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A CONTENTS

We organize this supplementary document as follows:

• Section B provides the formulation for the QP problem and proof of Proposition 1.

• Section C provides the proofs for the convergence analysis of our method.

• Section D provides the proofs for the projection error analysis of our method.

• Section E details the hyperparameter settings of our method.

• Section F describes the experimental setup for all PDEs, models, and datasets.

• Section G presents additional results considered in our numerical experiments.

B QP FORMULATION DETAILS AND PROOF OF PROPOSITION 1

Let Xu = (x1u, . . . x
Nu
u ) ∈ RNu×n be boundary collocation points and Xf = (x1f , . . . , x

Nf

f ) ∈
RNf×n be interior collocation points. We define

• Bu(ω) ∈ RNu×2D with rows B[ψ◦hω](xiu)⊤ ∈ Rn for i = 1, . . . , Nu as boundary values;

• Gu ∈ RNu with rows g(xiu)
⊤ ∈ Rn for i = 1, . . . , Nu as boundary measurement;

• Rf (ω) ∈ RNf×2D with rows F[ψ ◦ hω](xif )⊤ for i = 1, . . . , Nf as residual values;

• Ff ∈ RNf with rows f(xif )
⊤ for i = 1, . . . , Nf as source terms.

Note that the linearity of the B and F operators leads to B[uω,θ](Xu) = Buθ and F[uω,θ](Xf ) =
Rfθ. Consequently, using the standard PIML loss with boundary and PDE residual terms, we get:

L̂λ(uω,θ) =
1

Nu

∥∥Bu(ω)θ −Gu

∥∥2 + λ

Nf

∥∥Rf (ω)θ − Ff

∥∥2. (1)

The loss expands to the quadratic form

Llower(θ | ω) =
1

2
θ⊤
( 2

Nu
B⊤

u Bu +
2λLL
Nf

R⊤
f Rf

)
θ +

(
− 2

Nu
B⊤

u Gu − 2λLL
Nf

R⊤
f Ff

)⊤
θ

+
1

Nu
G⊤

uGu +
λLL
Nf

F⊤
f Ff . (2)

Identifying

Q(ω) =
2

Nu
Bu(ω)

⊤Bu(ω) +
2λ

Nf
Rf (ω)

⊤Rf (ω), c(ω) = − 2

Nu
Bu(ω)

⊤Gu − 2λ

Nf
Rf (ω)

⊤Ff ,

leads to Llower(θ | ω) = 1
2θ

⊤Q(ω)θ+ c(ω)⊤θ+ b, where b is a constant term and λLL is the physics
weight used in the lower-level problem.
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B.1 ANALYSIS OF THE RANK CONDITION AND REGULARIZATION OF PROPOSITION 1

The positive semi-definiteness of Q(ω) follows from the factorization Q(ω) = M(ω)⊤M(ω) ∈
R2D×2D, with the stacked design matrices M(ω) as follows:

M(ω) =

√ 2
Nu
Bu(ω)√

2λ
Nf
Rf (ω)

 ,

where λ > 0 is always ensured. Then we have rank(Q(ω)) = rank(M(ω)). Hence,Q(ω) is strictly
positive definite if and only if M(ω) has full column rank, i.e.,

rank(M(ω)) = 2D. (3)

The loss Llower(θ | ω) becomes then strongly convex, and its minimization has a unique solution
θ⋆ = −Q−1c.

The rank condition in equation 3 imposes a fundamental constraint: for the stacked design matrix
M ∈ R(Nu+Nf )×2D to have full column rank 2D, it is necessary that the number of rows is at least
as large as the number of columns. This leads to the critical requirement on the number of sampling
points: Nu +Nf ≥ 2D.

When this condition is violated (i.e., Nu + Nf < 2D), the system becomes underdetermined.
This directly causes the matrix Q(ω) to be rank-deficient. Consequently, the lower-level problem
becomes ill-posed, lacking a unique solution as Q−1 does not exist. This might lead to an aliased
solution (especially true when we add a Tikhonov regularization).

A more subtle cause of rank deficiency occurs even when Nu +Nf ≥ 2D. This happens if the col-
location points provide redundant information, failing to create 2D linearly independent constraints.
Such a situation can arise from geometrically poor sampling (e.g., points lying on nodal lines of the
basis functions) or from inherent redundancies in the randomly generated RFF basis itself (e.g., two
different random vectors being nearly parallel). In these scenarios, although the design matrix M
has enough rows, its columns remain linearly dependent, leading to a singular or, more commonly,
a numerically ill-conditioned matrix Q. However, if D is large, a solution might be to just discard
these redundancies while still keeping the same feature space HRFF (see equation 8 of the main
paper).

To resolve this, we employ Tikhonov regularization, modifying the matrix toQreg(ω) = Q(ω)+γI ,
where γ > 0 is a small regularization parameter. This ensures Qreg is always positive definite and
invertible, since for any non-zero θ, the quadratic form θ⊤Qregθ = θ⊤Qθ+γ∥θ∥2 is strictly positive.
The lower-level problem thus regains a unique, stable solution

θ⋆(ω) = −(Q(ω) + γI)−1c(ω). (4)

This analysis reveals a fundamental trade-off: while increasing D enhances representational power,
it demands proportionally more sampling points to maintain a well-posed system. When the sam-
pling budget is limited, Tikhonov regularization provides a principled remedy to ensure algorithmic
stability, at the cost of introducing a slight bias to the solution.

C PROOFS OF CONVERGENCE ANALYSIS

C.1 HYPERGRADIENT DERIVATION VIA IMPLICIT FUNCTION THEOREM (IFT)

The hypergradient ∇ωLupper(ω) is computed using the chain rule, where the Implicit Function The-
orem (IFT) provides the Jacobian of the lower-level solution map θ⋆(ω).

The lower-level optimality condition is F (θ⋆, ω) := Q(ω)θ⋆−c(ω) = 0. Taking the total derivative
with respect to ω yields

∂F

∂θ⊤
∂θ⋆

∂ω⊤ +
∂F

∂ω⊤ = 0.

Solving for the Jacobian ∂θ⋆

∂ω⊤ gives

∂θ⋆

∂ω⊤ = −
(
∂F

∂θ⊤

)−1
∂F

∂ω⊤ = −Q(ω)−1

(
∂(Q(ω)θ⋆)

∂ω⊤ − ∂c(ω)

∂ω⊤

)
.

2
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The full hypergradient is then obtained by the chain rule

∇ωLupper(ω) =
∂Lupper

∂ω
+

(
∂θ⋆

∂ω⊤

)⊤
∂Lupper

∂θ
. (5)

Substituting the expression for the Jacobian, we get

∇ωLupper(ω) =
∂Lupper

∂ω
−
(
∂(Q(ω)θ∗)

∂ω⊤ − ∂c(ω)

∂ω⊤

)⊤

Q(ω)−1 ∂Lupper

∂θ
.

This provides a computable formula for the gradient used in the upper-level optimization.

C.2 PROOF OF PROPOSITION 2

We first state the key properties required for our convergence analysis.
Assumption 1 (Smoothness and Boundedness Properties). The bi-level optimization problem satis-
fies the following regularity conditions:

1. The functions Q(ω) and c(ω) are continuously differentiable with respect to ω. The upper-
level loss Lupper(θ, ω) is continuously differentiable with respect to both θ and ω.

2. The lower-level problem is µ-strongly convex, i.e., Q(ω) ⪰ µI for some constant µ > 0.

3. The objective function Lupper(ω) is bounded below by a scalar Linf .
Assumption 2 (L-Smoothness of the Hypergradient). The upper-level objective function Lupper(ω) is
L-smooth, a standard assumption in gradient-based optimization analysis. This means its gradient,
the hypergradient ∇ωLupper(ω), is Lipschitz continuous with constant L > 0:

∥∇ωLupper(ω1)−∇ωLupper(ω2)∥ ≤ L∥ω1 − ω2∥, ∀ω1, ω2 ∈ RP . (6)

These assumptions trivially hold when neural network activation functions are Lipschitz continuous
and the loss function is smooth, which is satisfied by our choice of tanh activations with MSE losses.

Proof. Since Llower is strongly convex and differentiable with respect to θ, the unique optimal solu-
tion θ⋆(ω) is found by setting the gradient to zero:

∇θLlower(θ
⋆(ω)) = Q(ω)θ⋆(ω)− c(ω) = 0. (7)

This gives the closed-form solution showed in Proposition 1 that

θ⋆(ω) = Q(ω)−1c(ω). (8)

Then consider two parameter vectors ω1, ω2 from a compact set W . We want to bound the norm of
the difference ∥θ⋆(ω1)− θ⋆(ω2)∥. This follows the structure from your provided image:

∥θ⋆(ω1)− θ⋆(ω2)∥ = ∥Q(ω1)
−1c(ω1)−Q(ω2)

−1c(ω2)∥
= ∥Q(ω1)

−1c(ω1)−Q(ω1)
−1c(ω2) +Q(ω1)

−1c(ω2)−Q(ω2)
−1c(ω2)∥

≤ ∥Q(ω1)
−1(c(ω1)− c(ω2))∥+ ∥(Q(ω1)

−1 −Q(ω2)
−1)c(ω2)∥

≤ ∥Q(ω1)
−1∥ · ∥c(ω1)− c(ω2)∥+ ∥Q(ω1)

−1 −Q(ω2)
−1∥ · ∥c(ω2)∥. (9)

We use the matrix identity A−1 −B−1 = A−1(B −A)B−1 to bound the second term:

∥Q(ω1)
−1 −Q(ω2)

−1∥ = ∥Q(ω1)
−1(Q(ω2)−Q(ω1))Q(ω2)

−1∥
≤ ∥Q(ω1)

−1∥ · ∥Q(ω2)−Q(ω1)∥ · ∥Q(ω2)
−1∥. (10)

Substituting Equation 10 back into Equation 9:

∥θ⋆(ω1)− θ⋆(ω2)∥ ≤ ∥Q(ω1)
−1∥ · ∥c(ω1)− c(ω2)∥

+ ∥Q(ω1)
−1∥ · ∥Q(ω2)−Q(ω1)∥ · ∥Q(ω2)

−1∥ · ∥c(ω2)∥. (11)

By Assumption 1, on the compact set W , there exist constants LQ, Lc > 0 such that
∥Q(ω1)−Q(ω2)∥ ≤ LQ ∥ω1 − ω2∥ and ∥c(ω1)− c(ω2)∥ ≤ Lc ∥ω1 − ω2∥. Furthermore, due

3
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to strong convexity, there is a µQ > 0 such that
∥∥Q(ω)−1

∥∥ ≤ 1/µQ for all ω ∈ W . Finally, since
c(ω) is continuous on a compact set, its norm is bounded by a constant Cmax = supω∈W ∥c(ω)∥.

Substituting these bounds into Equation 11:

∥θ⋆(ω1)− θ⋆(ω2)∥ ≤ 1

µQ
(Lc ∥ω1 − ω2∥) +

(
1

µQ
· LQ ∥ω1 − ω2∥ ·

1

µQ

)
Cmax

=

(
Lc

µQ
+
LQCmax

µ2
Q

)
∥ω1 − ω2∥ .

Defining the constant K = Lc

µQ
+

LQCmax

µ2
Q

completes the proof.

C.3 PROOF OF THEOREM 1

The proof relies on the following standard lemma for L-smooth functions.
Lemma 1 (Sufficient Decrease). If Lupper(ω) is L-smooth with constant L and the step size η ∈
(0, 2/L), the gradient descent update rule ensures a sufficient decrease in the objective function:

Lupper(ωk+1) ≤ Lupper(ωk)− η

(
1− Lη

2

)
∥∇ωLupper(ωk)∥2 .

Proof. From the L-smoothness property (descent lemma) under Assumption 2, we have:

Lupper(ωk+1) ≤ Lupper(ωk) +∇ωLupper(ωk)
⊤(ωk+1 − ωk) +

L

2
∥ωk+1 − ωk∥2

Substituting the gradient descent update ωk+1 − ωk = −η∇ωLupper(ωk):

Lupper(ωk+1) ≤ Lupper(ωk)− η ∥∇ωLupper(ωk)∥2 +
Lη2

2
∥∇ωLupper(ωk)∥2

= Lupper(ωk)− η

(
1− Lη

2

)
∥∇ωLupper(ωk)∥2 .

Proof of Theorem 1. Let δ = η(1 − Lη/2). Since η ∈ (0, 2/L), we have δ > 0. Rearranging the
inequality from Lemma 1 gives:

δ ∥∇ωLupper(ωk)∥2 ≤ Lupper(ωk)− Lupper(ωk+1).

We now sum this inequality from k = 0 to T to form a telescoping series:

T∑
k=0

δ ∥∇ωLupper(ωk)∥2 ≤
T∑

k=0

(Lupper(ωk)− Lupper(ωk+1))

= (Lupper(ω0)− Lupper(ω1)) + (Lupper(ω1)− Lupper(ω2)) + . . .

+ (Lupper(ωT )− Lupper(ωT+1))

= Lupper(ω0)− Lupper(ωT+1).

The objective function is bounded below by Linf ≥ 0. Therefore, Lupper(ωT+1) ≥ Linf . This gives
us:

T∑
k=0

δ ∥∇ωLupper(ωk)∥2 ≤ Lupper(ω0)− Linf .

As T → ∞, the right-hand side is a finite constant. This implies that the infinite series of squared
gradient norms is bounded:

∞∑
k=0

∥∇ωLupper(ωk)∥2 ≤
Lupper(ω0)− Linf

δ
<∞.

4
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For an infinite series of non-negative terms to converge to a finite value, the terms themselves must
converge to zero. Therefore, we must have:

lim
k→∞

∥∇ωLupper(ωk)∥2 = 0,

which implies that limk→∞ ∥∇ωLupper(ωk)∥ = 0. This completes the proof that the algorithm
converges to a stationary point.

D PROOFS FOR PROJECTION ERROR ANALYSIS

This appendix provides the foundational definitions and detailed proofs for the projection error anal-
ysis presented in Section 4.2.

D.1 FOUNDATIONAL CONCEPTS

Definition 1 (Universal Kernel). A continuous kernel k defined on a compact metric space (X , d)
is called a universal kernel if the Reproducing Kernel Hilbert Space (RKHS) Hk induced by k is
dense in the space of continuous functions C(X ) with respect to the uniform norm ∥ · ∥∞.

Mathematically, this means that for any function g ∈ C(X ) and any ε > 0, there exists a function
f ∈ Hk such that:

sup
x∈X

|f(x)− g(x)| < ε.

An equivalent way to state this is that the closure of Hk under the uniform norm is C(X ):

Hk = C(X ).

Definition 2. Let f ∈ L2(Ω,R) be a target function. The projection error of f onto an Hilbert
space H ⊆ L2(Ω,R) is defined as

Err(f,H) := inf
g∈H

∥f − g∥. (12)

If this infimum is attained by some g∗ ∈ H, then g∗ is the projection of f onto H.
Theorem 1 (Composition of Universal Kernels). If k(z, z′) is a universal kernel on a space Z , and
the mapping h : X → Z is continuous and sufficiently expressive (e.g., injective), then the composite
kernel kh(x, x′) := k(h(x), h(x′)) is universal on X .
Remark 1. The universality of the composite kernel relies on the composition theorem from Mic-
chelli et al. (2006).
Theorem 2 (RFF Approximation). Let k : Rm × Rm → R be a continuous, translation-invariant,
positive definite kernel function, i.e.,

k(x, x′) = k(x− x′) =

∫
Rd

eiw
T (x−x′)dµ(w),

where µ is a probability measure with compact support. Define the Random Fourier Feature (RFF)
map ϕRFF : X → R2D as

ϕRFF(x) :=

√
1

D


cos(w⊤

1 x+ b1)
cos(w⊤

Dx+ bD)
...

sin(w⊤
1 x+ b1)

sin(w⊤
Dx+ bD)

 , (13)

where wi
i.i.d.∼ µ and bi

i.i.d.∼ Uniform[0, 2π], with {wi} independent of {bi}.

Let Hk be the RKHS corresponding to k. For any f ∈ Hk and any probability distribution ρ:

lim
D→∞

inf
θ∈RD

∥∥f − ϕTRFFθ
∥∥
L2(ρ)

= 0,

i.e., the function space spanned by RFF features is dense in Hk.

5
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Remark 2. This result is a direct consequence of the uniform convergence of the RFF kernel ap-
proximation to the true kernel Rahimi & Recht (2007).

Theorem 3 (RFF Approximation for Composite Kernels). Let k be a continuous, translation-
invariant, positive definite kernel function on Rm and h : Rd → Rm be a continuous mapping.
Let Hkh

be the RKHS of the composite kernel kh(x, x′) = k(h(x), h(x′)). The function space
spanned by the composite RFF features, HRFF defined in Equation 8 of the main paper, is dense in
Hkh

with respect to the L2(ρ) norm when D → ∞.

lim
D→∞

inf
θ∈RD

∥∥f(x)− ψ(x)⊤θ
∥∥
L2(ρ)

= 0

Proof. The proof connects the approximation properties in the base space Hk to the composite space
Hkh

through the mapping h. The composite RKHS Hkh
consists of functions formed by composing

elements from the base RKHS Hk with the mapping h, that is, Hkh
= {g(h(·)) | g ∈ Hk}. Thus,

for any function f ∈ Hkh
, there exists a corresponding function g ∈ Hk such that f(x) = g(h(x))

for all x ∈ Rd.

To proceed, define a standard Random Fourier Feature (RFF) map for the base kernel k(z, z′) on Rm:

ψD(z) :=

√
1

D



cos(wT
1 z)

...
cos(wT

Dz)
sin(wT

1 z)
...

sin(wT
Dz)


,

where wi
i.i.d.∼ µ and bi

i.i.d.∼ Uniform[0, 2π], with {wi} independent of {bi}. The classic RFF
approximation (Theorem 2) guarantees that the linear span of these features is dense in Hk with
respect to the L2 norm under suitable measures. Let ρh be the pushforward probability measure of
ρ under the map h. Then, for the function g ∈ Hk,

lim
D→∞

inf
θ∈R2D

∥∥g − ψD(x)T θ
∥∥
L2(ρh)

= 0.

The goal is to show that f(x) can be approximated by a function of the form ψ(x)⊤θ. We analyze
the squared L2(ρ) norm of the error:∥∥f(x)− ψ(x)⊤θ

∥∥2
L2(ρ)

=

∫
Rd

∣∣f(x)− ψ(x)⊤θ
∣∣2 dρ(x).

Substituting f(x) = g(h(x)) and ψ(x) = ψD(h(x)) yields∫
Rd

∣∣g(h(x))− ψD(h(x))T θ
∣∣2 dρ(x).

By the change of variables (or pushforward measure property), this integral equals∫
Rm

∣∣g(z)− ψD(z)T θ
∣∣2 dρh(z) = ∥∥g − ψT

Dθ
∥∥2
L2(ρh)

.

From the density in L2(ρh), this error can be made arbitrarily small as D → ∞ by choosing
appropriate θ. Therefore, for any f ∈ Hkh

,

lim
D→∞

inf
θ∈R2D

∥∥f − ψT
Dθ
∥∥
L2(ρ)

= 0,

completing the proof.

Lemma 2 (Expressive Power of the RFF-Enhanced Space). When the number of the RFF features
D → ∞, the Feature Space Hf is a subset of the closure of the Composite RFF Function Space
HRFF with respect to the L2(Ω,R) norm.

6
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Proof. Let g1 be an arbitrary function in Hf . Since g1 is a linear combination of the continuous
functions in h(x), g1 is a continuous function on a compact set X , i.e., g1 ∈ C(X ). By Theorem 1,
the composite kernel kh is universal. Thus, its RKHS Hkh

is dense in C(X ) under the uniform
norm. This means that for any ϵ > 0, there exists a function fkh

∈ Hkh
such that:

∥g1 − fkh
∥∞ = sup

x∈X
|g1(x)− fkh

(x)| < ϵ

2
.

For any probability measure ρ, the L2(ρ) norm is bounded by the L∞ norm, that is:

∥g1 − fkh
∥2L2(ρ) =

∫
X
|g1(x)− fkh

(x)|2dρ(x)

≤
∫
X

(
sup
z∈X

|g1(z)− fkh
(z)|
)2

dρ(x)

= ∥g1 − fkh
∥2∞
∫
X
dρ(x) = ∥g1 − fkh

∥2∞ .

Thus we have ∥g1 − fkh
∥L2(ρ) ≤ ∥g1 − fkh

∥∞ < ϵ
2 .

From Theorem 3, the composite RFF space HRFF is dense in the RKHS Hkh
under the L2(ρ) norm.

Therefore, for our function fkh
from the previous step, there exists a function fRFF ∈ HRFF such

that:
∥fkh

− fRFF∥L2(ρ) <
ϵ

2
.

Combining the results using the triangle inequality for the L2 norm:

∥g1 − fRFF∥L2(ρ) ≤ ∥g1 − fkh
∥L2(ρ) + ∥fkh

− fRFF∥L2(ρ) <
ϵ

2
+
ϵ

2
= ϵ.

Since for any g1 ∈ Hf and any ϵ > 0, we have found an element fRFF ∈ HRFF that is ϵ-close in
the L2 norm, we have proven that Hf ⊆ HRFF.

D.2 PROOF OF THEOREM 2 (PROJECTION ERROR COMPARISON)

We have shown in Lemma 2 that the premise Hf ⊆ HRFF holds. The proof now proceeds as
follows.

For any function g ∈ L2, define its L2 approximation error with respect to f as E(g) := ∥f −
g∥L2 . The function E : L2 → R is continuous, which follows from the reverse triangle inequality,
establishing that the norm is a continuous function.

Let g1 be an arbitrary element in Hf . Since Hf ⊆ HRFF, by the definition of closure, there exists a
sequence of functions {g(n)2 }∞n=1 in HRFF such that g(n)2 → g1 in the L2 sense, that is,

lim
n→∞

∥g(n)2 − g1∥L2 = 0.

Because the error function E(·) is continuous, we can interchange the function with the limit:

lim
n→∞

E(g
(n)
2 ) = E

(
lim
n→∞

g
(n)
2

)
= E(g1).

For each n, g(n)2 is an element of HRFF, so its error E(g
(n)
2 ) must be greater than or equal to the

infimum of errors over HRFF:
inf

g∈HRFF

E(g) ≤ E(g
(n)
2 ).

This inequality holds for all n. Taking the limit as n→ ∞ on both sides yields

inf
g∈HRFF

E(g) ≤ lim
n→∞

E(g
(n)
2 ).

7
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Substituting the continuity result gives
inf

g∈HRFF

E(g) ≤ E(g1).

The inequality holds for any arbitrary g1 ∈ Hf . This implies that infg∈HRFF
E(g) is a lower bound

for the set of values {E(g) | g ∈ Hf}. By the definition of an infimum (greatest lower bound), this
value must be less than or equal to the infimum of the set:

inf
g∈HRFF

E(g) ≤ inf
g∈Hf

E(g).

D.2.1 PROOF OF THE UNIVERSAL APPROXIMATION COROLLARY

The following inequality holds:
∥u− uω,θ∥2 ≤ ∥u− ũω,W ∥2 + ∥ũω,W − uω,θ∥2.

The universal approximation theorem by Hornik (1991) guarantees that for any ε > 0, there exists
p and ω∗,W∗ such that ∥u − ũω∗,W ∥2 ≤ ε/2. Theorem 2 ensures that there exists D and θ∗ such
that ∥ũω∗,W∗ − uω∗,θ∗∥2 ≤ ε/2. Consequently, the norm between u and uω∗,θ∗ is smaller than ε
and that concludes the proof.

E IFEF-PINN HYPERPARAMETERS

This section details the hyperparameters used by the proposed IFeF-PINN method in each experi-
ment (Table 1). Here, D denotes the number of Fourier-enhanced features; σ is the standard devia-
tion of the sampled frequencies in random Fourier features (RFF); γ is the regularization parameter
defined in Eq. equation 4; and Pre-training indicates a warm-up stage where a vanilla PINN is trained
for several thousand epochs to provide a good initialization for basis selection in IFeF-PINN.

As discussed in Wang et al. (2021), the selection of σ should align with the target function’s fre-
quency content. However, we fix σ = 1 across all cases in our experiments and obtain accurate
approximations. In future work, a more detailed analysis of σ will be presented.

Problem Pre-training D σ λLL γ

2D Helmholtz (a1 = 1, a2 = 4) No 800 1 1e-2 1e-6
2D Helmholtz (a1 = a2 = 100) No 2400 1 1e-7 1e-4
1D Convection (β = 50) Yes 800 1 1e-2 1e-7
1D Convection (β = 200) Yes 1600 1 1e-2 le-4/1e-7
Viscous Burgers (ν = 0.01

π ) Yes 800 1 1e-1 0
Convection-Diffusion
(klow = 4, khigh = 60) Yes 800 1 1e-2 1e-7

Table 1: Hyperparameters setting for IFeF-PINN under each experiment

F EXPERIMENT SETUP

F.1 PDES SETUP

In this section, we provide detailed PDE settings used as our benchmarks.

2D Helmholtz Equation. The Helmholtz equation is an elliptic PDE that commonly arises in the
study of wave propagation, acoustics, and electromagnetic fields. We consider the 2D Helmholtz
equation as follows:

∇2u+ u = f, (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,
(14)

corresponding to a source term
f(x, y) = −π2

(
a21 sin(a1πx) sin(a2πy)− a22 sin(a1πx) sin(a2πy)

)
+ sin(a1πx) sin(a2πy).

The parameters a1 and a2 define the frequency of the analytic solution u(x, y) =
sin(a1πx) sin(a2πy). We will investigate the following different frequency cases:

8
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• low-frequency: a1 = 1, a2 = 4,Ω = [−1, 1]× [−1, 1].
• high-frequency: a1 = 100, a2 = 100,Ω = [0, 0.2]× [0, 0.2].

The high-frequency case uses a reduced domain to maintain computational tractability. By the
Nyquist-Shannon sampling criterion Shannon (2006), resolving such high-frequency oscillations
over a larger domain would require prohibitively dense collocation. Despite the smaller domain, the
configuration covers 10× 10 wavelengths, capturing the extreme oscillatory behavior.

1D Convection Equation. The Convection equation is a hyperbolic PDE that describes the move-
ment of a substance through fluids. We consider the periodic boundary conditions system as follows:

∂u

∂t
+ β

∂u

∂x
= 0, (t, x) ∈ [0, 1]× [0, 2π],

u(x, 0) = sinx,

u(0, t) = u(2π, t).

(15)

The closed-form solution is u(x, t) = sin(x− βt). We consider a low-frequency case β = 50 and a
high-frequency case β = 200 on the same domain.

1D Convection-Diffusion Equation. The Convection–Diffusion equation is a parabolic PDE that
models the combined effects of transport by fluid motion and spreading due to diffusion. We con-
sider the multi-scale system with periodic boundary conditions as follows:

∂u

∂t
+ c

∂u

∂x
= d

∂2u

∂x2
, (t, x) ∈ [0, 1]× [0, 1],

u(t, 0) = u(t, 1),

∂u

∂x
(t, 0) =

∂u

∂x
(t, 1),

u(0, x) = Alow sin(klowx) +Ahigh sin(khighx).

(16)

The analytic multi-scale solution is

u(t, x) = Alowe
−dk2

lowt sin (klow(x− ct)) +Ahighe
−dk2

hight sin (khigh(x− ct)) .

To set a multi-scale problem consists of both low- and high-frequency components, the parameters
are chosen as follows:

c = 1, d = 0.0005, Alow = 1, Ahigh = 0.1, klow = 4π, khigh = 60π.

Viscous Burgers’ Equation. The Viscous Burgers’ equation is a nonlinear parabolic PDE that
models fluid motion by combining convection and diffusion effects. We consider the nonlinear
system as follows:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (t, x) ∈ [0, 1]× [−1, 1],

u(0, x) = − sin(πx),

u(t,−1) = u(t, 1) = 0,

(17)

where ν = 0.01
π .

F.2 SPECTRUM ANALYSIS SETUP

Given frequencies κ = {fi}i=10
i=1 = {1, 2, 5, 10, 30, 40, 50, 60, 70, 80}, where all amplitudes are

chosen as Ai = 1, we consider the Convection equation in 15 with β = 1 and initial condition as
follows:

u(x, 0) =

10∑
i=1

Ai sin(2πfi x).

The corresponding analytic solution is then given by

u(x, t) =

10∑
i=1

Ai sin
(
2πfi (x− t)

)
.
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The problem domain is defined as (t, x) ∈ [0, 1] × [0, 1]. Our objective is to evaluate and compare
the ability of Vanilla PINNs and Fourier-enhanced Features to capture all frequency components at
t = 0.

For the neural network architecture, we employ an 8-layer fully connected network with tanh ac-
tivation functions and 64 neurons per layer. The training data consist of 201 uniformly sampled
points along the two spatial boundaries (x = 0 and x = 1) and at the final time (t = 1). In addition,
201×201 collocation points are uniformly sampled within the interior domain to enforce the physics
constraints.

To further design this experiment as an ablation study and demonstrate that the incorporation of
Fourier-enhanced Features for basis extension is a necessary component of our proposed IFeF-
PINN, we discard the iterative training procedure and retain only the basis extension step. Specif-
ically, we first train the Vanilla PINN for 40,000 epochs using the Adam optimizer with a learn-
ing rate of 10−3. We then extend the basis with varying numbers of Fourier-enhanced Features,
Dj ∈ {400, 800, 1600, 2400, 3200, 4000}, and then solve the lower-level problem defined in Equa-
tion 6 of the main paper. Moreover, to ensure a more rigorous analysis, we impose the relation
BDi

⊂ BDj
whenever Dj > Di, so that the RFF mapping matrices are nested.

F.3 MODEL SETUP

This section details the model setup for all baselines. Unless otherwise specified, we use a multi-
layer perceptron (MLP) whose depth and width are determined by the experimental setting. For the
2D Helmholtz case (a1 = 1, a2 = 4), we follow the network structure in Barreau & Shen (2025);
for the viscous Burgers’ equation, we follow Raissi et al. (2019). For PINNsformer (Zhao et al.,
2023) and PIG (Kang et al., 2024), since they both have special network architectures, we adopt the
original architecture. All experiments use the tanh activation function and the Adam optimizer with
a learning rate of 10−3 for the network parameters. For IFeF-PD, we adopt the Primal-Dual weight
balancing strategy proposed in Barreau & Shen (2025), and optimize the dynamic physics weight
with the same setting for Adam at a learning rate of 10−4. The network architectures used in each
experiment are summarized in Table 2.

Problem Hidden layers Hidden width

2D Helmholtz (a1 = 1, a2 = 4) 3 [50,50,20]
2D Helmholtz (a1 = a2 = 100) 6 64
1D Convection (β = 50) 6 64
1D Convection (β = 200) 6 64
Viscous Burgers (ν = 0.01

π ) 8 20
Convection-Diffusion
(klow = 4, khigh = 60) 6 64

Table 2: Network architecture for all problems.

F.4 DATASET SETUP

In this section, we detail the dataset setup for each equation and experiment. For the 1D Convection
equation, 2D Helmholtz equation (low-frequency), and Convection-Diffusion equation, we follow
the setting and strategy of Zhao et al. (2023). For the Viscous Burgers’ Equation, we follow Raissi
et al. (2019). The detailed settings are summarized in Table 3.

G EXPERIMENTAL RESULTS

In this section, we present the true solutions, model predictions, and absolute error maps for all
baselines considered in our numerical experiments. Results for the viscous Burgers’ equation, the
low- and high-frequency convection equations, and the multi-scale convection-diffusion equation
are shown in separate figures. For clarity, each figure contains three panels: (i) the true solution, (ii)
the model prediction, and (iii) the absolute error on a log10 scale.
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Problem Sampling Boundary points Physics points

2D Helmholtz (a1 = 1, a2 = 4) Uniform 1000 71× 71

2D Helmholtz (a1 = a2 = 100) LHS 3000 23000

1D Convection (β = 50) Uniform 404†

204‡
(101× 101)†

(51× 51)‡

1D Convection (β = 200) Uniform 404 101× 101

Viscous Burgers (ν = 0.01
π ) LHS 100 10000

Convection-Diffusion
(klow = 4, khigh = 60) Uniform 404 101× 101

Table 3: Dataset settings for each PDE problem.
Notes: † Vanilla/NTK/PIG; ‡ PINNsformer/IFeF.

(a) Exact solution

(b) Prediction solution (top) and absolute error on a log10 scale (bottom) of baseline methods

Figure 1: True solution, prediction and absolute error of baseline methods for viscous Burgers’
equation
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(a) Exact solution

(b) Prediction solution (top) and absolute error on a log10 scale (bottom) of baseline methods

Figure 2: True solution, prediction, and absolute error of baseline methods for low-frequency con-
vection equation

(a) Exact solution

(b) Prediction solution (top) and absolute error on a log10 scale (bottom) of baseline methods

Figure 3: True solution, prediction, and absolute error of baseline methods for high-frequency con-
vection equation
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(a) Exact solution

(b) Prediction solution (top) and absolute error on a log10 scale (bottom) of baseline methods

Figure 4: True solution, prediction, and absolute error of baseline methods for multi-scale
convection-diffusion equation

The case presented in Figure 4 is particularly interesting. We observe that the analytical solution is
the sum of the two frequencies (20 and 60). If we zoom in on the error plot, it is possible to see
that for all other methods than IFeF, the high-frequency component is not caught. Despite visually
similar plots, the error can be quite large. This phenomenon does not appear with IFeF-PINN.
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