
Published as a conference paper at ICLR 2024

EMERNERF: EMERGENT SPATIAL-TEMPORAL SCENE
DECOMPOSITION VIA SELF-SUPERVISION

Jiawei Yang∗,¶, Boris Ivanovic¶, Or Litany†,¶, Xinshuo Weng¶, Seung Wook Kim¶, Boyi Li¶,
Tong Che¶, Danfei Xu$,¶, Sanja Fidler§,¶, Marco Pavone‡,¶, Yue Wang∗,¶
∗ {yangjiaw,yue.w}@usc.edu, University of Southern California
$ danfei@gatech.edu, Georgia Institute of Technology
§ fidler@cs.toronto.edu, University of Toronto
‡ pavone@stanford.edu, Stanford University
† orlitany@gmail.com, Technion
¶ {bivanovic,xweng,seungwookk,boyil,tongc}@nvidia.com, NVIDIA Research

ABSTRACT

We present EmerNeRF, a simple yet powerful approach for learning spatial-
temporal representations of dynamic driving scenes. Grounded in neural fields,
EmerNeRF simultaneously captures scene geometry, appearance, motion, and
semantics via self-bootstrapping. EmerNeRF hinges upon two core compo-
nents: First, it stratifies scenes into static and dynamic fields. This decomposition
emerges purely from self-supervision, enabling our model to learn from general,
in-the-wild data sources. Second, EmerNeRF parameterizes an induced flow field
from the dynamic field and uses this flow field to further aggregate multi-frame
features, amplifying the rendering precision of dynamic objects. Coupling these
three fields (static, dynamic, and flow) enables EmerNeRF to represent highly-
dynamic scenes self-sufficiently, without relying on ground truth object annota-
tions or pre-trained models for dynamic object segmentation or optical flow esti-
mation. Our method achieves state-of-the-art performance in sensor simulation,
significantly outperforming previous methods when reconstructing static (+2.93
PSNR) and dynamic (+3.70 PSNR) scenes. In addition, to bolster EmerNeRF’s
semantic generalization, we lift 2D visual foundation model features into 4D
space-time and address a general positional bias in modern Transformers, signif-
icantly boosting 3D perception performance (e.g., 37.50% relative improvement
in occupancy prediction accuracy on average). Finally, we construct a diverse
and challenging 120-sequence dataset to benchmark neural fields under extreme
and highly-dynamic settings. See the project page for code, data, and request
pre-trained models: https://emernerf.github.io

1 INTRODUCTION

Perceiving, representing, and reconstructing dynamic scenes is critical for autonomous agents to
understand and interact with their environments. Current approaches predominantly build custom
pipelines with components dedicated to identifying and tracking static obstacles and dynamic ob-
jects (Yang et al., 2023; Guo et al., 2023). However, such approaches require training each com-
ponent with a large amount of labeled data and devising complex mechanisms to combine out-
puts across components. To represent static scenes, approaches leveraging neural radiance fields
(NeRFs) (Mildenhall et al., 2021) have witnessed a Cambrian explosion in computer graphics,
robotics, and autonomous driving, owing to their strong performance in estimating 3D geometry
and appearance (Rematas et al., 2022; Tancik et al., 2022; Wang et al., 2023c; Guo et al., 2023).
However, without explicit supervision, NeRFs struggle with dynamic environments filled with fast-
moving objects, such as vehicles and pedestrians in urban scenarios. In this work, we tackle this
long-standing challenge and develop a self-supervised technique for building 4D (space-time) rep-
resentations of dynamic scenes.

1

https://emernerf.github.io

Published as a conference paper at ICLR 2024

(a) GT RGB

(b) Rendered RGB

(c) Decomposed Static RGB

(d) Decomposed Static Depth

(e) Decomposed Dynamic RGB

(f) Decomposed Dynamic Depth

(g) Emerged Scene Flow

(h) Reconstructed DINOv2 Features

(i) Decomposed PE-Free DINOV2 Features

(j) Decomposed PE-Features

Figure 1: EmerNeRF effectively reconstructs photo-realistic dynamic scenes (b), separating them
into explicit static (c-d) and dynamic (e-f) elements, all via self-supervision. Notably, (g) scene flows
emerge from EmerNeRF without any explicit flow supervision. Moreover, EmerNeRF can address
detrimental positional embedding (PE) patterns observed in vision foundation models (h, j), and lift
clean, PE-free features into 4D space (i). Additional visualizations can be found in Appendix C.4.

We consider a common setting where a mobile robot equipped with multiple sensors (e.g., cam-
eras, LiDAR) navigates through a large dynamic environment (e.g., a neighborhood street). The
fundamental underlying challenge is to construct an expansive 4D representation with only sparse,
transient observations, that is, to reconstruct an entire 4D space-time volume from a single traversal
of the volume. Unfortunately, this setting violates NeRF’s multi-view consistency assumption—
each point in the space-time volume will only be observed once. Recent works (Yang et al., 2023;
Ost et al., 2021) seek to simplify the problem by modeling static scene components (e.g., buildings
and trees) and dynamic objects separately, using a combination of neural fields and mesh represen-
tations. This decomposition enables exploiting multi-timestep observations to supervise static com-
ponents, but it often requires costly ground-truth annotations to segment and track dynamic objects.
Moreover, despite efforts shown in daily videos (Wang et al., 2021; Gao et al., 2021; Wang et al.,
2023b;a; Du et al., 2021), effectively modeling the temporal correspondence of dynamic objects in

2

Published as a conference paper at ICLR 2024

autonomous driving scenarios is still largely unexplored. Overall, learning 4D representations of
dynamic scenes in the context of autonomous driving remains a formidable challenge.

Towards this end, we present EmerNeRF, a self-supervised approach for constructing 4D neural
scene representations. As shown in Fig. 1, EmerNeRF decouples static and dynamic scene com-
ponents and estimates 3D scene flows — remarkably, all from self-supervision. At a high level,
EmerNeRF builds a hybrid static-dynamic world representation via a density-regularized objec-
tive, generating density for dynamic objects only as necessary (i.e., when points intersect dynamic
objects). This representation enables our approach to capture dynamic components and exploit
multi-timestep observations to self-supervise static scene elements. To address the lack of cross-
observation consistency for dynamic components, we task EmerNeRF to predict 3D scene flows
and use them to aggregate temporally-displaced features. Intriguingly, EmerNeRF’s capability to
estimate scene flow emerges naturally from this process, without any explicit flow supervision. Fi-
nally, to enhance scene comprehension, we “lift” features from pre-trained 2D visual foundation
models (e.g., DINOv1 (Caron et al., 2021), DINOv2 (Oquab et al., 2023)) to 4D space-time. In do-
ing so, we observe and rectify a challenge tied to Transformer-based foundation models: positional
embedding (PE) patterns (Fig. 1 (h)). As we will show in §4.3, effectively utilizing such general
features greatly improves EmerNeRF’s semantic understanding and enables few-shot auto-labeling.

We evaluate EmerNeRF on sensor sequences collected by autonomous vehicles (AVs) traversing
through diverse urban environments. A critical challenge is that current autonomous driving datasets
are heavily imbalanced, containing many simple scenarios with few dynamic objects. To facilitate
a focused empirical study and bolster future research on this topic, we present the NeRF On-The-
Road (NOTR) benchmark, a balanced subsample of 120 driving sequences from the Waymo Open
Dataset (Sun et al., 2020) containing diverse visual conditions (lighting, weather, and exposure) and
challenging dynamic scenarios. On this benchmark, EmerNeRF significantly outperforms previous
state-of-the-art NeRF-based approaches (Park et al., 2021b; Wu et al., 2022; Müller et al., 2022; Guo
et al., 2023) on scene reconstruction by 2.93 and 3.70 PSNR on static and dynamic scenes, respec-
tively, and by 2.91 PSNR on dynamic novel view synthesis. For scene flow estimation, EmerNeRF
excels over Li et al. (2021a) by 42.16% in metrics of interest. Additionally, removing PE patterns
brings an average improvement of 37.50% relative to using the original, PE pattern-laden features
on semantic occupancy prediction. Contributions. Our key contributions are fourfold: (1) We in-
troduce EmerNeRF, a novel 4D neural scene representation framework that excels in challenging
autonomous driving scenarios. EmerNeRF performs static-dynamic decomposition and scene flow
estimation, all through self-supervision. (2) A streamlined method to tackle the undesired effects of
positional embedding patterns from Vision Transformers, which is immediately applicable to other
tasks. (3) We introduce the NOTR dataset to assess neural fields in diverse conditions and facili-
tate future development in the field. (4) EmerNeRF achieves state-of-the-art performance in scene
reconstruction, novel view synthesis, and scene flow estimation.

2 RELATED WORK

Dynamic scene reconstruction with NeRFs. Recent works adopt NeRFs (Mildenhall et al., 2021;
Müller et al., 2022) to accommodate dynamic scenes (Li et al., 2021b; Park et al., 2021b; Wu et al.,
2022; Wang et al., 2021; Gao et al., 2021; Wang et al., 2023a; Du et al., 2021). Earlier methods
(Bansal et al., 2020; Li et al., 2022; Wang et al., 2022; Fang et al., 2022) for dynamic view synthesis
rely on multiple synchronized videos recorded from different viewpoints, restricting their use for
real-world applications in autonomous driving and robotics. Recent methods, such as Nerfies (Park
et al., 2021a) and HyperNeRF (Park et al., 2021b), have managed to achieve dynamic view synthesis
using a single camera. However, they rely on a strict assumption that all observations can be mapped
via deformation back to a canonical reference space, usually constructed from the first timestep.

Of particular relevance to our work are methods like D2NeRF (Wu et al., 2022), SUDS (Turki et al.,
2023), and NeuralGroundplans (Sharma et al., 2022). These methods also partition a 4D scene
into static and dynamic components. However, D2NeRF underperforms significantly for outdoor
scenes due to its sensitivity to hyperparameters and insufficient capacity; NeuralGroundplan relies
on synchronized videos from different viewpoints to reason about dynamics; and SUDS, designed
for multi-traversal driving logs, largely relies on accurate optical flows derived by pre-trained models
and incurs high computational costs due to its expensive flow-based warping losses. In contrast, our

3

Published as a conference paper at ICLR 2024

approach can reconstruct an accurate 4D scene representation from a single-traversal log captured
by sensors mounted on a self-driving vehicle. Freed from the constraints of pre-trained flow models,
EmerNeRF exploits and refines its own intrinsic flow predictions, enabling a self-improving loop.

NeRFs for AV data. Creating high-fidelity neural simulations from collected driving logs is crucial
for the autonomous driving community, as it facilitates the closed-loop training and testing of various
algorithms. Beyond SUDS (Turki et al., 2023), there is a growing interest in reconstructing scenes
from driving logs. In particular, recent methods excel with static scenes but face challenges with
dynamic objects (Guo et al., 2023). While approaches like UniSim (Yang et al., 2023) and NSG (Ost
et al., 2021) handle dynamic objects, they depend on ground truth annotations, making them less
scalable due to the cost of obtaining such annotations. In contrast, our method achieves high-fidelity
simulation results purely through self-supervision, offering a scalable solution.

Augmenting NeRFs. NeRF methods are commonly augmented with external model outputs to in-
corporate additional information. For example, approaches that incorporate scene flow often rely on
existing optical flow models for supervision (Li et al., 2021b; Turki et al., 2023; Li et al., 2023b;
Wang et al., 2021; Gao et al., 2021; Wang et al., 2023a; Du et al., 2021). They usually require cycle-
consistency tests to filter out inconsistent flow estimations; otherwise, the optimization process is
prone to failure (Wang et al., 2023b). The Neural Scene Flow Prior (NSFP) (Li et al., 2021a), a state-
of-the-art flow estimator, optimizes a neural network to estimate the scene flow at each timestep
(minimizing the Chamfer Loss (Fan et al., 2017)). This per-timestep optimization makes NSFP
prohibitively expensive. In contrast, our EmerNeRF bypasses the need for either pre-trained op-
tical flow models or holistic geometry losses. Instead, our flow field is supervised only by scene
reconstruction losses and the flow estimation capability emerges on its own. Most recently, 2D
signals such as semantic labels or foundation model feature vectors have been distilled into 3D
space (Kobayashi et al., 2022; Kerr et al., 2023; Tsagkas et al., 2023; Shafiullah et al., 2022), en-
abling semantic understanding tasks. In this work, we similarly lift visual foundation model features
into 4D space and show their potential for few-shot perception tasks.

3 SELF-SUPERVISED SPATIAL-TEMPORAL NEURAL FIELDS

Learning a spatial-temporal representation of a dynamic environment with a multi-sensor robot is
challenging due to the sparsity of observations and costs of obtaining ground truth annotations. To
this end, our design choices stem from the following key principles: (1) Learn a scene decompo-
sition entirely through self-supervision and avoid using any ground-truth annotations or pre-trained
models for dynamic object segmentation or optical flow. (2) Model dynamic element correspon-
dences across time via scene flow. (3) Obtain a mutually reinforcing representation: static-dynamic
decomposition and flow estimation can benefit from each other. (4) Improve the semantics of scene
representations by leveraging feature lifting and distillation, enabling a range of perception tasks.

Having established several design principles, we are now equipped to describe EmerNeRF, a self-
supervised approach for efficiently representing both static and dynamic scene components. First,
§3.1 details how EmerNeRF builds a hybrid world representation with a static and dynamic field.
Then, §3.2 explains how EmerNeRF leverages an emergent flow field to aggregate temporal features
over time, further improving its representation of dynamic components. §3.3 describes the lifting
of semantic features from pre-trained 2D models to 4D space-time, enhancing EmerNeRF’s scene
understanding. Finally, §3.4 discusses the loss function that is minimized during training.

3.1 SCENE REPRESENTATIONS

Scene decomposition. To enable efficient scene decomposition, we design EmerNeRF to be a
hybrid spatial-temporal representation. It decomposes a 4D scene into a static field S and a dynamic
field D, both of which are parameterized by learnable hash grids (Müller et al., 2022) Hs and Hd,
respectively. Alternative versatile representations such as Hexplane (Cao & Johnson, 2023) can
also be employed. This decoupling offers a flexible and compact 4D scene representation for time-
independent features hs = Hs(x) and time-varying features hd = Hd(x, t), where x = (x, y, z) is
the 3D location of a query point and t denotes its timestep. These features are further transformed
into gs and gd by lightweight MLPs (gs and gd) and used to predict per-point density σs and σd:

gs, σs = gs(Hs(x)) gd, σd = gd(Hd(x, t)) (1)

4

Published as a conference paper at ICLR 2024

Bilinear
Interpolation

NeRF

Learnable
2D Feature maps

+x, y, z, t

u, v, (t)

Decomposed Features (remove
2D-position-related patterns)

2D-position-related
Output features

Shape: (C, h, w). I used (32, 80, 120)

u, v: pixel coordinates in image plane

NeRF

(x, t)
(x, t)
x

(x, t)

Σ

Feature
 Head

(u, v)

d

+

cd

csky

ρ

σd

σscsgs

(x, t)

PE Head

Pixel
Coordinate

PE Patterns

PE-Free Features(a) (b)

Static Field

Dynamic Field
Final Prediction

gt−1
d

gt
d

gt+1
d

Color
Head

Shadow
Head

g′ d

Flow Field

Sky Head

Learnable PE Map

vfvb

Figure 2: EmerNeRF Overview. (a) EmerNeRF consists of a static, dynamic, and flow field
(S,D,V). These fields take as input either a spatial query x or spatial-temporal query (x, t) to
generate a static (feature gs, density σs) pair or a dynamic (feature g′

d, density σd) pair. Of note, we
use the forward and backward flows (vf and vb) to generate temporally-aggregated features g′

d from
nearby temporal features gt−1

d , gt
d, and gt+1

d (a slight abuse of notation w.r.t. Eq. (8)). These fea-
tures (along with the view direction d) are consumed by the shared color head which independently
predicts the static and dynamic colors cs and cd. (b) EmerNeRF removes undesired positional en-
coding patterns in ViTs via a learnable PE map followed by a PE head.

Multi-head prediction. EmerNeRF uses separate heads for color, sky, and shadow predictions. To
maximize the use of dense self-supervision from the static branch, the static and dynamic branches
share the same color head MLPcolor. This color head takes (gs, d) and (gd, d) as input, and outputs
per-point color cs and cd for static and dynamic items, where d is the normalized view direction.
Since the depth of the sky is ill-defined, we follow Rematas et al. (2022) and use a separate sky head
to predict the sky’s color from the frequency-embedded view direction γ(d) and features from the
static field, where γ(·) is a frequency-based positional embedding function, as in Mildenhall et al.
(2021). As in Wu et al. (2022), we use a shadow head MLPshadow to depict the shadows of dynamic
objects. It outputs a scalar ρ ∈ [0, 1] for dynamic objects, modulating the color intensity predicted
by the static field. Collectively, we have:

cs = MLPcolor(gs, γ(d)) cd = MLPcolor(gd, γ(d)) (2)
csky = MLPcolor sky(γ(d)) ρ = MLPshadow(gd) (3)

Rendering. To enable highly-efficient rendering, we use density-based weights to combine results
from the static field and dynamic field:

c =
σs

σs + σd
· (1− ρ) · cs +

σd

σs + σd
· cd (4)

To render a pixel, we use K discrete samples {x1, . . . ,xK} along its ray to estimate the integral of
color. The final outputs are given by:

Ĉ =

K∑
i=1

Tiαici +

(
1−

K∑
i=1

Tiαi

)
csky (5)

where Ti =
∏i−1

j=1(1− αj) is the accumulated transmittance and αi is the piece-wise opacity.

Dynamic density regularization. To facilitate static-dynamic decomposition, we leverage the fact
that our world is predominantly static. We regularize dynamic density by minimizing the expectation
of the dynamic density σd, which prompts the dynamic field to produce density values only as
needed:

Lσd
= E(σd) =

1

Nr

∑
r

1

K

K∑
i=1

σd(r, i) (6)

where Nr is the number of rays per batch, K represents the number of sampling points along a ray,
and σd(r, i) denotes the predicted dynamic density of the i-th point along the r-th ray.

3.2 EMERGENT SCENE FLOW

Scene flow estimation. To capture explicit correspondences between dynamic objects and provide
a link by which to aggregate temporally-displaced features, we introduce an additional scene flow

5

Published as a conference paper at ICLR 2024

field consisting of a hash grid V = Hv(x, t) and a flow predictor MLPv . This flow field maps a
spatial-temporal query point (x, t) to a flow vector v ∈ R3, which transforms the query point to its
position in the next timestep, given by:

v = MLPv(Hv(x, t)) x′ = x+ v (7)

In practice, our flow field predicts both a forward flow vf and a backward flow vb, resulting in a
6-dimensional flow vector for each point.

Multi-frame feature integration. Next, we use the link provided by the predicted scene flow to
integrate features from nearby timesteps, using a simple weighted summation:

g′
d = 0.25 · gd(Hd(x+ vb, t− 1)) + 0.5 · gd(Hd(x, t)) + 0.25 · gd(Hd(x+ vf , t+ 1)) (8)

If not otherwise specified, g′
d is used by default when the flow field is enabled (instead of gd in

Eqs. (2) and (3)). This feature aggregation module achieves three goals: 1) It connects the flow field
to scene reconstruction losses (e.g., RGB loss) for supervision, 2) it consolidates features, denoising
temporal attributes for accurate predictions, and 3) each point is enriched through the shared gradient
of its temporally-linked features, enhancing the quality of individual points via shared knowledge.

Emergent abilities. We do not use any explicit flow supervision to guide EmerNeRF’s flow estima-
tion process. Instead, this capability emerges from our temporal aggregation step while optimizing
scene reconstruction losses (§3.4). Our hypothesis is that only temporally-consistent features benefit
from multi-frame feature integration, and this integration indirectly drives the scene flow field to-
ward optimal solutions — predicting correct flows for all points. Our subsequent ablation studies in
Appendix C.1 confirm this: when the temporal aggregation is disabled or gradients of these nearby
features are stopped, the flow field fails to learn meaningful results.

3.3 VISION TRANSFORMER FEATURE LIFTING

While NeRFs excel at generating high-fidelity color and density fields, they lack in conveying se-
mantic content, constraining their utility for semantic scene comprehension. To bridge this gap,
we lift 2D foundation model features to 4D, enabling crucial autonomous driving perception tasks
such as semantic occupancy prediction. Although previous works might suggest a straightforward
approach (Kerr et al., 2023; Kobayashi et al., 2022), directly lifting features from state-of-the-art vi-
sion transformer (ViT) models reveals additional complexities due to positional embeddings (PEs) in
transformer models (Fig. 1 (h-j)). In the following sections, we detail how we enhance EmerNeRF
with a feature reconstruction head, uncover detrimental PE patterns in transformer models, and sub-
sequently mitigate these issues.

Feature reconstruction head. Analogous to the color head, we incorporate a feature head MLPfeat

and a feature sky head MLPfeat sky to predict per-point features f and sky features fsky, given by:

f∗ = MLPfeat(g∗), where ∗ ∈ {s, d} fsky = MLPfeat sky(γ(d)). (9)

Similar to the color head, we share the feature head among the static and dynamic branches. Ren-
dering these features similarly follows Eq. (5), given by:

F̂ =

K∑
i=1

Tiαifi +

(
1−

K∑
i=1

Tiαi

)
fsky (10)

Positional embedding patterns. We observe pronounced and undesired PE patterns when using
current state-of-the-art foundation models, notably DINOv2 (Oquab et al., 2023) (Fig. 1 (h)). These
patterns remain fixed in images, irrespective of 3D viewpoint changes, breaking 3D multi-view
consistency. Our experiments (§4.3) reveal that these patterns not only impair feature synthesis
results, but also cause a substantial reduction in 3D perception performance.

Shared learnable additive prior. We base our solution on the observation that ViTs extract feature
maps image-by-image and these PE patterns appear consistently across all images. This suggests
that a single, globally-shared PE feature map might be sufficient to capture this shared information.
Accordingly, we assume an additive noise model for the PE patterns; that is, they can be indepen-
dently subtracted from the original features to obtain PE-free features. With this assumption, we
construct a learnable and globally-shared 2D feature map U to compensate for these patterns. This

6

Published as a conference paper at ICLR 2024

process is depicted in Fig. 2 (b). For a target pixel coordinate (u, v), we first volume-render a PE-
free feature as in Eq. (10). Then, we bilinearly interpolate U and decode the interpolated feature
using a single-layer MLPPE to obtain the PE pattern feature, which is then added to the PE-free
feature. Formally:

F̂ =

K∑
i=1

Tiαifi +

(
1−

k∑
i=1

Tiαi

)
fsky︸ ︷︷ ︸

Volume-rendered PE-free feature

+MLPPE (interp ((u, v) ,U))︸ ︷︷ ︸
PE feature

(11)

The grouped terms render “PE-free” features (Fig. 1 (i)) and “PE” patterns (Fig. 1 (j)), respectively,
with their sum producing the overall “PE-containing” features (Fig. 1 (h)).

3.4 OPTIMIZATION

Loss functions. Our method decouples pixel rays and LiDAR rays to account for sensor asynchro-
nization. For pixel rays, we use an L2 loss for colors Lrgb (and optional semantic features Lfeat), a
binary cross entropy loss for sky supervision Lsky, and a shadow sparsity loss Lshadow. For LiDAR
rays, we combine an expected depth loss with a line-of-sight loss Ldepth, as proposed in Rematas
et al. (2022). This line-of-sight loss promotes an unimodal distribution of density weights along
a ray, which we find is important for clear static-dynamic decomposition. For dynamic regular-
ization, we use a density-based regularization (Eq. 6) to encourage the dynamic field to produce
density values only when absolutely necessary. This dynamic regularization loss is applied to both
pixel rays (Lσd(pixel)) and LiDAR rays (Lσd(LiDAR)). Lastly, we regularize the flow field with a cycle
consistency loss Lcycle. See Appendix A.1 for details. In summary, we minimize:

L = Lrgb + Lsky + Lshadow + Lσd(pixel) + Lcycle + Lfeat︸ ︷︷ ︸
for pixel rays

+Ldepth + Lσd(LiDAR)︸ ︷︷ ︸
for LiDAR rays

(12)

Implementation details. All model implementation details can be found in Appendix A.

4 EXPERIMENTS

In this section, we benchmark the reconstruction capabilities of EmerNeRF against prior meth-
ods, focusing on static and dynamic scene reconstruction, novel view synthesis, scene flow esti-
mation, and foundation model feature reconstruction. Further ablation studies and a discussion of
EmerNeRF’s limitations can be found in Appendices C.1 and C.3, respectively.

Dataset. While there exist many public datasets with AV sensor data (Caesar et al., 2020; Sun et al.,
2020; Caesar et al., 2021), they are heavily imbalanced, containing many simple scenarios with few
to no dynamic objects. To remedy this, we introduce NeRF On-The-Road (NOTR), a balanced
and diverse benchmark derived from the Waymo Open Dataset (Sun et al., 2020). NOTR features
120 unique, hand-picked driving sequences, split into 32 static (the same split as in StreetSurf (Guo
et al., 2023)), 32 dynamic, and 56 diverse scenes across seven challenging conditions: ego-static,
high-speed, exposure mismatch, dusk/dawn, gloomy, rainy, and night. We name these splits Static-
32, Dynamic-32, and Diverse-56, respectively. This dataset not only offers a consistent benchmark
for static and dynamic object reconstruction, it also highlights the challenges of training NeRFs
on real-world AV data. Beyond simulation, our benchmark offers 2D bounding boxes for dynamic
objects, ground truth 3D scene flow, and 3D semantic occupancy—all crucial for driving perception
tasks. Additional details can be found in Appendix B.

4.1 RENDERING

Setup. To analyze performance across various driving scenarios, we test EmerNeRF’s scene recon-
struction and novel view synthesis capabilities on different NOTR splits. For scene reconstruction,
all samples in a log are used for training. This setup probes the upper bound of each method. For
novel view synthesis, we omit every 10th timestep, resulting in 10% novel views for evaluation.
Our metrics include peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). For
Dynamic scenes, we further leverage ground truth bounding boxes and velocity data to identify dy-
namic objects and compute “dynamic-only” metrics; and we benchmark against HyperNeRF (Park

7

Published as a conference paper at ICLR 2024

Table 1: Dynamic and static scene reconstruction performance.

(a) Dynamic-32 Split

Methods
Scene Reconstruction Novel View Synthesis

Full Image Dynamic-Only Full Image Dynamic-Only
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ DPSNR↑ SSIM↑

D2NeRF 24.35 0.645 21.78 0.504 24.17 0.642 21.44 0.494
HyperNeRF 25.17 0.688 22.93 0.569 24.71 0.682 22.43 0.554

Ours 28.87 0.814 26.19 0.736 27.62 0.792 24.18 0.670

(b) Static-32 Split

Methods Static Scene Reconstruction

PSNR↑ SSIM↑
iNGP 24.46 0.694
StreetSurf∗ 26.66 0.784

Ours 29.08 0.803

Table 2: Scene flow estimation on the NOTR Dynamic-32 split.

Methods EPE3D (m) ↓ Acc5(%) ↑ Acc10(%) ↑ θ (rad) ↓
NSFP (Li et al., 2021a) 0.365 51.76 67.36 0.84
Ours 0.014 93.92 96.27 0.64

et al., 2021b) and D2NeRF (Wu et al., 2022), two state-of-the-art methods for modeling dynamic
scenes. Due to their prohibitive training cost, we only compare against them in the Dynamic-32 split.
On the Static-32 split, we disable our dynamic and flow branches, and compare against StreetSurf
(Guo et al., 2023) and iNGP Müller et al. (2022) (as implemented by Guo et al. (2023)). We use the
official codebases released by these methods, and adapt them to NOTR. To ensure a fair comparison,
we augment all methods with LiDAR depth supervision and sky supervision, and disable our feature
field. Further details can be found in Appendix A.2.

Dynamic scene comparisons. Table 1 (a) shows that our approach consistently outperforms others
on scene reconstruction and novel view synthesis. We refer readers to Appendix C.2 for qualitative
comparisons. In them, we can see that HyperNeRF (Park et al., 2021b) and D2NeRF (Wu et al.,
2022) tend to produce over-smoothed renderings and struggle with dynamic object representation.
In contrast, EmerNeRF excels in reconstructing high-fidelity static background and dynamic fore-
ground objects, while preserving high-frequency details (evident from its high SSIM and PSNR
values). Despite D2NeRF’s intent to separate static and dynamic elements, it struggles in com-
plex driving contexts and produces poor dynamic object segmentation (as shown in Fig. C.6). Our
method outperforms them both quantitatively and qualitatively. Static scene comparisons. While
static scene representation is not our main focus, Table 1 (b) shows that EmerNeRF achieves state-
of-the-art performance in this task as well, outperforming StreetSuRF (Guo et al., 2023) which was
designed for static outdoor scenes. Thus, by modeling static and dynamic components, EmerNeRF
can accurately reconstruct general driving scenes.

4.2 FLOW ESTIMATION

Setup. We assess EmerNeRF on all frames of the Dynamic-32 split, benchmarking against the prior
state-of-the-art, NSFP (Li et al., 2021a). Using the Waymo dataset’s ground truth scene flows, we
compute metrics consistent with Li et al. (2021a): 3D end-point error (EPE3D), calculated as the
mean L2 distance between predictions and ground truth for all points; Acc5, representing the frac-
tion of points with EPE3D less than 5cm or a relative error under 5%; Acc10, indicating the fraction
of points with EPE3D under 10cm or a relative error below 10%; and θ, the average angle error be-
tween predictions and ground truths. When evaluating NSFP (Li et al., 2021a), we use their official
implementation and remove ground points (our approach does not require such preprocessing).

Results. As shown in Table 2, our approach outperforms NSFP across all metrics, with significant
leads in EPE3D, Acc5, and Acc10. While NSFP (Li et al., 2021a) employs the Chamfer distance loss
Fan et al. (2017) to solve scene flow, EmerNeRF achieves significantly better results without any
explicit flow supervision. These properties naturally emerge from our temporal aggregation step.
Appendix C.1 contains additional ablation studies regarding the emergence of flow estimation.

4.3 LEVERAGING FOUNDATION MODEL FEATURES

To investigate the impact of ViT PE patterns on 3D perception and feature synthesis, we instantiate
versions of EmerNeRF with and without our proposed PE decomposition module.

8

Published as a conference paper at ICLR 2024

Table 3: Few-shot semantic occupancy prediction evaluation. We investigate the influence of
positional embedding (PE) patterns on 4D features by evaluating semantic occupancy prediction
performance. We report sample-averaged micro-accuracy and class-averaged macro-accuracy.

PE removed? ViT model Static-32 Dynamic-32 Diverse-56 Average of 3 splits

Micro Acc Macro Acc Micro Acc Macro Acc Micro Acc Macro Acc Micro Acc Macro Acc

No DINOv1 43.12% 52.71% 47.51% 54.46% 43.19% 51.11% 44.60% 52.76%
Yes DINOv1 55.02% 57.13% 57.65% 57.77% 54.56% 55.13% 55.74% 56.67%
Relative Improvement +27.60% +8.38% +21.35% +6.07% +26.32% +7.87% +24.95% +7.42%

No DINOv2 38.73% 50.30% 51.43% 57.03% 45.22% 54.37% 45.13% 53.90%
Yes DINOv2 63.21% 59.41% 65.08% 60.82% 57.86% 59.00% 62.05% 59.74%
Relative Improvement +63.22% +18.11% +26.53% +6.65% +27.95% +8.51% +37.50% +10.84%

Table 4: Feature synthesis results. We report the feature-PNSR values under different settings.

PE removed? ViT model Static-32 Dynamic-32 Diverse-56

No DINOv1 23.35 23.37 23.78
Yes DINOv1 23.57 (+0.23) 23.52 (+0.15) 23.92 (+0.14)

No DINOv2 21.87 22.34 22.79
Yes DINOv2 22.70 (+0.83) 22.80 (+0.45) 23.21 (+0.42)

Setup. We evaluate EmerNeRF’s few-shot perception capabilities using the Occ3D dataset (Tian
et al., 2023). Occ3D provides 3D semantic occupancy annotations for the Waymo dataset (Sun
et al., 2020) in voxel sizes of 0.4m and 0.1m (we use 0.1m). For each sequence, we annotate every
10th frame with ground truth information, resulting in 10% labeled data. Occupied coordinates are
input to pre-trained EmerNeRF models to compute feature centroids per class. Features from the
remaining 90% of frames are then queried and classified based on their nearest feature centroid.
We report both micro (sample-averaged) and macro (class-averaged) classification accuracies. All
models are obtained from the scene reconstruction setting, i.e., all views are used for training.

Results. Table 3 compares the performance of PE-containing 4D features to their PE-free coun-
terparts. Remarkably, EmerNeRF with PE-free DINOv2 (Oquab et al., 2023) features sees a max-
imum relative improvement of 153% in micro-accuracy and an average increase of 78% over its
PE-containing counterpart. Intriguingly, although the DINOv1 (Caron et al., 2021) model might
appear visually unaffected (Fig. C.7), our results indicate that directly lifting PE-containing features
to 4D space-time is indeed problematic. With our decomposition, PE-free DINOv1 features witness
an average relative boost of 40.36% in micro-accuracy. As another illustration of PE patterns’ im-
pact, DINOv2 features perform significantly worse than DINOv1 features without our PE pattern
mitigation. Thus, by eliminating PE patterns, the improved performance of DINOv2 over DINOv1
carries over to 3D perception.

Feature synthesis results. Table 4 compares the feature-PSNR of PE-containing and PE-free mod-
els, showing marked improvements in feature synthesis quality when using our proposed PE decom-
position method, especially for DINOv2 (Oquab et al., 2023). While DINOv1 (Caron et al., 2021)
appears to be less influenced by PE patterns, our method unveils their presence, further showing that
even seemingly unaffected models can benefit from PE pattern decomposition.

5 CONCLUSION

In this work, we present EmerNeRF, a simple yet powerful approach for learning 4D neural repre-
sentations of dynamic scenes. EmerNeRF effectively captures scene geometry, appearance, motion,
and any additional semantic features by decomposing scenes into static and dynamic fields, learning
an induced flow field, and optionally lifting foundation model features to a resulting 4D hash grid
representation. EmerNeRF additionally removes problematic positional embedding patterns that
appear when employing Transformer-based foundation model features. Notably, all of these tasks
(save for foundation model feature lifting) are learned in a self-supervised fashion, without relying
on ground truth object annotations or pre-trained models for dynamic object segmentation or optical
flow estimation. When evaluated on NOTR, our carefully-selected subset of 120 challenging driv-
ing scenes from the Waymo Open Dataset (Sun et al., 2020), EmerNeRF achieves state-of-the-art
performance in sensor simulation, significantly outperforming previous methods on both static and
dynamic scene reconstruction, novel view synthesis, and scene flow estimation. Exciting areas of
future work include further exploring capabilities enabled or significantly improved by harnessing
foundation model features: few-shot, zero-shot, and auto-labeling via open-vocabulary detection.

9

Published as a conference paper at ICLR 2024

ETHICS STATEMENT

This work primarily focuses on autonomous driving data representation and reconstruction. Ac-
cordingly, we use open datasets captured in public spaces which strive to preserve personal privacy
by leveraging state-of-the-art object detection techniques to blur people’s faces and vehicle license
plates. However, these are instance-level characteristics. What requires more effort to manage (and
could potentially lead to greater harm) is maintaining a diversity of neighborhoods, and not only
in terms of geography, but also population distribution, architectural diversity, and data collection
times (ideally repeated traversals uniformly distributed throughout the day and night, for example).
We created the NOTR dataset with diversity in mind, hand-picking scenarios from the Waymo Open
Dataset (Sun et al., 2020) to ensure a diversity of neighborhoods and scenario types (e.g., static,
dynamic). However, as in the parent Waymo Open Dataset, the NOTR dataset contains primarily
urban geographies, collected from only a handful of cities in the USA.

REPRODUCIBILITY STATEMENT

We present our method in §3, experiments and results in §4, implementation details and ablation
studies in Appendix A. We benchmark previous approaches and our proposed method using publicly
available data and include details of the derived dataset in Appendix B. Additional visualizations,
code, models, and data are available either in the appendix or at https://emernerf.github.io.

REFERENCES

Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel. Deep ViT features as dense visual
descriptors. arXiv preprint arXiv:2112.05814, 2021.

Aayush Bansal, Minh Vo, Yaser Sheikh, Deva Ramanan, and Srinivasa Narasimhan. 4d visualiza-
tion of dynamic events from unconstrained multi-view videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5366–5375, 2020.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864,
2021.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. arXiv preprint arXiv:2304.06706, 2023.

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuScenes: A multimodal dataset for au-
tonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit Fong, Eric Wolff, Alex Lang, Luke Fletcher,
Oscar Beijbom, and Sammy Omari. nuPlan: A closed-loop ml-based planning benchmark for
autonomous vehicles. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshop on Autonomous Driving: Perception, Prediction and Planning, 2021.

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130–141, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In European Conference on Computer Vision, pp. 333–350. Springer, 2022.

Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenenbaum, and Jiajun Wu. Neural radiance flow
for 4d view synthesis and video processing. in 2021 ieee. In CVF International Conference on
Computer Vision (ICCV), pp. 14304–14314, 2021.

10

https://emernerf.github.io

Published as a conference paper at ICLR 2024

Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object recon-
struction from a single image. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 605–613, 2017.

Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias
Nießner, and Qi Tian. Fast dynamic radiance fields with time-aware neural voxels. In SIGGRAPH
Asia 2022 Conference Papers, pp. 1–9, 2022.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488, 2023.

Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis from dynamic
monocular video. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 5712–5721, 2021.

Jianfei Guo, Nianchen Deng, Xinyang Li, Yeqi Bai, Botian Shi, Chiyu Wang, Chenjing Ding,
Dongliang Wang, and Yikang Li. Streetsurf: Extending multi-view implicit surface reconstruction
to street views. arXiv preprint arXiv:2306.04988, 2023.

Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Lan-
guage embedded radiance fields. In International Conference on Computer Vision (ICCV), 2023.

Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing nerf for editing via
feature field distillation. In Advances in Neural Information Processing Systems, pp. 23311–
23330, 2022.

Ruilong Li, Hang Gao, Matthew Tancik, and Angjoo Kanazawa. Nerfacc: Efficient sampling accel-
erates nerfs. arXiv preprint arXiv:2305.04966, 2023a.

Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim,
Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, et al. Neural 3d video
synthesis from multi-view video. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5521–5531, 2022.

Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey. Neural scene flow prior. Advances in
Neural Information Processing Systems, 34:7838–7851, 2021a.

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-
time view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6498–6508, 2021b.

Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker, and Noah Snavely. Dynibar: Neu-
ral dynamic image-based rendering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4273–4284, 2023b.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Thomas Müller. tiny-cuda-nn, April 2021. URL https://github.com/NVlabs/
tiny-cuda-nn.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):1–15,
2022.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. Neural scene graphs for
dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2856–2865, 2021.

11

https://github.com/NVlabs/tiny-cuda-nn
https://github.com/NVlabs/tiny-cuda-nn

Published as a conference paper at ICLR 2024

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874, 2021a.

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf: A higher-dimensional representation for
topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228, 2021b.

Christian Reiser, Rick Szeliski, Dor Verbin, Pratul Srinivasan, Ben Mildenhall, Andreas Geiger, Jon
Barron, and Peter Hedman. Merf: Memory-efficient radiance fields for real-time view synthesis
in unbounded scenes. ACM Transactions on Graphics (TOG), 42(4):1–12, 2023.

Konstantinos Rematas, Andrew Liu, Pratul P Srinivasan, Jonathan T Barron, Andrea Tagliasacchi,
Thomas Funkhouser, and Vittorio Ferrari. Urban radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12932–12942, 2022.

Nur Muhammad Mahi Shafiullah, Chris Paxton, Lerrel Pinto, Soumith Chintala, and Arthur Szlam.
Clip-fields: Weakly supervised semantic fields for robotic memory. arXiv preprint arXiv: Arxiv-
2210.05663, 2022.

Prafull Sharma, Ayush Tewari, Yilun Du, Sergey Zakharov, Rares Andrei Ambrus, Adrien Gaidon,
William T Freeman, Fredo Durand, Joshua B Tenenbaum, and Vincent Sitzmann. Neural ground-
plans: Persistent neural scene representations from a single image. In The Eleventh International
Conference on Learning Representations, 2022.

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for au-
tonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 2446–2454, 2020.

Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srini-
vasan, Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural
view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8248–8258, 2022.

Xiaoyu Tian, Tao Jiang, Longfei Yun, Yue Wang, Yilun Wang, and Hang Zhao. Occ3d: A large-scale
3d occupancy prediction benchmark for autonomous driving. arXiv preprint arXiv:2304.14365,
2023.

Nikolaos Tsagkas, Oisin Mac Aodha, and Chris Xiaoxuan Lu. Vl-fields: Towards language-
grounded neural implicit spatial representations. arXiv preprint arXiv:2305.12427, 2023.

Haithem Turki, Jason Y Zhang, Francesco Ferroni, and Deva Ramanan. Suds: Scalable urban
dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12375–12385, 2023.

Chaoyang Wang, Ben Eckart, Simon Lucey, and Orazio Gallo. Neural trajectory fields for dynamic
novel view synthesis. arXiv preprint arXiv:2105.05994, 2021.

Chaoyang Wang, Lachlan Ewen MacDonald, Laszlo A Jeni, and Simon Lucey. Flow supervision for
deformable nerf. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21128–21137, 2023a.

Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yanshun Zhang, Yingliang Zhang, Minye
Wu, Jingyi Yu, and Lan Xu. Fourier plenoctrees for dynamic radiance field rendering in real-time.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13524–13534, 2022.

Qianqian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li, Bharath Hariharan, Aleksander Holynski,
and Noah Snavely. Tracking everything everywhere all at once. arXiv preprint arXiv:2306.05422,
2023b.

12

Published as a conference paper at ICLR 2024

Zian Wang, Tianchang Shen, Jun Gao, Shengyu Huang, Jacob Munkberg, Jon Hasselgren, Zan
Gojcic, Wenzheng Chen, and Sanja Fidler. Neural fields meet explicit geometric representations
for inverse rendering of urban scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8370–8380, 2023c.

Tianhao Wu, Fangcheng Zhong, Andrea Tagliasacchi, Forrester Cole, and Cengiz Oztireli. Dˆ 2nerf:
Self-supervised decoupling of dynamic and static objects from a monocular video. Advances in
Neural Information Processing Systems, 35:32653–32666, 2022.

Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Manivasagam, Wei-Chiu Ma, Anqi Joyce Yang, and
Raquel Urtasun. Unisim: A neural closed-loop sensor simulator. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1389–1399, 2023.

13

Published as a conference paper at ICLR 2024

A IMPLEMENTATION DETAILS

In this section, we discuss the implementation details of EmerNeRF. Our code is publicly available,
and the pre-trained models will be released upon request. See emernerf.github.io for more
details.

A.1 EMERNERF IMPLEMENTATION DETAILS

A.1.1 DATA PROCESSING

Data source. Our sequences are sourced from the waymo open dataset scene flow1 ver-
sion, which augments raw sensor data with point cloud flow annotations. For camera images, we
employ three frontal cameras: FRONT LEFT, FRONT, and FRONT RIGHT, resizing them to a reso-
lution of 640×960 for both training and evaluation. Regarding LiDAR point clouds, we exclusively
use the first return data (ignoring the second return data). We sidestep the rolling shutter issue in
LiDAR sensors for simplicity and leave it for future exploration. Dynamic object masks are derived
from 2D ground truth camera bounding boxes, with velocities determined from the given metadata.
Only objects exceeding a velocity of 1 m/s are classified as dynamic, filtering out potential sen-
sor and annotation noise. For sky masks, we utilize the Mask2Former-architectured ViT-Adapter-L
model pre-trained on ADE20k. Note that, the dynamic object masks and point cloud flows are used
for evaluation only.

Foundation model feature extraction. We employ the officially released checkpoints of DINOv2
Oquab et al. (2023) and DINOv1 (Caron et al., 2021), in conjunction with the feature extractor
implementation from Amir et al. (2021). For DINOv1, we utilize the ViT-B/16, resizing images to
640×960 and modifying the model’s stride to 8 to further increase the resolution of extracted feature
maps. For DINOv2, we use the ViT-B/14 variant, adjusting image dimensions to 644×966 and using
a stride of 7. Given the vast size of the resultant feature maps, we employ PCA decomposition to
reduce the feature dimension from 768 to 64 and normalize these features to the [0, 1] range.

A.1.2 EMERNERF

Representations. To account for the efficiency of the 4d neural volume, we build all our scene
representations based on iNGP (Müller et al., 2022). We use the iNGP implementations from
tiny-cuda-nn (Müller, 2021), and use nerfacc toolkit (Li et al., 2023a) for acceleration. Fol-
lowing Barron et al. (2023), our static hash grid adopts a resolution between 24 to 213 over 10 levels,
with a fixed feature-length of 4 for all hash entries. Each level’s feature entries are limited to a size
of 220. With these settings, our model comprises approximately 30M parameters — 18M fewer than
StreetSurf’s SDF representation (Guo et al., 2023). Our dynamic hash encoder maintains a similar
configuration but with a max hash feature map size of 218. We anticipate improved performance
with larger hash encoders. All MLPs have a hidden layer width of 64. To address camera expo-
sure variations in the wild, we employ per-image 16-dimensional appearance embeddings for the
scene reconstruction task and per-camera 16-dimensional embeddings for the novel view synthesis
task. Our method builds upon efficient hybrid representations, InstantNGP (Müller et al., 2022).
Parallel efforts in improving reconstruction efficiency are also made by Cao & Johnson (2023);
Fridovich-Keil et al. (2023); Chen et al. (2022). We believe their representations are also suitable
for EmerNeRF’s encoders.

Positional embedding (PE) patterns. We use a learnable feature map, denoted as U , with dimen-
sions 80×120×32 (H×W ×C) to accommodate the positional embedding patterns, as discussed
in the main text. To decode the PE pattern for an individual pixel located at (u, v), we first sample
a feature vector from U using F.grid sample. Subsequently, a linear layer decodes this feature
vector to produce the final PE features.

Scene range. To define the axis-aligned bounding box (AABB) of the scene, we utilize LiDAR
points. In practice, we uniformly subsample the LiDAR points by a factor of 4 and find the scene
boundaries by computing the 2% and 98% percentiles of the world coordinates within the LiDAR

1console.cloud.google.com/storage/browser/waymo_open_dataset_scene_flow

14

emernerf.github.io
console.cloud.google.com/storage/browser/waymo_open_dataset_scene_flow

Published as a conference paper at ICLR 2024

point cloud. However, the LiDAR sensor typically covers only a 75-meter radius around the vehicle.
Consequently, an unrestricted contraction mechanism is useful to ensure better performance. Fol-
lowing the scene contraction method detailed in Reiser et al. (2023), we use a piecewise-projective
contraction function to project the points falling outside the determined AABB.

Multi-level sampling. In line with findings in Mildenhall et al. (2021); Barron et al. (2021), we
observe that leveraging extra proposal networks enhances both rendering quality and geometry esti-
mation. Our framework integrates a two-step proposal sampling process, using two distinct iNGP-
based proposal models. In the initial step, 128 samples are drawn using the first proposal model
which consists of 8 levels, each having a 1-dim feature. The resolution for this model ranges from
24 to 29, and each level has a maximum hash map capacity of 220. For the subsequent sampling
phase, 64 samples are taken using the second proposal model. This model boasts a maximum res-
olution of 211, but retains the other parameters of the first model. To counteract the “z-aliasing”
issue—particularly prominent in driving sequences with thin structures like traffic signs and light
poles, we further incorporate the anti-aliasing proposal loss introduced by Barron et al. (2023) dur-
ing proposal network optimization. A more thorough discussion on this is available in Barron et al.
(2023). Lastly, we do not employ spatial-temporal proposal networks, i.e., we don’t parameterize
the proposal networks with a temporal dimension. Our current implementation already can capture
temporal variations from the final scene fields, and we leave integrating a temporal dimension in
proposal models for future exploration. For the final rendering, 64 points are sampled from the
scene fields.

A.1.3 OPTIMIZATION

All components in EmerNeRF are trained jointly in an end-to-end manner.

Loss functions. As we discussed in §3.4, our total loss function is

L = Lrgb + Lsky + Lshadow + Lσd(pixel) + Lcycle + Lfeat︸ ︷︷ ︸
for pixel rays

+Ldepth + Lσd(LiDAR)︸ ︷︷ ︸
for LiDAR rays

(A1)

With r representing a ray and Nr its total number, the individual loss components are defined as:

1. RGB loss (Lrgb): Measures the difference between the predicted color (Ĉ(r)) and the ground
truth color (C(r)) for each ray.

Lrgb =
1

Nr

∑
r

||Ĉ(r)− C(r)||22 (A2)

2. Sky loss (Lsky): Measures the discrepancy between the predicted opacity of rendered rays and the
actual sky masks. Specifically, sky regions should exhibit transparency. The binary cross entropy
(BCE) loss is employed to evaluate this difference. In the equation, Ô(r) is the accumulated
opacity of ray r as in Equation (5). M(r) is the ground truth mask with 1 for the sky region and
0 otherwise.

Lsky = 0.001 · 1

Nr

∑
r

BCE
(
Ô(r), 1−M(r)

)
(A3)

3. Shadow loss (Lshadow): Penalizes the accumulated squared shadow ratio, following Wu et al.
(2022).

Lshadow = 0.01 · 1

Nr

∑
r

(
K∑
i=1

Tiαiρ
2
i

)
(A4)

4. Dynamic regularization (Lσd(pixel) and Lσd(LiDAR)): Penalizes the mean dynamic density of
all points across all rays. This encourages the dynamic branch to generate density only when
necessary.

Lσ⌈ = 0.01 · 1

Nr

∑
r

1

K

K∑
i=1

σd(r, i) (A5)

15

Published as a conference paper at ICLR 2024

5. Cycle consistency regularization (Lcycle): Self-regularizes the scene flow prediction. This loss
encourages the congruence between the forward scene flow at time t and its corresponding back-
ward scene flow at time t+ 1.

Lcycle =
0.01

2
E
[
[sg(vf (x, t)) + v′

b (x+ vf (x, t), t+ 1)]
2 [

sg(vb(x, t)) + v′
f (x+ vb(x, t), t− 1)

]2]
(A6)

where vf (x, t) denotes forward scene flow at time t, v′
b(x+vf (x, t), t+1) is predicted backward

scene flow at the forward-warped position at time t+1, sg means stop-gradient operation, and E
represents the expectation, i.e., averaging over all sample points.

6. Feature loss (Lfeat): Measures the difference between the predicted semantic feature (F̂ (r)) and
the ground truth semantic feature (F (r)) for each ray.

Lfeat = 0.5 · 1

Nr
||F̂ (r)− F (r)||22 (A7)

7. Depth Loss (Ldepth): Combines the expected depth loss and the line-of-sight loss, as described in
Rematas et al. (2022). The expected depth loss ensures the depth predicted through the volumetric
rendering process aligns with the LiDAR measurement’s depth. The line-of-sight loss includes
two components: a free-space regularization term that ensures zero density for points before the
LiDAR termination points and a near-surface loss promoting density concentration around the
termination surface. With a slight notation abuse, we have:

Lexp depth = Er

[
||Ẑ(r)− Z(r)||22

]
(A8)

Lline-of-sight = Er

[∫ Z(r)−ϵ

tn

w(t)2dt

]
+ Er

[∫ Z(r)+ϵ

Z(r)−ϵ

(w(t)−Kϵ (t− Z(r)))
2

]
(A9)

Ldepth = Lexp depth + 0.1 · Lline-of-sight (A10)

where Ẑ(r) represents rendered depth values and Z(r) stands for the ground truth LiDAR range
values. Here, the variable t indicates an offset from the origin towards the ray’s direction, dif-
ferentiating it from the temporal variable t discussed earlier. w(t) specifies the blending weights
of a point along the ray. Kϵ(x) = N (0, (ϵ/3)2) represents a kernel integrating to one, where
N is a truncated Gaussian. The parameter ϵ determines the strictness of the line-of-sight loss.
Following the suggestions in Rematas et al. (2022), we linearly decay ϵ from 6.0 to 2.5 during
the whole training process.

Training. We train our models for 25k iterations using a batch size of 8196. In static scenarios,
we deactivate the dynamic and flow branches. Training durations on a single A100 GPU are as
follows: for static scenes, feature-free training requires 33 minutes, while the feature-embedded
approach takes 40 minutes. Dynamic scene training, which incorporates the flow field and feature
aggregation, extends the durations to 2 hours for feature-free and 2.25 hours for feature-embedded
representations. To mitigate excessive regularization when the geometry prediction is not reliable,
we enable line-of-sight loss after the initial 2k iterations and subsequently halve its coefficient every
5k iterations.

A.2 BASLINE IMPLEMENTATIONS

For HyperNeRF (Park et al., 2021b) and D2NeRF (Wu et al., 2022), we adopt their officially released
JAX implementations and tailor them to our dataset. We train each model for 100k iterations using
a batch size of 4096. Training and evaluation for each model take approximately 4 hours on 4
A100 GPUs for a single scene. To ensure a fair comparison, we enhance both models with an
additional sky head and provide them with the same depth and sky supervision as in our model.
Nevertheless, since neither HyperNeRF nor D2NeRF inherently supports separate sampling of pixel
rays and LiDAR rays, we map LiDAR point clouds to the image plane and apply L2 loss for depth
supervision. We determine a scale factor from the AABBs derived from LiDAR data to ensure
scenes are encapsulated within their predefined near-far range. For StreetSuRF (Guo et al., 2023),
we directly quote the reported performance from their paper, as our experiments are conducted under
the same setting.

16

Published as a conference paper at ICLR 2024

A.3 RUN TIME ANALYSIS

In Table A.1, we conduct a runtime analysis. Hybrid methods, such as our proposed EmerNeRF
and StreetSurf (Guo et al., 2023), can be trained in a relatively short duration of 30 minutes to 2
hours. This efficiency comes at the expense of utilizing explicit grids for encodings. In contrast,
MLP-based models like D2NeRF Wu et al. (2022) and HyperNeRF Park et al. (2021b) have fewer
parameters but require longer training time. It is important to note that the number of parameters
in both implicit and hybrid models does not directly correlate with their performance. For instance,
as illustrated in Figure 2 of Müller et al. (2022), an MLP with 438k parameters can achieve better
image fitting than a hybrid model with a total of 33.6M parameters (10k from MLP and 33.6M from
the grids).

Table A.1: Run-time analysis. We include the parameter counts for implicit MLPs and explicit
encodings like HashGrids (Müller et al., 2022). Additionally, we provide metrics such as the number
of GPU hours required for training, the total training iterations, and the batch sizes used, offering
a comprehensive overview of the computational requirements. Specifically, StreetSurf (Guo et al.,
2023) employs a near-field hash encoder (32M) and a far-field encoder (16M). Our approach has
a static hash encoder (30.55M parameters), with the optional inclusion of a dynamic hash encoder
(10.49M parameters) and a flow encoder (9.70M parameters).

Method # parameters in MLPs # parameters in grids # GPU hours # Iters. Seconds / 1k iters Batch Size

Static:
StreetSurf 0.1M 32M + 16M 1.26hrs 12,500 362.88s 8192
Ours 0.065M 30.55M 0.58hrs 25,000 83.52s 8192

Dynamic:
D2NeRF 3.03M 0 9.68hrs 100,000 348.48s 4096
HyperNeRF 1.32M 0 7.32hrs 100,000 263.52s 4096
Ours w/o flow 0.065M 30.55M + 10.49M 0.88 hrs 25,000 126.72s 8192
Ours w/t flow 0.065M 30.55M + 10.49M + 9.70M 2.03 hrs 25,000 292.32s 8192

B NERF ON-THE-ROAD (NOTR) DATASET

As neural fields gain more attention in autonomous driving, there is an evident need for a compre-
hensive dataset that captures diverse on-road driving scenarios for NeRF evaluations. To this end,
we introduce NeRF On-The-Road (NOTR) dataset, a benchmark derived from the Waymo Open
Dataset (Sun et al., 2020). NOTR features 120 unique driving sequences, split into 32 static scenes,
32 dynamic scenes, and 56 scenes across seven challenging conditions: ego-static, high-speed, ex-
posure mismatch, dusk/dawn, gloomy, rainy, and nighttime. Examples are shown in Figure B.1.

Beyond images and point clouds, NOTR provides additional resources pivotal for driving percep-
tion tasks: bounding boxes for dynamic objects, ground-truth 3D scene flow, and 3D semantic
occupancy. We hope this dataset can promote NeRF research in driving scenarios, extending the
applications of NeRFs from mere view synthesis to motion understanding, e.g., 3D flows, and scene
comprehension, e.g., semantics.

Regarding scene classifications, our static scenes adhere to the split presented in StreetSuRF (Guo
et al., 2023), which contains clean scenes with no moving objects. The dynamic scenes, which
are frequently observed in driving logs, are chosen based on lighting conditions to differentiate
them from those in the “diverse” category. The Diverse-56 samples may also contain dynamic
objects, but they are split primarily based on the ego vehicle’s state (e.g., ego-static, high-speed,
camera exposure mismatch), weather condition (e.g., rainy, gloomy), and lighting difference (e.g.,
nighttime, dusk/dawn). We provide the sequence IDs of these scenes in our codebase.

C ADDITIONAL RESULTS

C.1 ABLATION STUDIES

Ablation on flow emergence. Table C.1 provides ablation studies to understand the impact of other
components on scene reconstruction, novel view synthesis, and scene flow estimation. For these

17

Published as a conference paper at ICLR 2024

(1) Static (2) Dynamic (3) Ego-static

(4) High-speed (5) Rainy (6) Dusk/Dawn

(7) Nighttime (8) Mismatch exposure (9) Gloomy

Figure B.1: Samples from the NOTR Benchmark. This comprehensive benchmark contains (1) 32
static scenes, (2) 32 dynamic scenes, and 56 additional scenes across seven categories: (3) ego-static,
(4) high-speed, (5) rainy, (6) dusk/dawn, (7) nighttime, (8) mismatched exposure, and (9) gloomy
conditions. We include LiDAR visualization in each second row and sky masks in each third row.

Table C.1: Ablation study.

Setting
Scene Reconstruction Novel View Synthesis Scene Flow estimation

Full Image Dynamic-Only Full Image Dynamic-Only Flow
PSNR↑ PSNR↑ PSNR↑ PSNR↑ Acc5(%) ↑

(a) 4D-Only iNGP 26.55 22.30 26.02 21.03 -
(b) no flow 26.92 23.82 26.33 23.81 -
(c) no temporal aggregation 26.95 23.90 26.60 23.98 4.53%
(d) freeze temporally displaced features before aggregation 26.93 24.02 26.78 23.81 3.87%

(e) ours default 27.21 24.41 26.93 24.07 89.74%

18

Published as a conference paper at ICLR 2024

(a) GT Image (b) W/o. Sky Head (c) W/t. Sky Head

Figure C.1: Effect of sky head. The depth of the sky is ill-defined. Using a sky head helps to
remove the sky floaters.

Table C.2: Ablation study on different heads.

Methods
Scene Reconstruction Novel View Synthesis

Full Image Dynamic-Only Full Image Dynamic-Only
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ DPSNR↑ SSIM↑

(a) use separate RGB heads 28.789 0.8042 26.107 0.7146 27.444 0.7877 24.292 0.6656
(b) w/o. sky head 28.778 0.8097 26.143 0.7255 27.533 0.7889 24.292 0.6654
(c) w/t feat. head but w/t PE decomp. 28.775 0.8045 26.259 0.7280 27.844 0.7931 24.264 0.6629
(d) w/t feat. head and w/o PE decomp. 28.755 0.8038 26.134 0.7238 27.469 0.7829 23.945 0.6590
(e) use projected depth 28.874 0.8097 26.200 0.7275 27.532 0.7884 24.321 0.6642

Ours default: use a shared RGB head for static&dynamic fields, use sky head, w/o feat. head, use LiDAR rays
(f) default 28.873 0.8096 26.223 0.7276 27.547 0.7885 24.323 0.6655

ablation experiments, all models are trained for 8k iterations, a shorter duration compared to the
25k iterations in the primary experiments. From our observations: (a) Using a full 4D iNGP with-
out the static field results in the worst results, a consequence of the lack of multi-view supervision.
(b-e) Introducing hybrid representations consistently improves the results. (c) Omitting the tem-
poral aggregation step or (d) freezing temporal feature gradients (stop the gradients of gt−1

d and
gt+1
d in Fig. 2) negates the emergence of flow estimation ability, as evidenced in the final column.

Combining all these settings yields the best results.

Ablation on different heads. Table C.2 provides ablation studies on 5 randomly selected sequences
from the Dynamic-32 Split, where we examine the effects of different heads used by our method on
rendering performance. These models are trained for 25k iterations. We observe that our method
performs reasonably well across all settings. Specifically, (a) using separate RGB heads for static
and dynamic fields results in slightly lower rendering quality, particularly for dynamic components,
which underscores the effectiveness of our strategy of sharing RGB heads between static and dy-
namic fields. (b) Removing the sky head does not significantly affect rendering quality, but it does
impact depth visualization in sky regions, as shown in Figure C.1. (c, d) Augmenting EmerNeRF
with semantic feature heads can potentially enhance rendering, but this is contingent upon enabling
the proposed positional embedding artifacts decomposition. Without this decomposition, the PSNR
scores for dynamic objects decrease from 24.264 (c) to 23.945 (d) in the novel view synthesis task.
(f) Utilizing a projected depth map, as opposed to directly sampling LiDAR rays, yields results that
are similar to our default setting.

Ablation on the effect of supervision to flow estimation. Following the setting in the previous
ablation study, we explore how different forms of supervisions and predictions affect the accuracy
of flow estimation. The results are shown in Table C.3.

We begin by discussing the impact of depth losses. (b) Using an L2 depth loss results in flow
estimations with reasonable scales (i.e., achieving satisfactory Acc5 and Acc10 results), but these
estimates come with a large angle error. (c) Applying a line-of-sight loss yields better results. The
line-of-sight loss encourages a concentrated density distribution along a ray towards its termina-
tion point—a peaky distribution. This strategy effectively resolves the ambiguity associated with
accumulating numerous noisy flows in the 3D scene, as it focuses on the core contributors of these
flows: the dynamic objects. (a) Combining these two depth losses provides the optimal performance.
Figure C.2 provides a qualitative comparison of methods with and without the line-of-sight loss.

19

Published as a conference paper at ICLR 2024

Figure C.2: Qualitative comparative analysis of different depth losses on flow estimation

20

Published as a conference paper at ICLR 2024

We next discuss the ablation study on how to utilize flows. In existing NeRF-based methods (Gao
et al., 2021; Li et al., 2021b; Wang et al., 2021; 2023a), flow fields are typically employed in a
three-step process (referred to as “Color-warping”): 1. Temporal Warping: Sampling points are
warped to their positions at the previous and/or next timestep to query their corresponding density
and colors from nearby frames. 2. Accumulation: These densities and colors are then accumulated
along corresponding rays in the current time step. Note that for each ray, we perform three individual
integrations for density and colors from the past, the current, and the next timestep. This construction
results in three distinct per-ray colors. 3. RGB Loss Computation: The RGB loss is calculated for
each of these three colors.

However, the warped points are occluded in the previous or next timestep, making the RGB loss
computation for these points invalid. As a solution, NSFF (Li et al., 2021a) proposed a loss weight-
ing strategy to alleviate this issue. Nonetheless, this approach, referred to as the “warping-based
method,” is computationally expensive as it requires querying the RGB network three times and
rendering three distinct sets of rays.

Our approach differs by aggregating the warped features from both the previous and next timestep.
We only query the RGB network with aggregated features and render a single color per ray. This
method effectively bypasses the occlusion issues associated with forward- and backward-warped
renderings by focusing solely on the current timestep, while leveraging information from nearby
frames. Additionally, by decoding the aggregated features through a color MLP, we effectively mit-
igate potential artifacts introduced by color warping, leading to more robust rendering. To validate
this hypothesis, we introduce two variations of our EmerNeRF:

1. Variation 1: Renders forward- and backward-warped rays separately, applying reconstruction
losses to each (resulting in three colors per ray in the current timestep), as discussed above. We
call this method “Color-warping”.

2. Variation 2: Implements color aggregation instead of feature aggregation. This involves predict-
ing forward- and backward-warped per-point colors, aggregating them by taking an average of
per-3D location colors from the previous, the current, and the next timestep before taking inte-
gration along each ray, and rendering the final output (resulting in one color per ray). We call this
method “Color-ensemble”. This is to study if the color MLP helps to mitigate feature noise.

Table C.3-(d,e) shows the results. We see that our default method (a) outperforms others (d,e),
with the “Color-ensemble” showing the least effective results. The “Color-warping” variant also
demonstrated less accurate flow estimations compared to our default method while taking longer
training time due to its extra network queryings and color renderings. In addition, all these methods
demonstrate promising flow estimation ability. This analysis underscores the potential of utilizing
neural fields for flow estimation, especially when depth signals are available, eliminating the need for
heuristic methods or pre-trained models to provide optical flow labels. We believe this observation
will inspire a broader range of follow-up studies.

Table C.3: Ablation on the effect of supervision to flow estimation.

Settings EPE3D (m) ↓ Acc5(%) ↑ Acc10(%) ↑ θ (rad) ↓
Combined L2 and line-of-sight loss for depth; feature-ensemble
(a) Ours default 0.0130 0.9272 0.9599 0.5175
Depth supervision:
(b) L2 loss only 0.0367 0.9077 0.9211 1.1207
(c) Line-of-sight-loss only 0.0136 0.9296 0.9574 0.5996

how to utilize flows:
(d) Color-warping 0.0190 0.9181 0.9370 0.6868
(e) Color-ensemble 0.0414 0.8929 0.9065 1.5708

C.2 QUALITATIVE RESULTS

Figures C.3 and C.4 show qualitative comparisons between our EmerNeRF and previous methods
under the scene reconstruction setting, while Figure C.5 highlights the enhanced static-dynamic de-
composition of our method compared to D2NeRF (Wu et al., 2022). Moreover, Figure C.6 illustrates
our method’s superiority in novel view synthesis tasks against HyperNeRF (Park et al., 2021b) and
D2NeRF (Wu et al., 2022). Our method consistently delivers more realistic and detailed renders.

21

Published as a conference paper at ICLR 2024

Figure C.3: Qualitative scene reconstruction comparisons.

Figure C.4: Qualitative scene reconstruction comparisons.

Notably, HyperNeRF does not decompose static and dynamic components; it provides only com-
posite renders, while our method not only renders high-fidelity temporal views but also precisely
separates static and dynamic elements. Furthermore, our method introduces the novel capability of
generating dynamic scene flows.

22

Published as a conference paper at ICLR 2024

Figure C.5: Scene decomposition comparisons. Note that we utilize a green background to blend
dynamic objects, whereas D2NeRF’s results are presented with a white background.

C.3 LIMITATIONS

Inline with other methods, EmerNeRF does not optimize camera poses and is prone to rolling
shutter effects of cameras. Future work to address this issue can investigate joint optimization of
pixel-wise camera poses and scene representations. In addition, the balance between geometry and
rendering quality remains a trade-off and needs further study. Finally, we leave it for future work to
investigate more complicated motion patterns.

C.4 VISUALIZATIONS

23

Published as a conference paper at ICLR 2024

(a) GT Image

(b) Ours- Novel View Synthesis

(c) Ours- Novel Dynamic RGB Decomposition

(d) Ours- Novel Scene Flow Synthesis

(e) HyperNeRF

(f) D2NeRF

(g) D2NeRF Novel Dynamic RGB Decomposition

Figure C.6: Qualitative novel temporal view comparison.

24

Published as a conference paper at ICLR 2024

(a) GT RGB Images

(b) GT DINOv2

(c) Reconstructed DINOv2

(d) Decomposed PE-free DINOv2

(e) Decomposed DINOv2 PE patterns

(f) GT DINOv1

(g) Reconstructed DINOv1

(h) Decomposed PE-free DINOv1

(i) Decomposed DINOv1 PE patterns

Figure C.7: Different positional embedding patterns in DINOv1 (Caron et al., 2021) and DINOv2
models (Oquab et al., 2023)

25

Published as a conference paper at ICLR 2024

(a) GT RGB

(b) Rendered RGB

(c) Decomposed Dynamic Depth

(d) Emerged Scene Flow

(e) GT DINOv2 Features

(h) Stacking dynamic RGB on Decomposed PE-Free Static DINOV2 Features

(g) Decomposed PE Patterns

(f) Reconstructed DINOv2 Features

Figure C.8: Scene reconstruction visualizations of EmerNeRF. We show (a) GT RGB images,
(b) reconstructed RGB images, (c) decomposed dynamic depth, (d) emerged scene flows, (e) GT
DINOv2 features, (f) reconstructed DINOv2 features, and (g) decomposed PE patterns. We also
stack colors of dynamic objects onto decomposed PE-free static DINOv2 features.

26

Published as a conference paper at ICLR 2024

(a) GT RGB

(b) Rendered RGB

(c) Decomposed Dynamic Depth

(d) Emerged Scene Flow

(e) GT DINOv2 Features

(h) Stacking dynamic RGB on Decomposed PE-Free Static DINOV2 Features

(g) Decomposed PE Patterns

(f) Reconstructed DINOv2 Features

Figure C.9: Scene reconstruction visualizations of EmerNeRF under different lighting conditions.
We show (a) GT RGB images, (b) reconstructed RGB images, (c) decomposed dynamic depth,
(d) emerged scene flows, (e) GT DINOv2 features, (f) reconstructed DINOv2 features, and (g)
decomposed PE patterns. We also stack colors of dynamic objects onto decomposed PE-free static
DINOv2 features. EmerNeRF works well under dark environments (left) and discerns challenging
scene flows in complex environments (right). Colors indicate scene flows’ norms and directions.

27

Published as a conference paper at ICLR 2024

(a) GT RGB

(b) Rendered RGB

(c) Decomposed Dynamic Depth

(d) Emerged Scene Flow

(e) GT DINOv2 Features

(h) Stacking dynamic RGB on Decomposed PE-Free Static DINOV2 Features

(g) Decomposed PE Patterns

(f) Reconstructed DINOv2 Features

Figure C.10: Scene reconstruction visualizations of EmerNeRF under differet lighting and weather
conditions. We show (a) GT RGB images, (b) reconstructed RGB images, (c) decomposed dynamic
depth, (d) emerged scene flows, (e) GT DINOv2 features, (f) reconstructed DINOv2 features, and
(g) decomposed PE patterns. We also stack colors of dynamic objects colors onto decomposed PE-
free static DINOv2 features. EmerNeRF works well under gloomy environments (left) and discerns
fine-grained speed information (right).

28

