
Appendix1

A Related Works2

A.1 Mechanical Search on Shelves3

Object search and mechanical search. The goal of object search (sometimes called as target4

object retrieval) is to find a target object from unknown environments. Some works have focused5

on the active perception problem of making decisions of the sequence of camera poses to find a6

target object using a camera-mounted mobile robot [1, 2, 3, 4, 5, 6, 7]; recently, deep learning-based7

methods have been proposed in terms of target-driven visual navigation [8, 9, 10, 11]. However,8

in a more complex environment, such as a cluttered environment on a tabletop or an environment9

where objects are placed on a shelf, it may be impossible to find a target object by controlling only10

the position of the camera. To solve these issues, interactive perception-based methods – in which11

the robot can change the environment to find the target object – have been proposed. Object search12

using interactive perception is recently called mechanical search.13

Mechanical search methods. The earlier works have attempted to solve the problem of searching14

the target object via performing pushing or grasping actions to the surrounding objects in algorithmic15

manners [12, 13, 14]. Although these methods have made a significant contribution to the research16

topic of mechanical search, many assumptions are made in the environment to make the problem17

tractable, and they are generally computationally complex and therefore slow. To improve these18

methods (e.g., relaxing the assumptions), several works have proposed a POMDP model and its19

solver (e.g., DESPOT [15] or POMCP [16]) for mechanical search. A recent work provides a gen-20

eralized formulation of mechanical search and solve this problem effectively using deep learning-21

based perception module (e.g., object segmentation and recognition network) and grasping module22

(e.g., pre-trained Dex-Net) [17]. The follow-up paper proposes a novel perception module and a23

policy that minimizes the support of learned occupancy distributions obtained from the perception,24

and claims that the proposed method outperforms the previous methods [18]. Another work propose25

a 3D shape recognition-based approach that predicts the occluded geometries from the vision sensor26

image and then utilize this information to efficiently find the target object [19]. Our work is also27

in the spirit of [19] in utilizing the 3D shape recognition module to solve the mechanical search28

problem efficiently (e.g., reduce the number of total actions), but we use implicit representation for29

the recognized objects to utilize them for efficient and effective action decision (see Appendix A.3).30

Mechanical search on shelves. As the shelves are often used to store the objects in home envi-31

ronments or logistic warehouses, mechanical search on shelves are being studied as an important32

research topic [20, 21, 22]. Object manipulation on the shelves is more challenging because of the33

several task constraints: the manipulator must not collide with the shelf, the objects cannot be re-34

moved from the shelf, and only a nearly-lateral camera view is available. These constraints limit the35

action space of the manipulator and the amount of visual information that can be obtained from the36

vision sensor. An earlier work proposes an extension of the previous method named lateral access37

X-ray [18] to solve laterally-accessible mechanical search [20]. The follow-up studies use novel38

tools to extend the robot action space from just pushing to pushing-and-grasping [21] and stack-39

ing [22]. Since these methods are only interested in finding a fully-occluded target object on the40

shelf, using these methods directly may not be the optimal solution when considering grasping the41

target as well.42

A.2 Object Rearrangement for Target Object Grasping43

The object rearrangement generally refers to the problem of finding the feasible paths of the objects44

that move the objects from their initial configuration to desired final configuration, and in fact, a lot45

of various object rearrangement studies has been conducted; in this subsection, we only focus on the46

object rearrangement researches for grasping the target object. An earlier work propose an algorithm47

to remove the surrounding objects using prehensile manipulation to grasp the target object without48
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robot-object collisions [23]. Since the action space is limited only by prehensile manipulation, object49

rearrangement algorithms using non-prehensile manipulation have also been conducted; for exam-50

ple, these algorithms are based on tree-search [24], persistent homology [25], and semi-autonomous51

tele-operation [26]. We note that unlike mechanical search, these papers assume that the information52

about the target object (and sometimes information about the environment) is known. Other works53

focus on more general cases where the target object is possibly occluded [27, 28, 29]. If the target54

object is occluded, the proposed performs an algorithm to find the target similar to the mechanical55

search. It is worthy to note that our problem is more challenging since the surrounding objects can56

be removed in previous studies, but cannot in our case. Also, these studies first find the target object57

and then grasp it when the target is occluded; we argue in this paper that finding a target object while58

simultaneously considering whether it can be graspable is more efficient.59

Grasping the invisible. It is valuable to note that our problem setting is the closest to the problem60

considered in [30]. Their work also considers the problem of grasping the target object while consid-61

ering the mechanical search problem. They named this problem grasping the invisible and introduce62

a deep learning-based end-to-end method, more specifically, a critic function that maps the visual63

observations to the expect rewards of robot pushing or grasping actions. This paper is the same in64

that it addresses the same problem as ours, but the proposed methods so far are limited to a specific65

environment and may require a lot of data for the model to generalize to other environments. We66

develop a method that can be applied in various environments by using object recognition, which is67

known to be well generalizable to unseen scenes [31, 32], rather than an end-to-end method.68

A.3 Shape Recognition-based Robot Manipulation69

Numerous approaches have been proposed for the recognition of complete 3D shapes based on par-70

tial observations like depth images. Some of these methods employ explicit representations such71

as occupancy grid [33], point cloud [34], or mesh [35]. However, due to the limited resolution72

of these representations, they often result in imprecise shape predictions. To address this issue,73

recent studies have explored the use of neural implicit functions to learn implicit 3D representa-74

tions for objects [36, 37, 38, 39]. In our research, we utilize superquadric functions, which strike75

a balance between shape expressiveness, computational efficiency, and the number of parameters76

required [40]. Superquadric functions have found applications in robotic manipulation tasks such as77

grasping [41, 42, 43]. Although we represent each object as a single superquadric function in our pa-78

per, our approach can be easily extended to encompass general implicit representations, particularly79

deformable superquadrics [44, 31] or a collection of superquadrics [45].80
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B Implementation Details for Our Methods81

B.1 Object Shape Recognition82

B.2 Details for existence Function83

To become a candidate pose for the target object to exist, two conditions must be satisfied. 1) It84

should not violate the observation of the camera. 2) It should not overlap with surrounding objects.85

Thanks to the advantage that the superquadric object has an implicit function representation, we can86

accurately compute both conditions.87

Superquadric depth renderer. We use a virtual depth renderer with the same intrinsic and extrinsic88

parameters as Kinect, but with different resolutions 182× 102 for computational efficiency.89

Figure 1: .

Let rij(t) = (xij(t), yij(t), zij(t)) be the equa-90

tion of the straight line of the ray corresponding91

to each (i, j) pixel of the camera. Assume that92

n superquadric objects are recognized, and im-93

plicit function of k-th superquadric object are94

given as S(x; qk, Tk) = 0 where x ∈ R3. Occu-95

pancy V (x) of a point x is defined by V (x) = 196

if S(x; qk, Tk) ≤ 0 for at least one k and97

V (x) = 0 otherwise. Then the visibility func-98

tion on the ray A(rij(t)), which indicates whether the point is visible, can be defined as99

A(rij(t)) = e−τ
∫ t
tnear

V (ri,j(t
′))dt′ ,

with large enough τ . Then the depth value D(i, j) of i, j-th pixel can be calculated as100

D(i, j) = tnear +

∫ tfar

tnear

A(ri,j(t))dt.

In a state where the target object has not yet been found, the target object should not change the depth101

image. Let D be an original depth image from the currently recognized superquadrics, and Dx be102

a depth images rendered after placing the target object at possible x ∈ X . If ||D −Dx||F < τdepth,103

where τdepth is a threshold determining that the depth image has not changed, we considered that the104

target object did not violate camera observation in pose x. Finally, define a function D(x) where105

D(x) = 1 if ||D −Dx||F < τdepth and D(x) = 0 otherwise.106

Collision detection.107

Assume that sample point cloud from the target object when its pose is x, and lets denote this point108

cloud as Pt(x)(This process can be implemented using the open3d library). Then the target object at109

pose x collide with other objects if S(x; qk, Tk) ≤ 0 for at least one k and at least one x ∈ Pt(x). Let110

define a function C(x) where C(x) = 0 if the target object collide with other objects and C(x) = 1111

otherwise.112

existence function. Using the above two functions, we can easily define the existence function as113

follows,114

f(x) = D(x)C(x).

B.3 Details for Graspability Function115

Candidate grasp poses and trajectories. The body frame of the gripper is shown in the Figure 2.116

Given a superquadric parameter s, we assume that we have a gripper pose planner which generates117

n gripper pose {Tgrasp, i(s)}ni=1 that can grasp the object. Given a grasping pose Tgrasp, i(s), the118

trajectory of the gripper is defined as approaching the position of Tgrasp, i(s) by 20cm along the119

z-axis of the gripper frame.120
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Figure 2: .

Gripper collision detection.121

We created an afterimage point cloud Pa(Tgrasp, i(s)) of the grip-122

per point cloud and the grasped object point cloud following the123

trajectory defined above. Specifically, after translating gripper124

point cloud at all locations made by cutting 10 pieces of straight125

trajectory and merging all point clouds, down-sampling was per-126

formed. If at least one point x of this afterimage point cloud satisfies127

S(x; qk, Tk) ≤ 0, we regard it as a collision.128

Graspability function. Now we can define graspability func-129

tion g(x) as follow; for a given target pose x and superquadric130

parameter of the target object starget, g(x) = 0 if for all T ∈131

{Tgrasp, i(starget)}ni=1, S(x; qk, Tk) ≤ 0 for at least one x ∈ Pa(T )132

and at least one k. otherwise, g(x) = 1.133
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C Experimental Details134

C.1 Action Sampling135

We use discrete set of d for pushing action, whose direction is aligned with the width direction of136

the shelf and distance is 5 cm, 10 cm and 15 cm. We design a pushing position planner Tpush =137

Ppush(s, d), which outputs a gripper tip position corresponding to an input superquadric parameter138

s and pushing displacement d. Specifically, we tilt the gripper 30 degrees along the y-axis of the139

gripper frame(refer the Figure 2). Then the distance between the farthest point in the direction140

opposite to the d direction from the center of the object to be pushed and the nearest point of the141

gripper was set to 1 cm. Therefore, if we sample an arbitrary object and pushing displacement, we142

can get pushing action. Note that if the gripper collide with surrounding objects with its initial pose143

Tpush, this action is rejected.144

In the case of pick-and-place, grasping and retrieval process is same with the process explained in145

B.3. Only difference is that s is not starget, but the superquadric parameters of the grasped object.146

When placing the object, we check the collision of a trajectory made by pose Tplace similar with B.3.147

If the placing trajectory collides with other objects, that placing action will be rejected and other148

placing trajectory will be sampled. If any placing trajectory is valid, the previous picking process is149

rejected.150

C.2 Additional Details for Simulation Experiments151

The resolution of Kinect camera is 1280× 720. If a part of a target object is observed by the camera152

for more than 100 pixels, it is regarded as a successful observation. The manipulator is controller by153

position-controller with gain 1 for all joints.154

C.3 Additional Details for Real-world Experiments155

Since ground truth mask cannot be obtained in real-world experiment, we used dgcnn[46] as point156

cloud segmentation network. To identify the mask of the target object, we employed a red target157

object. We consider the corresponding mask as the mask of the target object if the RGB values of158

the image fragment obtained from the segmentation mask and the RGB values of the target object159

are close to a specific threshold.160

5



References161

[1] Y. Ye and J. K. Tsotsos. Sensor planning for 3d object search. Computer Vision and Image162

Understanding, 73(2):145–168, 1999.163
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