
Supplementary Material
–

NerfBaselines: Consistent and Reproducible
Evaluation of Novel View Synthesis Methods

In the Supplementary Material, we extend Section 3 from the main paper by providing the full1

Method API in Section A.1. We describe the video released as part of the Supplementary Material2

in Section A.2. We extend the reproducibility comparison from Section 4 of the main paper in3

Section A.3. We show screenshots of the web platform in Section A.4. We give the instructions4

on how to use NerfBaselines and reproduce the results in Section A.5. Finally, we provide detailed5

licenses for integrated methods in Section A.6.6

A.1 Method API7

Every method implements the following interface:8

• constructor(train_dataset?, checkpoint?): The constructor takes as its inputs the (op-9

tional) training dataset instance (a set of images and camera parameters) or the (optional) check-10

point. At least one of the two has to be provided.11

• train_iteration: Performs one training step (using the train dataset), updating the parameters.12

• save(path): Saves the current checkpoint.13

• render(cameras, embeddings?): Renders the 3D scene using the list of camera parameters14

with an optional list of camera embeddings if the method supports appearance conditioning.15

• get_info and get_method_info: Returns information about the trained model and the base16

method, respectively.17

• (optional) optimize_embeddings(dataset): Optimizes the appearance embeddings on the18

dataset (if the method supports it).19

A.2 Video20

In the attached video, we compare Gaussian Splatting [4], Mip-Splatting [9], Zip-NeRF [2], Instant-21

NGP [7], and NerfStudio [8]. We generate trajectories such that we start from regions close to the22

training trajectory, then we move further from the scene center and close to geometry to visualize23

how different methods handle these viewpoint changes. We show the results on two scenes from24

the Mip-NeRF 360 dataset [1] (stump and kitchen), and two scenes from the Tanks and Temples25

dataset [? ] (temple and lighthouse). Notice, how 3DGS behaves well close to the training trajectory26

but has blank spots outside (where the geometry is missing). On the other hand, NeRFs (especially27

NerfStudio [8]) is better able to extrapolate to less visible regions further from the scene center.28

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.



A.3 Reproducing paper results29

To extend the data reported in the main paper, we further give the detailed PSNR and SSIM scores for30

Blender [6] and Mip-NeRF 360 [1] datasets. From the results, we can see that SSIM behaves similarly31

to PSNR with mostly smaller differences (except for the Tetra-NeRF run on the Blender/ship scene).32

However, LPIPS (VGG) [10] numbers are very different from the papers. There are two reasons: 1)33

Multi-NeRF [1] and 3DGS [4] codebases both have a bug in LPIPS computation, where the images34

which should be normalized to [−1, 1] range is kept in the [0, 1] range. This makes the errors smaller.35

If we also change our evaluation not to normalize to [−1, 1], we reproduce their results. Since these36

codebases are the basis for most other methods, the bug is shared for other methods as well. 2) A37

smaller reason present in the case of NerfStudio is that we evaluate all metrics on images in the38

uint8 range (to be reproducible from the stored image). While this change does not have much39

influence on PSNR and SSIM, LPIPS is more sensitive to these changes.40

lego drums ficus hotdog
PSNR ↑ materials mic ship chair

Instant NGP [7] 35.64/36.39/-2.05% 24.57/26.02/-5.55% 30.29/33.51/-9.62% 37.01/37.40/-1.03%
28.95/29.78/-2.77% 35.40/36.22/-2.25% 30.60/31.10/-1.62% 35.06/35.00/+0.17%

TensoRF [3] 36.49/36.46/+0.09% 26.01/26.01/-0.00% 34.06/33.99/+0.19% 37.49/37.41/+0.20%
30.08/30.12/-0.14% 34.85/34.61/+0.68% 30.69/30.77/-0.26% 35.72/35.76/-0.11%

Tetra-NeRF [5] 33.93/34.75/-2.36% 24.99/25.01/-0.09% 32.37/33.31/-2.82% 35.80/36.16/-0.98%
28.75/29.30/-1.88% 34.54/35.49/-2.68% 31.06/31.13/-0.22% 34.17/35.05/-2.52%

Zip-NeRF [2] 35.81/34.84/+2.79% 25.90/25.84/+0.23% 34.73/33.90/+2.44% 37.98/37.14/+2.27%
30.98/31.66/-2.15% 35.90/35.15/+2.14% 32.30/31.38/+2.94% 35.75/34.84/+2.62%

Gaussian Splatting [4] 35.70/35.78/-0.24% 26.15/26.15/-0.01% 34.79/34.87/-0.22% 37.64/37.72/-0.21%
30.01/30.00/+0.02% 35.49/35.36/+0.36% 30.85/30.80/+0.15% 35.84/35.83/+0.04%

lego drums ficus hotdog
SSIM ↑ materials mic ship chair

Instant NGP [7] 0.981/-/- 0.930/-/- 0.972/-/- 0.982/-/-
0.944/-/- 0.989/-/- 0.892/-/- 0.984/-/-

TensoRF [3] 0.983/0.983/+0.01% 0.936/0.937/-0.05% 0.982/0.982/+0.04% 0.982/0.982/+0.04%
0.952/0.952/+0.04% 0.988/0.988/+0.03% 0.894/0.895/-0.14% 0.984/0.985/-0.06%

Tetra-NeRF [5] 0.972/0.987/-1.57% 0.927/0.947/-2.08% 0.977/0.989/-1.22% 0.978/0.989/-1.09%
0.941/0.968/-2.77% 0.987/0.993/-0.60% 0.896/0.994/-9.83% 0.977/0.990/-1.35%

Zip-NeRF [2] 0.983/0.980/+0.29% 0.948/0.944/+0.38% 0.987/0.985/+0.19% 0.987/0.984/+0.25%
0.967/0.969/-0.19% 0.992/0.991/+0.11% 0.937/0.929/+0.83% 0.987/0.983/+0.36%

Gaussian Splatting [4] 0.982/-/- 0.953/-/- 0.987/-/- 0.985/-/-
0.959/-/- 0.991/-/- 0.904/-/- 0.987/-/-

lego drums ficus hotdog
LPIPSVGG ↓ materials mic ship chair

Instant NGP [7] 0.020/-/- 0.109/-/- 0.031/-/- 0.037/-/-
0.069/-/- 0.016/-/- 0.136/-/- 0.023/-/-

TensoRF [3] 0.022/0.018/+23.33% 0.076/0.073/+4.16% 0.029/0.022/+30.50% 0.033/0.032/+2.16%
0.059/0.058/+1.31% 0.021/0.015/+39.93% 0.141/0.138/+2.44% 0.027/0.022/+22.86%

Tetra-NeRF [5] 0.036/-/- 0.087/-/- 0.032/-/- 0.040/-/-
0.076/-/- 0.022/-/- 0.129/-/- 0.029/-/-

Zip-NeRF [2] 0.019/0.019/-0.63% 0.054/0.050/+8.08% 0.014/0.015/-6.00% 0.023/0.020/+12.70%
0.040/0.032/+26.50% 0.008/0.007/+16.14% 0.114/0.091/+24.84% 0.017/0.017/+0.24%

Gaussian Splatting [4] 0.019/-/- 0.044/-/- 0.013/-/- 0.026/-/-
0.043/-/- 0.008/-/- 0.130/-/- 0.015/-/-

Table 1: Blender results comparing PSNR, SSIM, and LPIPS (VGG) obtained via NerfBaselines
with those reported in the original papers. We show the current PSNR/original PSNR/relative
difference in %. The darker the color, the larger the difference. The differences for Instant NGP [7]
are larger because the paper used a black background (instead of the default white). For LPIPS
(VGG), the differences are larger because the compared codebases do not normalize input images to
the correct range.

2



garden bicycle flowers treehill stump
PSNR ↑ kitchen bonsai counter room

Mip-NeRF 360 [1] 27.00/26.98/+0.07% 24.34/24.37/-0.12% 21.74/21.73/+0.04% 22.89/22.87/+0.10% 26.41/26.40/+0.04%
32.08/32.23/-0.48% 33.48/33.46/+0.05% 29.51/29.55/-0.15% 31.58/31.63/-0.14%

NerfStudio [8] 25.96/26.47/-1.91% 23.61/24.08/-1.94% 21.12/-/- 22.85/-/- 25.75/24.78/+3.91%
29.96/30.29/-1.10% 30.52/32.16/-5.11% 26.80/27.20/-1.48% 30.56/30.89/-1.06%

Zip-NeRF [2] 28.18/28.20/-0.05% 25.87/25.80/+0.26% 22.34/22.40/-0.25% 24.01/23.89/+0.51% 27.32/27.55/-0.82%
32.39/32.50/-0.34% 34.67/34.46/+0.61% 28.90/29.38/-1.63% 32.95/32.65/+0.93%

Gaussian Splatting [4] 27.37/27.41/-0.16% 25.20/25.25/-0.17% 21.60/21.52/+0.36% 22.46/22.49/-0.15% 26.48/26.55/-0.28%
31.36/30.32/+3.43% 32.10/31.98/+0.36% 28.97/28.70/+0.93% 31.43/30.63/+2.62%

Mip-Splatting [9] 27.48/27.76/-1.02% 25.30/25.72/-1.64% 21.64/21.93/-1.31% 22.64/22.98/-1.47% 26.52/26.94/-1.54%
31.12/31.55/-1.36% 32.18/32.31/-0.39% 29.04/29.16/-0.39% 31.55/31.74/-0.60%

garden bicycle flowers treehill stump
SSIM ↑ kitchen bonsai counter room

Mip-NeRF 360 [1] 0.813/0.813/+0.01% 0.688/0.685/+0.41% 0.583/0.583/-0.01% 0.632/0.632/-0.08% 0.747/0.744/+0.37%
0.919/0.920/-0.11% 0.940/0.941/-0.08% 0.893/0.894/-0.09% 0.912/0.913/-0.07%

NerfStudio [8] 0.756/0.774/-2.28% 0.567/0.599/-5.34% 0.512/-/- 0.546/-/- 0.694/0.662/+4.90%
0.881/0.890/-0.96% 0.909/0.933/-2.61% 0.829/0.843/-1.66% 0.880/0.896/-1.82%

Zip-NeRF [2] 0.863/0.860/+0.37% 0.775/0.769/+0.78% 0.637/0.642/-0.80% 0.675/0.681/-0.93% 0.789/0.800/-1.35%
0.929/0.928/+0.14% 0.951/0.949/+0.24% 0.904/0.902/+0.21% 0.927/0.925/+0.24%

Gaussian Splatting [4] 0.866/0.868/-0.17% 0.765/0.771/-0.79% 0.604/0.605/-0.23% 0.629/0.638/-1.34% 0.768/0.775/-0.87%
0.927/0.922/+0.52% 0.941/0.938/+0.30% 0.907/0.905/+0.25% 0.917/0.914/+0.31%

Mip-Splatting [9] 0.869/0.875/-0.71% 0.766/0.780/-1.74% 0.604/0.623/-3.01% 0.635/0.655/-3.11% 0.770/0.786/-2.04%
0.927/0.933/-0.68% 0.941/0.948/-0.71% 0.907/0.916/-0.94% 0.917/0.928/-1.14%

garden bicycle flowers treehill stump
LPIPSVGG ↓ kitchen bonsai counter room

Mip-NeRF 360 [1] 0.190/0.170/+11.59% 0.328/0.301/+9.10% 0.370/0.344/+7.63% 0.379/0.339/+11.93% 0.300/0.261/+14.76%
0.155/0.127/+22.06% 0.211/0.176/+19.82% 0.253/0.204/+24.18% 0.267/0.211/+26.38%

NerfStudio [8] 0.249/0.235/+5.95% 0.454/0.422/+7.46% 0.434/-/- 0.492/-/- 0.350/0.380/-8.01%
0.200/0.190/+5.03% 0.249/0.197/+26.27% 0.338/0.314/+7.77% 0.314/0.296/+5.98%

Zip-NeRF [2] 0.127/0.118/+7.85% 0.227/0.208/+8.91% 0.310/0.273/+13.41% 0.281/0.242/+16.11% 0.234/0.193/+21.44%
0.133/0.116/+15.07% 0.195/0.173/+12.77% 0.224/0.185/+20.83% 0.237/0.196/+20.88%

Gaussian Splatting [4] 0.123/0.103/+19.23% 0.239/0.205/+16.66% 0.366/0.336/+8.88% 0.379/0.317/+19.41% 0.251/0.210/+19.66%
0.155/0.129/+19.93% 0.253/0.205/+23.48% 0.257/0.204/+26.01% 0.286/0.220/+30.19%

Mip-Splatting [9] 0.124/0.103/+20.72% 0.241/0.206/+17.12% 0.371/0.331/+12.19% 0.379/0.320/+18.37% 0.253/0.209/+21.18%
0.155/0.113/+37.07% 0.253/0.173/+46.24% 0.258/0.179/+43.87% 0.286/0.192/+48.85%

Table 2: Mip-NeRF 360 results comparing PSNR, SSIM, and LPIPS (VGG) obtained via
NerfBaselines with those reported in the original papers. We show the current PSNR/original
PSNR/relative difference in %. The darker the color, the larger the difference. For PSNR and SSIM,
in most cases, the difference is < 1%. For LPIPS (VGG), the differences are larger because the
compared codebases (except for NerfStudio) do not normalize input images to the correct range.

a) Dataset results view a) Method results view

Figure 1: Web platform. Shows the ranking of the current set of integrated methods. It enables
downloading of the checkpoints and predictions, and for some methods, it provides an online viewer.

3



A.4 Web platform41

To keep track of the current state of the art (SoTA), we release a web platform (https://jkulhanek.42

com/nerfbaselines). The web platform shows results on all individual scenes for all methods,43

enables comparing methods, and allows users to download checkpoints and predictions for the44

datasets. Example screenshots can be seen in Figure 1.45

A.5 Use instructions46

Installation. Before installing NerfBaselines, Python 3.7+ must be installed on the host system.47

We recommend using either conda or venv to separate NerfBaselines from system packages. After48

Python is ready, install the nerfbaselines pip package on your host system by running: pip49

install nerfbaselines. Now, nerfbaselines cli can be used to interact with NerfBaselines.50

However, at least one supported backend must be installed before any method can be used. At the51

moment there are the following backends implemented:52

• docker: Offers good isolation, requires docker (with NVIDIA container toolkit) to53

be installed and the user to have access to it (being in the docker user group). In54

order to install it, please follow the instructions at https://github.com/NVIDIA/55

nvidia-container-toolkit56

• apptainer: Similar level of isolation as docker, but does not require the user to have57

privileged access. To install the backend, please follow instructions at https://apptainer.58

org/docs/admin/main/installation.html.59

• conda (default): Does not require docker/apptainer to be installed, but does not offer the60

same level of isolation and some methods require additional dependencies to be installed.61

Also, some methods are not implemented for this backend because they rely on dependencies62

not found on conda. To install conda, we recommend following instructions at https://63

github.com/conda-forge/miniforge to install the miniforge distribution of conda.64

• python: Will run everything directly in the current environment. Everything needs to be65

installed in the environment for this backend to work.66

Additionally, all backends require NVIDIA GPU drivers to be installed to access the GPUs. For67

NerfBaselines commands, the backend can be set either via the --backend <backend> argument68

or using the NERFBASELINES_BACKEND environment variable.69

Training. To start the training, use the following command: nerfbaselines train --method70

<method> --data external://<dataset>/<scene>, where <method> can be e.g., nerfacto,71

zipnerf, instant-ngp, ... (for the full list, run nerfbaselines train --help). The72

<dataset> can be one of the following: mipnerf360, blender, tanksandtemples. Similarly,73

<scene> is the scene name in lowercase. The training script will automatically download the dataset74

and start the training. The training will also run the evaluation and output the metrics computed on75

the test set.76

Other commands. The resulting checkpoint can be used in the viewer (nerfbaselines77

viewer --checkpoint <checkpoint> --data external://<dataset>/<scene>), to78

rerun the rendering (nerfbaselines render --checkpoint <checkpoint> --data79

external://<dataset>/<scene>), or to render a camera trajectory (nerfbaselines80

render-trajectory --checkpoint <checkpoint> --trajectory <trajectory>81

--output <output>.mp4). The full list of available command can be seen by running82

nerfbaselines --help.83

4

https://jkulhanek.com/nerfbaselines
https://jkulhanek.com/nerfbaselines
https://jkulhanek.com/nerfbaselines
https://github.com/NVIDIA/nvidia-container-toolkit
https://github.com/NVIDIA/nvidia-container-toolkit
https://github.com/NVIDIA/nvidia-container-toolkit
https://github.com/NVIDIA/nvidia-container-toolkit
https://apptainer.org/docs/admin/main/installation.html
https://apptainer.org/docs/admin/main/installation.html
https://apptainer.org/docs/admin/main/installation.html
https://github.com/conda-forge/miniforge
https://github.com/conda-forge/miniforge
https://github.com/conda-forge/miniforge


A.6 License84

The NerfBaselines project is licensed under the MIT license. Each implemented method is licensed85

under the license provided by the authors of the method. For the currently implemented methods, the86

following licenses apply:87

• NerfStudio: Apache 2.088

• Instant-NGP: custom, research purposes only89

• Gaussian-Splatting: custom, research purposes only90

• Mip-Splatting: custom, research purposes only91

• Gaussian Opacity Fields: custom, research purposes only92

• Tetra-NeRF: MIT, Apache 2.093

• Mip-NeRF 360: Apache 2.094

• Zip-NeRF: Apache 2.095

• CamP: Apache 2.096

References97

[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 360:98

Unbounded anti-aliased neural radiance fields. In CVPR, 2022.99

[2] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf:100

Anti-aliased grid-based neural radiance fields. In ICCV, pages 19697–19705, 2023.101

[3] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. TensoRF: Tensorial radiance fields. In102

ECCV, 2022.103

[4] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for104

real-time radiance field rendering. ACM TOG, 2023.105

[5] Jonas Kulhanek and Torsten Sattler. Tetra-nerf: Representing neural radiance fields using tetrahedra. In106

ICCV, pages 18458–18469, 2023.107

[6] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.108

NeRF: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.109

[7] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives110

with a multiresolution hash encoding. ACM TOG, 2022.111

[8] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Terrance Wang, Alexander Kristoffersen,112

Jake Austin, Kamyar Salahi, Abhik Ahuja, et al. Nerfstudio: A modular framework for neural radiance113

field development. In ACM TOG, 2023.114

[9] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-free 3d115

gaussian splatting. In CVPR, 2024.116

[10] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable117

effectiveness of deep features as a perceptual metric. In CVPR, 2018.118

5

https://raw.githubusercontent.com/jkulhanek/nerfbaselines/main/LICENSE
https://raw.githubusercontent.com/nerfstudio-project/nerfstudio/main/LICENSE
https://raw.githubusercontent.com/NVlabs/instant-ngp/master/LICENSE.txt
https://raw.githubusercontent.com/graphdeco-inria/gaussian-splatting/main/LICENSE.md
https://raw.githubusercontent.com/autonomousvision/mip-splatting/main/LICENSE.md
https://raw.githubusercontent.com/autonomousvision/gaussian-opacity-fields/main/LICENSE.md
https://raw.githubusercontent.com/jkulhanek/tetra-nerf/master/LICENSE
https://raw.githubusercontent.com/nerfstudio-project/nerfstudio/main/LICENSE
https://raw.githubusercontent.com/google-research/multinerf/main/LICENSE
https://raw.githubusercontent.com/jonbarron/camp_zipnerf/main/LICENSE
https://raw.githubusercontent.com/jonbarron/camp_zipnerf/main/LICENSE

	Method API
	Video
	Reproducing paper results
	Web platform
	Use instructions
	License

