) = 2D. 3)

The loss Liower(f | w) becomes then strongly convex, and its minimization has a unique solution
0 = —-Q 'c

The rank condition in equation 3 imposes a fundamental constraint: for the stacked design matrix
M e RWutNs)x2D t4 have full column rank 2D, it is necessary that the number of rows is at least

as large as the number of columns. This leads to the critical requirement on the number of sampling
points: Ny, + Ny > 2D.

When this condition is violated (i.e., IV, + Ny < 2D), the system becomes underdetermined.
This directly causes the matrix Q(w) to be rank-deficient. Consequently, the lower-level problem
becomes ill-posed, lacking a unique solution as Q' does not exist. This might lead to an aliased
solution (especially true when we add a Tikhonov regularization).

A more subtle cause of rank deficiency occurs even when N, + Ny > 2D. This happens if the col-
location points provide redundant information, failing to create 2D linearly independent constraints.
Such a situation can arise from geometrically poor sampling (e.g., points lying on nodal lines of the
basis functions) or from inherent redundancies in the randomly generated RFF basis itself (e.g., two
different random vectors being nearly parallel). In these scenarios, although the design matrix M
has enough rows, its columns remain linearly dependent, leading to a singular or, more commonly,
a numerically ill-conditioned matrix ). However, if D is large, a solution might be to just discard
these redundancies while still keeping the same feature space Hrrr (see equation 8 of the main
paper).

To resolve this, we employ Tikhonov regularization, modifying the matrix to Qreg (w) = Q(w)+71,
where v > 0 is a small regularization parameter. This ensures Qg is always positive definite and
invertible, since for any non-zero 6, the quadratic form 67 Q.6 = 07 Q0++||0||? is strictly positive.
The lower-level problem thus regains a unique, stable solution

0*(w) = —(Qw) + 1)~ c(w). )

This analysis reveals a fundamental trade-off: while increasing D enhances representational power,
it demands proportionally more sampling points to maintain a well-posed system. When the sam-
pling budget is limited, Tikhonov regularization provides a principled remedy to ensure algorithmic
stability, at the cost of introducing a slight bias to the solution.

C PROOFS OF CONVERGENCE ANALYSIS

C.1 HYPERGRADIENT DERIVATION VIA IMPLICIT FUNCTION THEOREM (IFT)

The hypergradient V, £,pper(w) is computed using the chain rule, where the Implicit Function The-
orem (IFT) provides the Jacobian of the lower-level solution map 6*(w).

The lower-level optimality condition is F'(6*,w) := Q(w)8* — ¢(w) = 0. Taking the total derivative
with respect to w yields

or o oF
00T dwT  dwT
Solving for the J acoblan glves
9" _ _ fLF Por o)t (2@ o))
OwT 007 Oow’ AT O T
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The full hypergradient is then obtained by the chain rule
asupper 00* ’ 8£upper
Votuper@) = =5 =+ 57 ) a9 )
Substituting the expression for the Jacobian, we get
Oupe _ (D(Q)) _ 06(w)\" 108
Ow OwT OwT a0

This provides a computable formula for the gradient used in the upper-level optimization.

Vi Lupper(w) =

C.2 PROOF OF PROPOSITION 2

We first state the key properties required for our convergence analysis.

Assumption 1 (Smoothness and Boundedness Properties). The bi-level optimization problem satis-
fies the following regularity conditions:

1. The functions Q(w) and ¢(w) are continuously differentiable with respect to w. The upper-
level loss Lupper (6, w) is continuously differentiable with respect to both ¢ and w.

2. The lower-level problem is p-strongly convex, i.e., Q(w) = I for some constant 1 > 0.

3. The objective function 2upper(w) is bounded below by a scalar £;s.

Assumption 2 (L-Smoothness of the Hypergradient). The upper-level objective function £pper(w) is
L-smooth, a standard assumption in gradient-based optimization analysis. This means its gradient,
the hypergradient V, £upper (W), is Lipschitz continuous with constant L > 0:

IV oo Lupper (W1) — Vo Lupper(w2)|| < Lljws — wa||, Vwr,ws € RE. (6)

These assumptions trivially hold when neural network activation functions are Lipschitz continuous
and the loss function is smooth, which is satisfied by our choice of tanh activations with MSE losses.

Proof. Since £ower 18 strongly convex and differentiable with respect to @, the unique optimal solu-
tion 6* (w) is found by setting the gradient to zero:

veglower(e*(w)) = Q(w)e*(W) — C(OJ) =0. (7)
This gives the closed-form solution showed in Proposition 1 that
0" (w) = Qw)e(w). @®)

Then consider two parameter vectors wy, wo from a compact set YW. We want to bound the norm of
the difference ||6* (w;1) — 6*(w2)||. This follows the structure from your provided image:

16% (w1) — 0% (w2)[| = [|Q(w1) " e(wr) — 62(602)_1 (wa)l

= [Qw1) " e(wr) — Qw1) le(wz) + Qwr) Te(w2) — Qlwa) e(wa)
< Q1) (e(wr) — e(w2))ll + 1(Q(w1)™ 1*Q(wz)’l)C(wQ)H
< Q)™ - lle(wr) = c(w2) | + 1Q(w1) ™ = Qw2) M - lle(w2)ll. - (9

We use the matrix identity A= — B~ = A=}(B — A)B~! to bound the second term:

1Q(w1) ™" = Qw2) 7| = Qw1) T (Q(w2) — Q(w1))Q(w2) 'l
< Q1) M- 1Q(w2) = Qwi)l - Qw2) "]l (10)
Substituting Equation 10 back into Equation 9:
16" (w1) = 0% (wa) | < [|Qw1) ™| - fle(wr) — e(w2)]
H1Qw1) M 1Q(w2) = Qw)ll - 1Q(w2) I - lle(wa)ll. - (1D

By Assumption 1, on the compact set W, there exist constants Lg,L. > 0 such that
[Q(w1) = Qwa)|| < Lgllwr — w2 and [le(wr) — c(wa)|| < Le[lwr — w2l Furthermore, due
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to strong convexity, there is a yu > 0 such that |Q(w) || < 1/uq for all w € W. Finally, since
c¢(w) is continuous on a compact set, its norm is bounded by a constant Ciyax = sup,,eyy [|c(w)]|.

Substituting these bounds into Equation 11:

1 1 1
107 (wr) = 0" (wa) | < —(Le [lwr — wal]) + ( L [l = wof - ) Crmax
HQ HQ HQ

L. LqoChax
= —+—5— | [lwr —wal|.
HQ [270)

Defining the constant K = Hé + LaCmax completes the proof. O
G

C.3 PROOF OF THEOREM 1

The proof relies on the following standard lemma for L-smooth functions.

Lemma 1 (Sufficient Decrease). If Lupper(w) is L-smooth with constant L and the step size n €
(0,2/L), the gradient descent update rule ensures a sufficient decrease in the objective function:

Ln

Supper(wk-i-l) < Supper(wk) —n (1 - 2) Hvu.wgupper(‘*‘]k)||2 .

Proof. From the L-smoothness property (descent lemma) under Assumption 2, we have:

L
2upper(WlHJ) S Supper(wk) + vwgupper(wk)—r(le»l - wk) + 5 Hwk+1 - wkH2

Substituting the gradient descent update wy 1 — wx = —nVy, Qupper(wk):
Supper(wk—&-l) < Supper(wk) -0 ||vw2upper( )” + ||v £upper(wk)H

Ln
— Luperlicn) — 7 (1 - ) 19, Supper )
O

Proof of Theorem 1. Let 6 = n(1 — Ln/2). Since n € (0,2/L), we have § > 0. Rearranging the
inequality from Lemma 1 gives:

2
0 ||Vw£upper(wk)” S 2upper((")k) - Supper(wk+1)-
We now sum this inequality from & = 0 to 7" to form a telescoping series:

T

Z(S ||V »gupper wk < Z upper ch upper(wk+1))
k=0

= (Supper(wo) - Supper(wl)) + (Supper(wl) - Supper(w2)) + ...
+ (2upper(wT) - Supper (WT+1))
= Supper(WO) - Supper(wT+1)~

The objective function is bounded below by £, > 0. Therefore, Supper(wTH) > Lint. This gives
us:

T
Z 4 ||Vw£upper(wk)H2 < Eupper(wo) — Linf-
k=0
As T' — oo, the right-hand side is a finite constant. This implies that the infinite series of squared
gradient norms is bounded:

> L r B 'Sin
3 IV B < Somerl0) = St
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For an infinite series of non-negative terms to converge to a finite value, the terms themselves must
converge to zero. Therefore, we must have:

. 2 —
khﬁll’olo ||Vw£upper(wk)H =0,

which implies that limy_, o ||V Lupper(wr)|| = 0. This completes the proof that the algorithm
converges to a stationary point. O

D PROOFS FOR PROJECTION ERROR ANALYSIS

This appendix provides the foundational definitions and detailed proofs for the projection error anal-
ysis presented in Section 4.2.

D.1 FOUNDATIONAL CONCEPTS

Definition 1 (Universal Kernel). A continuous kernel k defined on a compact metric space (X, d)
is called a universal kernel if the Reproducing Kernel Hilbert Space (RKHS) Hy, induced by k is
dense in the space of continuous functions C'(X) with respect to the uniform norm || - || co-

Mathematically, this means that for any function g € C(X) and any € > 0, there exists a function
f € Hy such that:

sup |f(z) — g(x)| <e.
reX

An equivalent way to state this is that the closure of Hy, under the uniform norm is C(X):

He = C(X).
Definition 2. Let f € L£L2(Q,R) be a target function. The projection error of f onto an Hilbert
space H C L2(Q, R) is defined as

Ere(f. M) = inf ||~ g]. (12)

If this infimum is attained by some g* € H, then g* is the projection of f onto H.

Theorem 1 (Composition of Universal Kernels). If k(z, z) is a universal kernel on a space Z, and
the mapping h : X — Z is continuous and sufficiently expressive (e.g., injective), then the composite
kernel ky,(z, ') := k(h(x), h(z")) is universal on X.

Remark 1. The universality of the composite kernel relies on the composition theorem from Mic-
chelli et al. (2006).

Theorem 2 (RFF Approximation). Let k : R™ x R™ — R be a continuous, translation-invariant,
positive definite kernel function, i.e.,

k(x,2) =k(z —2') = / emT(I*I/)alu(w)7

Rd
where p is a probability measure with compact support. Define the Random Fourier Feature (RFF)
map ¢rrr : X — R2P as

cos(w = + by)
cos(wh,z + bp)

¢rrF(T) 1= D : , (13)
sin(w{ = + by)
sin(whz + bp)

where w; <" wand b; b Uniform|0, 27], with {w;} independent of {b; }.

Let Hy, be the RKHS corresponding to k. For any f € Hy and any probability distribution p:

Dhjnoo giG%fD |f - ¢£FF9HL2(p) =0,

i.e., the function space spanned by RFF features is dense in Hy,.
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Remark 2. This result is a direct consequence of the uniform convergence of the RFF kernel ap-
proximation to the true kernel Rahimi & Recht (2007).

Theorem 3 (RFF Approximation for Composite Kernels). Let k be a continuous, translation-
invariant, positive definite kernel function on R™ and h : R* — R™ be a continuous mapping.
Let Hy, be the RKHS of the composite kernel ky(x,2') = k(h(z),h(x’)). The function space
spanned by the composite RFF features, Hrrr defined in Equation 8 of the main paper; is dense in
Hy, with respect to the L*(p) norm when D — oc.

Jiminf | £(2) = () 6| o ) = 0

Proof. The proof connects the approximation properties in the base space H, to the composite space
‘Hy,, through the mapping h. The composite RKHS 7y, consists of functions formed by composing
elements from the base RKHS H, with the mapping h, that is, Hy, = {g(h(-)) | ¢ € Hi}. Thus,
for any function f € Hy, , there exists a corresponding function g € Hy, such that f(z) = g(h(z))
for all x € R%.

To proceed, define a standard Random Fourier Feature (RFF) map for the base kernel k(z, z') on R™:

[cos(w] 2)]

|1 Jcos(wh2)
1/)D(Z) T 5 Sln(’lU{Z) )

| sin(w}2) |

where w; "< o and b; "R Uniform[0, 27], with {w;} independent of {b;}. The classic RFF

approximation (Theorem 2) guarantees that the linear span of these features is dense in Hj with
respect to the L2 norm under suitable measures. Let p;, be the pushforward probability measure of
p under the map h. Then, for the function g € Hy,

lim inf Hg - z/JD("JE)THHLQ(M) =0

D—oo §eR2D

The goal is to show that f(x) can be approximated by a function of the form v(x) " 0. We analyze
the squared L?(p) norm of the error:

17(@) = 0@ g, = [ 1$@) = ()0 dpto)
Substituting f(z) = g(h(x)) and (z) = ¢¥p(h(z)) yields
/Rd l9(h(x)) = p(h(x))76]" dp(z).

By the change of variables (or pushforward measure property), this integral equals
2 2
[ 1o = w76 donz) = la = B0l 3,

From the density in L?(py,), this error can be made arbitrarily small as D — oo by choosing
appropriate 6. Therefore, for any f € Hy, ,

lim inf |[f = ¥p0| s, =0,

D—o0 §cR2D

completing the proof. O

Lemma 2 (Expressive Power of the RFF-Enhanced Space). When the number of the RFF features
D — oo, the Feature Space H is a subset of the closure of the Composite RFF Function Space
Hrrr with respect to the L2(), R) norm.
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Proof. Let g be an arbitrary function in Hy. Since g; is a linear combination of the continuous
functions in h(z), g1 is a continuous function on a compact set X, i.e., g3 € C(X’). By Theorem 1,
the composite kernel kj, is universal. Thus, its RKHS 7y, is dense in C'(X) under the uniform
norm. This means that for any € > 0, there exists a function fj, € Hj, such that:

€
191 = frnlloo = sup [g1(2) = fr, ()] < -
zeX 2

For any probability measure p, the L?(p) norm is bounded by the L, norm, that is:

\m—nmam=ﬁmmw<muWww

2
</ (supgl<z>-f%h<zn) dp(a)
X \zeX
o _ 2 _ B 2
qummé@m lor = Full% -

Thus we have [lg1 — fr, | 12(p) < l91 = frnlloo < 3

From Theorem 3, the composite RFF space Hrrr is dense in the RKHS #y,, under the L?(p) norm.
Therefore, for our function f, from the previous step, there exists a function frrr € Hrrr such

that:
€

1 fen = frrpllrag < 5-

Combining the results using the triangle inequality for the L? norm:

€ €
lgr = ferellzacy < l9r = funllzagy + 1w = freplliegy < 5 + 5 =¢

Since for any g; € H; and any € > 0, we have found an element frrr € Hrpr that is e-close in
the L? norm, we have proven that H; C HRrrr. O

D.2 PROOF OF THEOREM 2 (PROJECTION ERROR COMPARISON)

We have shown in Lemma 2 that the premise Hy C Hgrpr holds. The proof now proceeds as
follows.

For any function g € L?, define its L? approximation error with respect to f as E(g) = || f —
gl|z2- The function E : L? — R is continuous, which follows from the reverse triangle inequality,
establishing that the norm is a continuous function.

Let g1 be an arbitrary element in . Since H; C Hgrr, by the definition of closure, there exists a

sequence of functions {gén)}ff:l in Hrrr such that gén) — g1 in the L? sense, that is,

lim [|gs" — 1] 2 = 0.
n—o0

Because the error function () is continuous, we can interchange the function with the limit:

lim B(g8") = B (lim g§"”) = E(g1).

n— oo n—00

For each n, gén) is an element of Hrpr, SO its error E(ggn)) must be greater than or equal to the

infimum of errors over Hrpp:

inf  E(g) < E(g\").
ot (9) <E(g95")

This inequality holds for all n. Taking the limit as n — co on both sides yields

inf E(g) < lim E(gén)).

gEHRFF n—00
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Substituting the continuity result gives

inf  E(q) < E(qy).
ont (9) < E(q1)

The inequality holds for any arbitrary g1 € H ;. This implies that inf e, £(g) is a lower bound
for the set of values { E(g) | g € H}. By the definition of an infimum (greatest lower bound), this
value must be less than or equal to the infimum of the set:

inf FE(g) < inf E(g).

gJEHRFF geEH s
D.2.1 PROOF OF THE UNIVERSAL APPROXIMATION COROLLARY

The following inequality holds:

lu = w0l < Ml = w1 + [[Gww — vw,oll*.
The universal approximation theorem by Hornik (1991) guarantees that for any € > 0, there exists
p and w,, W, such that ||u — @, wl|? < /2. Theorem 2 ensures that there exists D and 6, such

that ||, w, — Ug, .0, ||* < €/2. Consequently, the norm between u and wu,,, , is smaller than ¢
and that concludes the proof.

E IFEF-PINN HYPERPARAMETERS

This section details the hyperparameters used by the proposed IFeF-PINN method in each experi-
ment (Table 1). Here, D denotes the number of Fourier-enhanced features; o is the standard devia-
tion of the sampled frequencies in random Fourier features (RFF); v is the regularization parameter
defined in Eq. equation 4; and Pre-training indicates a warm-up stage where a vanilla PINN is trained
for several thousand epochs to provide a good initialization for basis selection in [FeF-PINN.

As discussed in Wang et al. (2021), the selection of o should align with the target function’s fre-
quency content. However, we fix ¢ = 1 across all cases in our experiments and obtain accurate
approximations. In future work, a more detailed analysis of o will be presented.

Problem Pre-training D o ALL ¥
2D Helmholtz (a1 = 1,a5 = 4) No 800 1 le-2 le-6
2D Helmholtz (a; = as = 100) No 2400 1 le-7 le-4
1D Convection (3 = 50) Yes 800 1 le-2 le-7
1D Convection (8 = 200) Yes 1600 1 le-2 le-4/1e-7
Viscous Burgers (v = 291) Yes 800 1 le-1 0
Convection-Diffusion

(klow = 4, khigh = 60) Yes 800 1 le-2 le-7

Table 1: Hyperparameters setting for IFeF-PINN under each experiment

F EXPERIMENT SETUP

F.1 PDEs SETUP

In this section, we provide detailed PDE settings used as our benchmarks.

2D Helmbholtz Equation. The Helmholtz equation is an elliptic PDE that commonly arises in the
study of wave propagation, acoustics, and electromagnetic fields. We consider the 2D Helmholtz
equation as follows:
Viutu=f (29 € .
u(@,y) =0, (2,y) € 0L,
corresponding to a source term
f(z,y) = —n* (a} sin(a;7z) sin(asmy) — a3 sin(aimz) sin(aomy)) + sin(a; 7z) sin(azy).
The parameters a; and ag define the frequency of the analytic solution w(z,y) =
sin(aymax) sin(agmy). We will investigate the following different frequency cases:
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o low-frequency: a3 = 1,a2 = 4,Q = [-1,1] x [-1,1].
* high-frequency: a; = 100, ax = 100, 2 = [0,0.2] x [0,0.2].

The high-frequency case uses a reduced domain to maintain computational tractability. By the
Nyquist-Shannon sampling criterion Shannon (2006), resolving such high-frequency oscillations
over a larger domain would require prohibitively dense collocation. Despite the smaller domain, the
configuration covers 10 x 10 wavelengths, capturing the extreme oscillatory behavior.

1D Convection Equation. The Convection equation is a hyperbolic PDE that describes the move-
ment of a substance through fluids. We consider the periodic boundary conditions system as follows:

ou ou
Ou B2 —0, (ta) € 0.1] x (0,27,

u(z,0) =sinz, 15)

u(0,t) = u(2m,t).

The closed-form solution is u(z, t) = sin(z — St). We consider a low-frequency case 8 = 50 and a
high-frequency case 5 = 200 on the same domain.

1D Convection-Diffusion Equation. The Convection-Diffusion equation is a parabolic PDE that
models the combined effects of transport by fluid motion and spreading due to diffusion. We con-
sider the multi-scale system with periodic boundary conditions as follows:

(t,z) € [0,1] x [0, 1],

u(t,0) = u(t, 1),

ou ou

—(t = —(t,1

81'( 70) 81'( Y )3

U(O, CE) = Alow sin(klowx) -+ Ahigh sin(khighx).

(16)

The analytic multi-scale solution is
u(t,x) = Alowe*dkiwt sin (kiow(z — ct)) + Ahighe_dkfight sin (knign(z — ct)) .

To set a multi-scale problem consists of both low- and high-frequency components, the parameters
are chosen as follows:

Cc = 1, d= O.OOOE),A]OW = 1, Ahigh = 0.1, k]ow = 47T', khigh = 60m.

Viscous Burgers’ Equation. The Viscous Burgers’ equation is a nonlinear parabolic PDE that
models fluid motion by combining convection and diffusion effects. We consider the nonlinear
system as follows:
ou N ou 0%u
= =
ot oz Ox?’
u(0,x) = —sin(nwz),
u(t,—1) = u(t,1) =0,

(t,.’E) € [Oa 1] X [_L 1]7
a7

where v = O‘ﬂﬁ.

F.2 SPECTRUM ANALYSIS SETUP

Given frequencies © = {f;}!:=1° = {1,2,5,10, 30,40, 50, 60, 70,80}, where all amplitudes are
chosen as A; = 1, we consider the Convection equation in 15 with # = 1 and initial condition as
follows:

10
u(z,0) = ZAi sin(27 f; x).
i=1
The corresponding analytic solution is then given by

10
u(z,t) = ZAi sin (27 f; (z —1)).

i=1
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The problem domain is defined as (¢,2) € [0,1] x [0, 1]. Our objective is to evaluate and compare
the ability of Vanilla PINNs and Fourier-enhanced Features to capture all frequency components at
t=0.

For the neural network architecture, we employ an 8-layer fully connected network with tanh ac-
tivation functions and 64 neurons per layer. The training data consist of 201 uniformly sampled
points along the two spatial boundaries (x = 0 and x = 1) and at the final time (f = 1). In addition,
201 x 201 collocation points are uniformly sampled within the interior domain to enforce the physics
constraints.

To further design this experiment as an ablation study and demonstrate that the incorporation of
Fourier-enhanced Features for basis extension is a necessary component of our proposed IFeF-
PINN, we discard the iterative training procedure and retain only the basis extension step. Specif-
ically, we first train the Vanilla PINN for 40,000 epochs using the Adam optimizer with a learn-
ing rate of 1072, We then extend the basis with varying numbers of Fourier-enhanced Features,
D; e {400, 800, 1600, 2400, 3200, 4000}, and then solve the lower-level problem defined in Equa-
tion 6 of the main paper. Moreover, to ensure a more rigorous analysis, we impose the relation
Bp, C Bp, whenever D; > Dy, so that the RFF mapping matrices are nested.

F.3 MODEL SETUP

This section details the model setup for all baselines. Unless otherwise specified, we use a multi-
layer perceptron (MLP) whose depth and width are determined by the experimental setting. For the
2D Helmbholtz case (a1 = 1, as = 4), we follow the network structure in Barreau & Shen (2025);
for the viscous Burgers’ equation, we follow Raissi et al. (2019). For PINNsformer (Zhao et al.,
2023) and PIG (Kang et al., 2024), since they both have special network architectures, we adopt the
original architecture. All experiments use the tanh activation function and the Adam optimizer with
a learning rate of 10~ for the network parameters. For IFeF-PD, we adopt the Primal-Dual weight
balancing strategy proposed in Barreau & Shen (2025), and optimize the dynamic physics weight
with the same setting for Adam at a learning rate of 10~%. The network architectures used in each
experiment are summarized in Table 2.

Problem Hidden layers Hidden width
2D Helmholtz (a1 = 1,as = 4) 3 [50,50,20]
2D Helmholtz (a; = as = 100) 6 64

1D Convection (3 = 50) 6 64

1D Convection (5 = 200) 6 64
Viscous Burgers (v = 291) 8 20
Convection-Diffusion

(Klow = 4, Enigh = 60) 6 64

Table 2: Network architecture for all problems.
F.4 DATASET SETUP

In this section, we detail the dataset setup for each equation and experiment. For the 1D Convection
equation, 2D Helmbholtz equation (low-frequency), and Convection-Diffusion equation, we follow
the setting and strategy of Zhao et al. (2023). For the Viscous Burgers’ Equation, we follow Raissi
et al. (2019). The detailed settings are summarized in Table 3.

G EXPERIMENTAL RESULTS

In this section, we present the true solutions, model predictions, and absolute error maps for all
baselines considered in our numerical experiments. Results for the viscous Burgers’ equation, the
low- and high-frequency convection equations, and the multi-scale convection-diffusion equation
are shown in separate figures. For clarity, each figure contains three panels: (i) the true solution, (ii)
the model prediction, and (iii) the absolute error on a log10 scale.
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Problem Sampling Boundary points Physics points
2D Helmholtz (a1 = 1, a5 = 4) Uniform 1000 71 x 71
2D Helmholtz (a; = as = 100) LHS 3000 23000

. _ . 404" (101 x 101)T
1D Convection (3 = 50) Uniform 204} (51 x 51)1.
1D Convection (8 = 200) Uniform 404 101 x 101
Viscous Burgers (v = 291) LHS 100 10000
Convection-Diffusion
(Ktow = 4, Ehignh = 60) Uniform 404 101 x 101

Table 3: Dataset settings for each PDE problem.
Notes: T Vanilla/NTK/PIG; ¥ PINNsformer/IFeF.

True Solution

0.75 0.5
+ 0.50 0.0
0.25 —-0.5
0.00
-1
X
(a) Exact solution
Vanilla PINNsformer NTK PIG IFeF-PD

Abs. Err. (NTK ~1 TAbs. Er. (PIG ~1 Abs. Err. (IFeF Abs. Err. (IFeF-PD

107! 107! 10! 107!

1072 1072 1072

10-% 10-% 10-% 10-%

104 1074 104 1071
-1 -1 -1

0 1 0 1
T T

0 1
T x x x

(b) Prediction solution (top) and absolute error on a log10 scale (bottom) of baseline methods

Figure 1: True solution, prediction and absolute error of baseline methods for viscous Burgers’
equation
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True Solution

/ —-0.5
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PIG IFeF IFeF-PD

— R e |
— ] — —
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c— i
Abs. Err. (PIG Abs. Err. (IFeF) ' Abs. Err. (IFeF-PD) '
102
103
1071
- 107 " 107°
5 0 3
T xr

(
(b) Prediction solution (top) and absolute error on a log10 scale (bottom) of baseline methods

1

~IAbs. Err. (PINNsformer) _Abs =

1072 1072 1072
103 10-% 1073
1074 107

107
1077

107
8 (
T z

1077

Figure 2: True solution, prediction, and absolute error of baseline methods for low-frequency con-
vection equation

True Solution

1.0
0.5
0.0
—0.5

—1.0

(a) Exact solution

PIG
1
| .i
VY
-1 " e
Y——

Abs. Err. (PIG

Vanilla

PINNsformer |FeF-PD

0 Abs. Err. (Vanilla

Abs.

10°

107!
1072 1072

1073 1073

107

T x

T

(b) Prediction solution (top) and absolute error on a log10 scale (bottom) of baseline methods

Figure 3: True solution, prediction, and absolute error of baseline methods for high-frequency con-
vection equation
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True Solution

10i1

X

(a) Exact solution

/ |
—0.5
-1
s. Err. bs. Err. 10-1 ] ] 10-1 Abs. Err 10! Abs. Err. IFeF 10-1
1072 1072
+ 05 .
0.0

T T T x T

IFeF-PD

_, Abs. Err. (IFeF-PD

1072

1073

(b) Prediction solution (top) and absolute error on a log10 scale (bottom) of baseline methods

Figure 4: True solution, prediction, and absolute error of baseline methods for multi-scale
convection-diffusion equation

The case presented in Figure 4 is particularly interesting. We observe that the analytical solution is
the sum of the two frequencies (20 and 60). If we zoom in on the error plot, it is possible to see
that for all other methods than IFeF, the high-frequency component is not caught. Despite visually
similar plots, the error can be quite large. This phenomenon does not appear with IFeF-PINN.
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