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In this supplementary material, we provided additional analysis of our method,
that was not included in the main manuscript due to space limitations. We begin
with reporting few-shot results for various self-supervised objectives in Section 1.
We then discuss some additional ablations of our approach in Section 2, and
study the effect of the hyper-parameters of LA objective function on the final
performance in Section 3. We also evaluate the impact of the network depth
and input resolution in Section 4. We conclude with reporting the remaining
implementation details of our method is Section 5.

1 Few-shot evaluation

When finetuning a model, even on a datasets of modest size, like UCF101, the
effect of self-supervised pretraining is confounded by the effectiveness of the
adaptation strategy itself. Indeed, it has been show recently that, on several
tasks that were traditionally used to measure the effectiveness of image-based
unsupervised learning approaches, fully supervised performance can be achieved
with no pretraining at all, by simply better utilizing the existing data [1]. Thus,
to gain more insight into our objectives, we propose to use pretrained models as
feature extractors, and learn linear classifiers in a few-shot regime. The results
on UCF101 are reported in Table 1.

The most important observation here is that the gap between fully-supervised
and unsupervised representations increases as the data becomes scarcer. This
shows that, despite being useful in practice, unsupervised pretraining is still far

Table 1. Comparison between variants of unsupervised learning objective on the first
split of UCF101 in a few-shot regime, using classification accuracy. The networks are
fully frozen, and a linear classifier is learned, gradually decreasing the amount of training
data. The gap between unsupervised and supervised representations increases, but our
full method (‘Video LA + IDT’) still outperforms other variants across the board.

Method 1-shot 5-shot 10-shot 20-shot All

Scratch 1.7 7.5 10.6 17.2 38.2

Video IR 13.4 27.7 35.2 42.4 56.5
Video LA 15.6 30.6 36.4 44.2 58.6
Video LA + IDT prior 17.8 31.5 38.4 45.5 58.8

Supervised 46.4 62.0 67.7 73.3 81.8
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from making large datasets obsolete. Among the objectives studied in our work,
however, Video LA with IDT prior shows the strongest performance across the
board, and is especially effective in the low-data regime.

2 Additional ablations

In the main paper, we capitalized on the version of IDT which uses human detec-
tions to suppress optical flow in background regions. To validate the importance
of this component, we have recomputed IDTs without human detections, and
report the results in Table 2 (denoted as Ours\Det). Removing this step from the
IDT pipeline indeed decreases the perforamcne of our approach both on UCF101
and HMDB51, confirming the observations in [2] that suppressing background
motion improves the descriptors’ quality.

Table 2. Additional ablations on the first
split of UCF101 and HMDB51 using classi-
fication accuracy. All the models use a 3D
ResNet18 backbone and take 16 frames of
resolution 112 × 112 as input.

Model UCF101 HMDB51
Ours\Det 72.6 43.1

Ours\Tune 72.6 43.1
Ours full 72.8 44.0

Next, we evaluate the final tuning
step in our approach. Recall that af-
ter training the network with the clus-
ters obtained in the IDT space, we
construct a joint space of IDT and
3D ConvNet representations, and fur-
ther tune the network in this space
using the iterative Local Aggregation
objective. A variant without this tun-
ing step, in reported in Table 2 as Ours
\Tune, indeed achieves lower performance (coincidentally, it is exactly the same
as the performance of the variant without person detections). This demonstrates
that, although IDT descriptors already capture appearance information, using
the more expressive 3D ConvNet representation provides further benefits.

3 Effect of the objective parameters

Table 3. Effect of the hyper-parameters of
the LA objective function on the first split of
UCF101 and HMDB51 using classification
accuracy. All the models use a 3D ResNet18
backbone and take 16 frames of resolution
112 × 112 as input.

K m UCF101 HMDB51
30000 10 73.0 42.4
12000 6 73.7 42.2
6000 3 72.8 44.0
3000 2 72.8 43.9
1500 1 72.2 41.6

Finally, we ablate the hyper-parameters
of the Local Aggregation objective
function (number of clusters K, and
number of runs of K-mean m) in Ta-
ble 3. The results in the main paper
were obtained with K = 6000, and
m = 3, which roughly correspond to
the parameters used in [3] adjusted
for the size of Kinetics dataset. As can
be seen form the table, increasing the
values of these hyper-parameters im-
proves the performance on UCF101,
but hurts on HMDB51. Decreasing these values, in contrast, hurts the perfor-
mance on both datasets. Overall, the values we used in the main paper strike a
good balance for the two benchmarks.
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Table 4. Evaluation of the effect of the network depth and input resolution on the first
split of UCF101 and HMDB51 using classification accuracy.

Network Frame resolution UCF101 HMDB51

3D ResNet18 112 × 112 72.8 44.0
3D ResNet18 224 × 224 74.6 43.8
3D ResNet34 112 × 112 73.6 42.2
3D ResNet34 224 × 224 77.1 45.8

4 Effect of the network depth and resolution

In this section, we evaluate how the performance of our approach changes with
the network depth and input resolution. To this end, we first independently
increase the resolution to 224 × 224, and network depth to 34, compared to
112 × 112 and 18 used in the rest of the paper, and then report a combined
variant (3D ResNet34 with 224 × 224 inputs) in Table 4. All the models are
learned on the training set of Kinetics-400 with 16-frame long clips, using our
final objective (Video LA with IDT prior), and tuned on UCF101 and HMDB51.

Firstly, we observe that increasing the input resolution indeed results in a
significant performance improvement on UCF101, whereas on HMDB51 accuracy
remains almost unchanged. This is in line with to our intuition that appearance
information is more important for UCF101. Curiously, increasing the network
depth while keeping the original input resolution decreases the performance on
HMDB51, while providing a modest improvement on UCF101. We hypothesize
that the model capacity is limited by the small resolution. Indeed, the final
variant, which combines larger inputs with a deeper network, shows significant
improvements over the baseline on both UCF101 and HMDB51. Even higher
accuracy could be obtained by training this configuration with longer clips.

5 Implementation details

For experiments with with IDT priors we use exactly the same hyper-parameters
for the LA objective as described above. We use the original implementation of
[2] to extract IDT descriptors. Human detections are computed with ResNet101
variant of Mask-RCNN [4] model pretrained on MS COCO [5]. We evaluate the
importance of human detections for the final performance of our approach in the
supplementary material. When computing Fisher vector encoding, we generally
follow the setting of [6]. In particular, we set the feature importance to 90% when
computing PCA, and the number of components in GMM to 256. When fitting
the PCA and GMM models we randomly choose 3500 videos from Kinetics and
500 IDT descriptors from each video, to get a representative sample. Note that
extracting IDTs and encoding them into Fisher vectors does not require GPUs,
and thus the code can be efficiently run in parallel on a CPU cluster. As a result,
we were able to compute the descriptors for Kinetics in just 5 days.

When finetuning on UCF101 and HMDB51, we set the learning rate to 0.1
and momentum to 0.9, using batch size 128. We drop the learning rate by a
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factor of 0.1 when the validation performance stops improving. Following [7], we
freeze the first ResNet block when finetuning on UCF101, and the first two blocks
on HMDB51 to avoid overfitting. During inference, for every video we sample
five clips at random, using the center crop. The final prediction is obtained by
averaging softmax scores over the five clips. For few-shot experiments, we use
the protocol of [8] and freeze the entire network, only learning a linear classifier.
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