
Appendix A Technical Proofs

A.1 Proof of Proposition 4.1

To see the robustness of OTA with the reservation price ΦP = λ
√
LU + (1− λ)P for 1-max-search,

we consider the following two cases.

Case I. When the actual maximum price V is smaller than the reservation price, i.e., V < ΦP , 1
dollar is converted at the last step with the worst possible price L, and thus the worst-case ratio is

OPT(I)

ALG(I)
=
V

L
<

ΦP
L
≤ λ
√
θ + (1− λ)θ, (14)

where the last inequality is due to P ≤ U .

Case II. When V ≥ ΦP , the worst-case ratio is

OPT(I)

ALG(I)
=

V

ΦP
≤ θ

λ
√
θ + 1− λ

, (15)

where the inequality is due to V ≤ U and P ≥ L.

Thus, the robustness is max{λ
√
θ + (1− λ)θ, θ/(λ

√
θ + 1− λ)} = λ

√
θ + (1− λ)θ.

To see the consistency, consider the following two cases when the prediction is accurate, i.e., P = V .

Case I. When P ≥
√
LU , we have V = P ≥ ΦP for λ ∈ [0, 1], and the worst-case ratio is

OPT(I)

ALG(I)
=

V

ΦP
=

V

λ
√
LU + (1− λ)V

≤ θ

λ
√
θ + (1− λ)θ

. (16)

Case II. When P <
√
LU , we have V = P < ΦP for λ ∈ (0, 1], and the worst-case ratio

OPT(I)

ALG(I)
=
V

L
<
λ
√
LU + (1− λ)V

L
<
√
θ. (17)

Combining above two cases gives the consistency max{
√
θ, θ/(λ

√
θ + (1 − λ)θ)} =

√
θ for

λ ∈ (0, 1]. In the special case when λ = 0, ΦP = P = V and the consistency is 1.

A.2 Proof of Lemma 4.3

Recall that given a prediction P on the maximum price V over the price sequence I, the prediction
error is ε = 0 if I ∈ ΩP . Thus, we have CR(0) = maxI∈ΩP OPT(I)/ALG(I). In addition, arbitrary
prediction errors mean that the actual instance I can take any possible instances in Ω. Therefore, we
have maxε CR(ε) = maxI∈Ω OPT(I)/ALG(I).

If OTA is (η, γ)-competitive over a partition {Pη,Pγ} with Ω = Pη ∪ Pγ and ΩP ⊆ Pη, based on
the definition of the generalized competitive ratio, we have

γ ≥ max{η, γ} = max
I∈Pη∪Pγ

OPT(I)

ALG(I)
= max

ε
CR(ε), (18)

η = max
I∈Pη

OPT(I)

ALG(I)
≥ max
I∈ΩP

OPT(I)

ALG(I)
= CR(0). (19)

Thus, OTA is η-consistent and γ-robust.

A.3 Proof of Theorem 4.4

Our goal is to prove that OTA with the threshold function φ := {φi}i∈[I] is αi-competitive over subset
Pi = {Ωp}p∈[Mi−1,Mi) for all i ∈ [I] when each piece of the threshold function, φi, satisfies the
condition in one of the cases of Theorem 4.4. Consider the instance subset in the following three
cases, corresponding to the three cases of the sufficient condition in Theorem 4.4.
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Case I. Pi with Mi ≤ φ(0). For any instance I ∈ Pi, the maximum price is smaller than Mi

and hence OPT(I) < Mi. Since βi = 0 = βi−1, this threshold piece is absorbed. Because φ is
a right-continuous function, the reservation price at βi is no smaller than Mi. Thus, OTA converts
no dollar when executing I, excluding the compulsory conversion in the last step, and its return is
ALG(I) = vN ≥ L. In this case, when the threshold function φi and the competitive ratio αi satisfy
Mi ≤ αiL, OPT(I)/ALG(I) < Mi/L ≤ αi,∀I ∈ Pi.
Case II. Pi with φ(0) < Mi ≤ φ(1). Without loss of generality, we only consider the instances
whose price in the last step is not the unique maximum price. This is because we can instead consider
an alternative instance, which appends an additional maximum price just after the unique maximum
price as the last price, and this alternative instance leads to the same offline and online returns as
the original instance when being executed by OTA. Thus, we can use w(N−1) to denote the final
utilization of OTA after executing any instance.

Under an instance I ∈ Ωp ⊆ Pi with a maximum price p, the return of offline optimal is OPT(I) = p,
and the return of OTA is

ALG(I) =
∑

n∈[N−1]

vnx̄n + (1− w(N−1))vN (20)

≥
∑

n∈[N−1]

∫ w(n)

w(n−1)

φ(u)du+ (1− w(N−1))L (21)

=

∫ w(N−1)

0

φ(u)du+ (1− w(N−1))L, (22)

where ALG(I) consists of the return of conversions {x̄n}n∈[N−1] by OTA and the compulsory con-
version 1 − w(N−1) in the last step. The inequality (21) holds since (i) vN ≥ L, and (ii) x̄n is the

optimal solution of the optimization Line 3 in Algorithm 1, which ensures vnx̄n ≥
∫ w(n)

w(n−1) φ(u)du.

In this case, φi is in the form of Equation (2), which consists of a flat segment in [βi−1, β
′
i−1) and an

increasing segment ϕi(w) in [β′i−1, βi) that satisfies the differential equation (3). Note that w(N−1)

is the final utilization of OTA after executing I ∈ Ωp and w(N−1) ∈ [β′i−1, βi). Also noticing that φ
can be discontinuous at w = β′i−1, we further consider two sub-cases.

Case II(a). if Mi−1 ≤ p < ϕi(β
′
i−1), then w(N−1) = β′i−1. In this case, we have

OPT(I)

ALG(I)
≤ p∫ w(N−1)

0
φ(u)du+ (1− w(N−1))L

<
ϕi(β

′
i−1)∫ β′i−1

0 φ(u)du+ (1− β′i−1)L
≤ αi,

where the last inequality is due to the differential equation (3) at w = β′i−1.

Case II(b). if ϕi(β′i−1) ≤ p < ϕi(βi) = Mi, we have p = ϕi(w
(N−1)) and

OPT(I)

ALG(I)
≤ p∫ w(N−1)

0
φ(u)du+ (1− w(N−1))L

=
ϕi(w

(N−1))∫ w(N−1)

0
φ(u)du+ (1− w(N−1))L

≤ αi,

where the last inequality is also due to the differential equation (3).

Combining the above two sub-cases gives OPT(I)/ALG(I) ≤ αi,∀I ∈ Ωp,∀Ωp ⊆ Pi.
Case III. Pi with Mi > φ(1). Since φ(1) is one of the price segment boundaries, Mi−1 ≥ φ(1) and
hence βi−1 = 1. Thus, φi is absorbed. For any instance I ∈ Pi, its maximum price is no smaller
than the maximum value of the threshold function φ(1), and thus the whole dollar will be converted
to yens before the compulsory conversion, i.e., w(N−1) = 1. The return of the offline optimal is
OPT(I) ≤ Mi and the return of OTA is ALG(I) ≥

∫ 1

0
φ(u)du. In this case, when φ and αi satisfy

Mi ≤ αi
∫ 1

0
φ(u)du, we have OPT(I)/ALG(I) ≤Mi/

∫ 1

0
φ(u)du ≤ αi,∀I ∈ Pi.

In summary, OPT(I)/ALG(I) ≤ αi,∀I ∈ Pi and thus OTA is αi-competitive over Pi, ∀i ∈ [I] if
each piece of the threshold function of OTA satisfies one of the sufficient conditions in Theorem 4.4.
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A.4 Proof of Theorem 4.5

We show the competitiveness of OTA with the reservation price (6) for 1-max-search based on the
sufficient condition in Theorem 4.4 and further prove the robustness and consistency bounds based
on Lemma 4.3. Consider the following three cases.

Case I. Given P ∈ [L,Lη), we consider a partition P := {[L,Lη), [Lη,U ]} by letting M1 = Lη
and M2 = U , and aim to show that OTA is (η, γ)-competitive over [L,Lη) and [Lη,U ]. In this
case, we have ΦP = Lη = φ(0) = φ(1). Therefore, the subset [L,Lη) belongs to Case I of the
sufficient condition. Since M1/L ≤ η, OTA is η-competitive over [L,Lη). For subset [Lη,U ], we
have M2 = U > φ(1). Based on the sufficient condition in Case III of Theorem 4.4 and knowing
that M2/

∫ 1

0
ΦP du = U/(Lη) = θ/η = γ, OTA is γ-competitive over [Lη,U ]. Thus, OTA is

(η, γ)-competitive over P .

Case II. Given P ∈ [Lη,Lγ), we consider a partition P := {[L,ΦP ), [ΦP , P ], (P,U ]}
by letting M1 = ΦP , M2 = P and M3 = U . Note that P ≥ ΦP since
P = ηP/η = λγP/η + (1− λ)P/η ≥ ΦP based on the design of η and γ in Equation (5). We aim to
show that OTA is (γ, η, γ)-competitive over P . In this case, φ(0) = φ(1) = ΦP = λLγ+(1−λ)P/η.

For subset [L,ΦP ), we have M1 ≤ φ(0) and we consider the sufficient condition in Case I. Since
M1

L
=

ΦP
L

= λγ +
1− λ
Lη

P ≤ λγ + (1− λ)
γ

η
≤ γ, (23)

OTA is γ-competitive over [L,ΦP ).

For subset [ΦP , P ], if P ∈ (Lη,Lγ), we have M2 = P > φ(1) = ΦP and consider the sufficient
condition in Case III. Since

M2∫ 1

0
ΦP du

=
P

ΦP
=

P

λLγ + 1−λ
η P

≤ 1

λ+ 1−λ
η

≤ η, (24)

OTA is η-competitive over [ΦP , P ]. If P = Lη, we haveM2 = φ(0). Based on Case I of the sufficient
condition and M2/L = η, OTA is also η-competitive over [ΦP , P ].

For subset (P,U ], we consider the sufficient condition of Case III, and we have
M3∫ 1

0
ΦP du

=
U

ΦP
=

U

λLγ + 1−λ
η P

≤ U

λLγ + (1− λ)L
=
θ

η
= γ, (25)

where we apply η = λγ + 1− λ in (5). Therefore, OTA is γ-competitive over (P,U ].

Thus, OTA is (γ, η, γ)-competitive over P .

Case III. Given P ∈ [Lγ,U ], we consider a partition P := {[L,Lγ), [Lγ,U ]} by letting M1 = Lγ,
and aim to show OTA is (γ, η)-competitive over P . For subsets [L,Lγ) and [Lγ,U ], we have
M1/L = γ and U/ΦP = U/(Lγ) = η, respectively. Based on the sufficient condition in Case I and
Case III, OTA is (γ, η)-competitive over P .

In above three cases, given any P , we have shown that there exists a partition and OTA is η-competitive
for the instance subset that contains ΩP and γ-competitive for the other subsets. Based on Lemma 4.3,
OTA is η-consistent and γ-robust.

A.5 Proof of Theorem 4.6

We prove the competitiveness of OTA with the threshold function in (8) for one-way trading based on
the sufficient condition in Theorem 4.4. Consider the following three cases.

Case I. Given P ∈ [L,M), we consider a partition P := {[L,M), [M,U ]}, and aim to show that
OTA is (η, γ)-competitive over [L,M) and [M,U ]. Let φ1(w), w ∈ [0, β) and φ2(w), w ∈ [β, 1]
denote the two pieces of the threshold functions given in (8a). Both [L,M) and [M,U ] belong to
Case II of the sufficient condition in Theorem 4.4.

For subset [L,M), φ1(w) = L+ (Lη − L) exp(ηw) has no flat segment, i.e., β′0 = β0 = 0, and its
increasing segment ϕ1 is the solution of the differential equation{

ϕ1(w) = η
[∫ w

0
ϕ1(u)du+ (1− w)L

]
, w ∈ [0, β),

ϕ1(β) = M,
(26)
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which satisfies the sufficient condition in (3) if M = L+ (Lη − L) exp(ηβ).

For subset [M,U ], φ2(w) = L+ (U −L) exp(γ(w−1)) also has no flat segment, i.e., β1 = β′1 = β,
and the increasing segment ϕ2 is the solution of{

ϕ2(w) = γ
[∫ β

0
φ(u)du+

∫ w
β
ϕ2(u)du+ (1− w)L

]
, w ∈ [β, 1],

ϕ2(1) = U,
(27)

which satisfies the sufficient condition in (3) if Mγ/η = L+ (U − L) exp(γ(β − 1)).

Since M and β are the solution of equation (9), both φ1 and φ2 satisfy the sufficient condition in
Case II. Thus, OTA is (η, γ)-competitive over [L,M) and [M,U ]

Case II. Given P ∈ [M,U), we consider a partition P := {[L,M1), [M1, P ], (P,U ]}, where
M2 = P , M3 = U , and M1 ∈ [M,P ) is to be determined. We aim to show that OTA with φ in (8b) is
(γ, η, γ)-competitive over P . Let φ1(w), w ∈ [0, β1), φ2(w), w ∈ [β1, β2], and φ3(w), w ∈ (β2, 1]
denote the threshold pieces corresponding to the three subsets. Based on the threshold function (8b)
and β1 and β2 determined in equation (10), we have φ(0) = min{M1, Lγ}, and φ(1) = P if
Pγ/η ≥ U and φ(1) = U if Pγ/η < U .

For subset [L,M1), we consider the following two sub-cases based on the value of max{M1/L, γ}.
Case II(a). If M1 ≤ Lγ, based on the first equation in (10), β1 = 0 and hence φ1 is absorbed. In this
case, M1 = φ(0) and thus [L,M1) belongs to Case I of the sufficient condition. Since M1/L ≤ γ,
OTA is γ-competitive over [L,M1).

Case II(b). If M1 > Lγ, we have φ(0) < M1 ≤ φ(1) and hence [L,M1) belongs to Case II of the
sufficient condition. In this case, φ1(w) = L+ (γL− L) exp(γw), w ∈ [0, β1) has no flat segment,
and the increasing segment ϕ1 is the solution of{

ϕ1(w) = γ
[∫ w

0
ϕ1(u)du+ (1− w)L

]
, w ∈ [0, β1),

ϕ1(β1) = M1,
(28)

which satisfies the sufficient condition in (3) if M1 = L+ (γL− L) exp(γβ1).

Summarizing Case II(a) and Case II(b), OTA is γ-competitive over [L,M1) if the first equation in (10)
holds.

For subset [M1, P ], since φ(0) < P ≤ φ(1), [M1, P ] belongs to Case II of the sufficient condition.
φ2(w) = M1, w ∈ [β1, β

′
1) is a flat segment and the sufficient condition in (3) holds when w = β′1

if the length of this segment ensures φ2(β′1) = M1 = η[
∫ β1

0
φ(u)du+ (β′1 − β1)M1 + (1− β′1)L],

which is the second equation in (10).

The increasing segment ϕ2(w), w ∈ [β′1, β2] is the solution of{
ϕ2(w) = η

[∫ β1

0
φ(u)du+ (β′1 − β1)M1 +

∫ w
β′1
ϕ2(u)du+ (1− w)L

]
, w ∈ [β′1, β2],

ϕ2(β2) = P,
(29)

which satisfies the sufficient condition in (3) if P = L+ (M1 − L) exp(η(β2 − β′1)). Thus, OTA is
η-competitive over [M1, P ] if the second and third equations in (10) hold.

For subset (P,U ], we have the following two sub-cases based on the value of min{Pγ/η, U}.
Case II(c). If Pγ/η < U , we have φ(0) < U ≤ φ(1) = U and thus (P,U ] belongs to Case II of the
sufficient condition. φ3(w) = L+ (U − L) exp(γ(w − 1)), w ∈ (β2, 1] has no flat segment and its
increasing segment ϕ3 is the solution of{

ϕ3(w) = γ
[∫ β2

0
φ(u)du+

∫ w
β2
ϕ3(u)du+ (1− w)L

]
, w ∈ (β2, 1],

ϕ3(1) = U,
(30)

which satisfies the sufficient condition (3) if Pγ/η = L+ (U − L) exp(γ(β2 − 1)).

Case II(d). If Pγ/η ≥ U , we have β2 = 1 based on the fourth equation in (10). Thus, φ(1) = P <

U and (P,U ] belongs to Case III of the sufficient condition. Since U/
∫ 1

0
φ(u)du = Uη/P ≤ γ, OTA

is γ-competitive over (P,U ].
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Based on Case II(c) and Case II(d), OTA is γ-competitive over (P,U ] if the forth equation in (10)
holds.

In summary, since M1, β1, β′1 and β2 are the solution of equation (10), OTA with the threshold
function (8b) is (γ, η, γ)-competitive over [L,M1), [M1, P ], (P,U ] .

Case III. Given P = U , we consider a partition P := {[L,U), [U ]}. Based on equation (10) with
P = U , we have β2 = β′1 = 1 andM1 = U . Thus, φ3 and the increasing segment of φ2 are absorbed.
Since φ(0) < U ≤ φ(1), both [L,U) and [U ] belong to Case II of the sufficient condition.

For subset [L,U), φ1(w) = L+(γL−L) exp(γw), w ∈ [0, β1) has no flat segment and its increasing
segment ϕ1 is the solution of{

ϕ1(w) = γ
[∫ w

0
ϕ1(u)du+ (1− w)L

]
, w ∈ [0, β1),

ϕ1(β1) = U,
(31)

which satisfies the sufficient condition (3) if M1 = U = L+ (γL− L) exp(γβ1).

For subset [U ], φ2(w) = U,w ∈ [β1, 1] satisfies the sufficient condition in (3) when w = β′1 = 1 if
ϕ2(1) = U = η[

∫ β1

0
φ(u)du + (1 − β1)U ]. This equation holds if the first equation in (10) holds

with M1 = U , and η = θ/
[
θ
γ + (θ − 1)(1− 1

γ ln θ−1
γ−1 )

]
, which holds based on equation (7).

Since β1 is the solution of the first equation in (10) with M1 = U , OTA is (γ, η)-competitive over
[L,U) and [U ].

With the competitiveness results in above three cases, OTA with the threshold function (8) is η-
consistent and γ-robust based on Lemma 4.3.

A.6 Proof of Theorem 5.1

Let g(p) : [L,U ] → {0, 1} denote a conversion function of a deterministic online algorithm for
1-max-search, where g(p) = 1 (or g(p) = 0) represents converting 1 (or 0) dollar under the instance
Ip before the compulsory conversion in the last step. Based on the same arguments as those for the
conversion function of one-way trading, the conversion function of 1-max-search satisfies that (i)
g(p) is non-decreasing in [L,U ] and (ii) g(U) = 1.

Let IΦ̂ denote the first instance, under which an online algorithm for 1-max-search converts 1 dollar,
where Φ̂ = inf{p∈[L,U ]:g(p)=1} p is defined as the conversion price. We claim Φ̂ of any γ-robust
online algorithm is upper bounded by γL. This claim can be proved by contradiction. Suppose the
conversion price of a γ-robust algorithm is γL+ ε, ε > 0. The profit ratio of the offline optimal and
online algorithm under the instance IγL+ε/2 is OPT(IγL+ε/2)/ALG(IγL+ε/2) = (γL+ ε/2)/L > γ,
which contradicts with the γ-robustness of this algorithm.

Given a prediction P = U , to ensure η-consistency, any γ-robust online algorithm must have
η ≥ OPT(IU )/ALG(IU ) = U/Φ̂ ≥ U/(γL) = θ/γ, where the second inequality is due to the
constraint Φ̂ ≤ γL from γ-robustness.

Based Theorem 4.5, OTA with the reservation price (6) achieves the robustness-consistency trade-off
η = θ/γ, which matches the lower bound, and thus is Pareto-optimal for 1-max-search.

Appendix B Detailed Experimental Setup

We use historical Bitcoin (BTC) prices in USD of 5 years from October 2015 through December
2020, with exchange rate information collected every 5 minutes. Our dataset uses publicly available
BTC exchange rates gathered from the Gemini cryptocurrency exchange. BTC has gone through
dramatic price highs and lows over the years, with a minimum exchange rate of $353 and maximum
exchange rate of $29,305 by the end of 2020.

In the experiments, each instance captures a trading period of one week and assumes one unit of BTC
is available to be traded. Notably, BTC is traded 24/7, so each one week trading period is composed
of 2016 = 12×24×7 five-minute exchange rates. Over the course of 5 years, there are 250 instances
of 7 days. In order to facilitate additional rounds in online learning experiments, Alg(λalf) learns
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over 583 instances of 7 days that each overlap by 3 days. If an instance is the period 1/01/2016 to
1/07/2016, the next overlapping instance is 1/04/2016 to 1/10/2016.

To generate a simple prediction P of a one week instance, we use the observed maximum exchange
rate of the previous week. With prediction error ε = |OPT − P |, we also test the effect of varying
prediction quality by adjusting ε offline with a multiplicative error level between 0 and 1.0, where 0
error level indicates perfect predictions and 1.0 level indicates unadjusted predictions. To evaluate
the performance in worst-case settings, we also introduce a crash probability q, where the exchange
rate of BTC in the last timeslot of the one-week trading period is equal to the lower bound L with
probability q. In fact, BTC experienced a drop of over $19,000 in a single week of May 2021
following news of Tesla and financial institutions in China no longer accepting BTC as payment.

We report the empirical profit ratio, which is the profit of the optimal offline algorithm over the profit
of an online algorithm. This is the counterpart of the theoretical competitive ratio in the empirical
setting.
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