
Under review as a conference paper at ICLR 2024

A SUPPORTIVE EXPERIMENTAL DETAILS

Codes for our algorithms and experiments could be accessed using the following anonymous Github
link: https://anonymous.4open.science/r/Continuous-Dynamic-Tuning/

A.1 SIMULATIONS ON THE OPTIMAL HYPERPARAMETER VALUE IN GRID SEARCH

To further validate the necessity of dynamic hyperparameter tuning, we conduct a simulation for UCB
algorithms LinUCB, UCB-GLM, GLOC and TS algorithms LinTS, GLM-TSL with a grid search of
exploration parameter in {0.1, 0.5, 1, 1.5, 2, . . . , 10} and then report the best parameter value under
different settings. Specifically, we set d = 10, T = 8000,K = 60, 120, and choose arm xt,a and
θ∗ randomly in {x : ∥x∥ ≤ 1}. Rewards are simulated from N(x⊤

t,aθ
∗, 0.5) for LinUCB, LinTS,

and from Bernoulli(1/(1 + exp (−x⊤
t,aθ

∗))) for UCB-GLM, GLOC and GLM-TSL. The results are
displayed in Table 1, where we can see that the optimal hyperparameter values are distinct and far
from the theoretical ones under different algorithms or settings. Moreover, the theoretical optimal
exploration rate should be identical under different values of K for most algorithms shown here, but
in practice the best hyperparameter to use depends on K, which also contradicts with the theoretical
result.

Bandit type Linear bandit Generalized linear bandit

Algorithm LinUCB LinTS UCB-GLM GLOC GLM-TSL
K = 60 2.5 1 1.5 4.5 1.5
K = 120 3 1.5 2.5 5 2

Table 1: The optimal exploration parameter value in grid search for LinUCB, LinTS, UCB-GLM,
GLOC and GLM-TSL based on average cumulative regret of 5 repeated simulations.

A.2 SIMULATIONS TO VALIDATE THE LIPSCHITZNESS OF HYPERPARAMETER
CONFIGURATION

We also conduct another simulation to show it is reasonable and fair to assume the expected reward is
an almost-stationary Lipschitz function w.r.t. hyperparameter values. Specifically, we set d = 6, T =
3000,K = 60, and for each time we run LinUCB and LinTS by using our CDT framework, but also
obtain the results by choosing the exploration hyperparameter in the set {0.3, 0.45, 0.6, . . . , 8.85, 9}
respectively. For the first 200 rounds we use the random selection for sufficient exploration, and
hence we omit the results for the first 200 rounds. After the warming-up period, we divide the rest of
iterations into 140 groups uniformly, where each group contains 20 consecutive iterations. Then we
calculate the mean of the obtained reward of each hyperparameter value in the adjacent 20 rounds,
and centralize the mean reward across different hyperparameters in each group (we call it group mean
reward). Afterward, we can calculate the mean and standard deviation of the group mean reward for
different hyperparameter values across all groups. The results are shown in Figure 2, where we can
see the group mean reward can be decently represented by a stationary Lipschitz continuous function
w.r.t hyperparameter values. Conclusively, we could formulate the hyperparameter optimization
problem as a stationary Lipschitz bandit after sufficient exploration in the long run. And in the very
beginning we can safely believe there is also only finite number of change points. This fact firmly
authenticates our problem setting and assumptions.

A.3 SIMULATIONS FOR ALGORITHM 1

We also conduct empirical studies to evaluate our proposed Zooming TS algorithm with Restarts
(Algorithm 1) in practice. Here we generate the dataset under the switching environment, and abruptly
change the underlying mean function for several times within the time horizon T . The methods used
for comparison as well as the simulation setting are elaborated as follows:

Methods. We compare our Algorithm 1 (we call it Zooming TS-R for abbreviation) with two
contenders: (1) Zooming algorithm Kleinberg et al. (2019): this algorithm is designed for the static

13

https://anonymous.4open.science/r/Continuous-Dynamic-Tuning/

Under review as a conference paper at ICLR 2024

0 1 3 5
Iterations

0.04

0.02

0.00

0.02

0.04

0.06

Ce
nt

ra
liz

ed
 m

ea
n

re
gr

et

1.5

Simulations for LinUCB

0 1 3 5
Iterations

0.04

0.02

0.00

0.02

0.04

0.06

Ce
nt

ra
liz

ed
 m

ea
n

re
gr

et

1.05

Simulations for LinTS

Figure 2: Average cumulative regret and its standard deviation of group mean reward for different
hyperparameter values across all groups.

Lipschitz bandit, and would fail in theory under the switching environment; (2) Oracle: we assume
this algorithm knows the exact time for all switching points, and would renew the Zooming algorithm
when reaching a new stationary environment. Although this algorithm could naturally perform well,
but it is infeasible in reality. Therefore, we would just use Oracle as a skyline here, and a direct
comparison between Oracle and our Algorithm 1 is inappropriate.

Settings. Assume the set of arm is [0, 1]. The unknown mean function ft(x) is chosen
from two classes of reward functions with different smoothness around their maximum: (1)
{0.9 − 0.9|x − a|, x ∈ [0, 1] : a = 0.05, 0.25, 0.45, 0.70, 0.95} (triangle function); (2){

2
3π sin

(
3π
2 (x− a+ 1

3)
)
, x ∈ [0, 1] : a = 0.05, 0.25, 0.45, 0.70, 0.95

}
. We set T = 90, 000 and

c(T) = 3, and choose the location of changing points at random in the very beginning. The random
noise is generated according to N(0, 0.1). The value of epoch size H is set as suggested by our
theory H = 10⌈(T/c(T))3/4⌉. For each class of reward functions, we run the simulations for 20
times and report the average cumulative regret as well as the standard deviation for each contender in
Figure 3. (The change points are fixed for each repetition to make the average value meaningful.)

Figure 3 shows the performance comparisons of three different methods under the switching envi-
ronment measured by the average cumulative regret. We can see that Oracle is undoubtedly the best
since it knows the exact times for all change points and hence restart our Zooming TS algorithm
accordingly. The traditional Zooming algorithm ranks the last w.r.t both mean and standard deviation
since it doesn’t take the non-stationarity issue into account at all, and would definitely fail when
the environment changes. This fact also coincides with our expectation precisely. Our proposed
algorithm has an obvious advantage over the traditional Zooming algorithm when the change points
exist, and we can see that our algorithm could adapt to the environment change quickly and smoothly.

A.4 ADDITIONAL DETAILS AND RESULTS FOR SECTION 5

A.4.1 EXPERIMENTAL SETTINGS FOR SECTION 5

Here we first summarize our proposed CDT method with other existing bandit hyperparameter tuning
algorithms for comparison:
(1) Theoretical setting: We implement the theoretical exploration rate and stepsize for each al-

gorithm. For the stepsize of gradient descent used in SGD-TS and Laplace-TS, we set it as 1
instead. (We observe the algorithmic performance is not sensitive to this stepsize.)

(2) OP: Bouneffouf & Claeys (2020) proposes OPLINUCB to tune the exploration rate of LinUCB.
Here we modify it so that it could be used in other bandit algorithms. Note that OP is only
applicable to algorithms with one hyperparameter, and hence we fix the learning parameter of
GLOC and SGD-TS as their theoretical values instead, and only tune the exploration rates.

(3) TL Ding et al. (2022b) (one hyperparameter): For algorithms with only one hyperparameter, TL
is used.

(4) Syndicated Ding et al. (2022b) (multiple hyperparameters): For GLOC and SGD-TS (two
hyperparameters), the Syndicated framework is utilized for comparison.

14

Under review as a conference paper at ICLR 2024

Then we would present the details of our comparison settings regarding simulations, Movielens 100K
dataset and YahooToday Module dataset in Section 5:

Simulation: In each repetition, we simulate all the feature vectors {xt,a} and the model parameter θ∗
according to Uniform(−1/

√
r,1/
√
r) elementwisely, and hence we have ∥xt,a∥ ≤ 1. We set d =25,

K =120 and T =14,000. For linear model, the expected reward of arm a is formulated as x⊤
t,aθ

∗ and
random noise is sampled from N(0, 0.25); for Logistic model, the mean reward of arm a is defined
as p = 1/(1 + exp(−x⊤

t,aθ
∗)), and the output is drawn from a Bernoulli distribution.

Movielens 100K dataset: This dataset contains 100K ratings from 943 users on 1,682 movies. For
data pre-processing, we utilize LIBPMF Yu et al. (2014) to perform matrix factorization and obtain
the feature matrices for both users and movies with d =20, and then normalize all feature vectors into
unit r-dimensional ball. In each repetition, the model parameter θ∗ is defined as the average of 300
randomly chosen users’ feature vectors. And for each time t, we randomly choose K = 300 movies
from 1,682 available feature vectors as arms {xt,a}300a=1. The time horizon T is set to 14,000. For
linear models, the expected reward of arm a is formulated as x⊤

t,aθ
∗ and random noise is sampled

from N(0, 0.5); for Logistic model, the output of arm a is drawn from the Bernoulli distribution with
p = 1/(1 + exp(−x⊤

t,aθ
∗)).

Yahoo News dataset: We downloaded the Yahoo Recommendation dataset R6A, which contains
Yahoo data from May 1 to May 10, 2009 with T = 2881 timestamps. For each user’s visit, the
module will select one article from a pool of 20 articles for the user, and then the user will decide
whether to click. We transform the contextual information into a 6-dimensional vector based on the
processing in Chu et al. (2009). We build a Logistic bandit on this data, and the observed reward is
simulated from a Bernoulli distribution with a probability of success equal to its click-through rate at
each time.

A.4.2 YAHOO NEWS RECOMMENDATION DATASET RESULTS

Since it is a logistic bandit, we only output the results of GLBs in the following Table 2:

Method UCB-GLM GLM-TSL Laplace-TS GLOC SGD-TS
Theory 221.51 214.67 217.38 206.73
CDT 221.69 218.27 217.05 217.95 218.35
OP 217.25 217.08 213.95 216.28 215.58
TL/Syndicated 218.95 219.36 214.42 218.19 215.02

Table 2: Comparisons of cumulative rewards from different algorithms on Yahoo dataset.

From the table above, we can see that our proposed CDT performs well on the Yahoo dataset.
Specifically, it is only slightly worse than TL for GLM-TSL and GLOC, and yields the best results
among all hyperparameter tuning frameworks for UCB-GLM, GLM-TSL, and SGD-TS. While the
theoretical- hyperparameter setting slightly outperforms CDT in UCB-GLM and Laplace-TS, it is
very unstable. And according to other experiments in Section 5, its cumulative regret will explode in
large-scale experiments.

A.4.3 BASELINES WITH A LARGE CANDIDATE SET

To further make a fair comparison and validate the high superiority of our proposed CDT framework
over the existing OP, TL (or Syndicated) which relies on a user-defined hyperparameter candidate
set, we explore whether CDT will consistently outperform if baselines are running with a large
tuning set. Here we replace the original tuning set C1 = {0.1, 1, 2, 3, 4, 5} with a finer set C2 =
{0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. And the new results are shown in the following
Table 3 (original results in Section 5 are in gray).

Therefore, we can observe that the performance overall becomes worse under C2 compared with
the original C1. In other words, adding lots of elements to the tuning set will not help improve the
performance of existing algorithms. We believe this is because the theoretical regret bound of TL
(Syndicated) also depends on the number of candidates k in terms of

√
k Ding et al. (2022b). There

15

Under review as a conference paper at ICLR 2024

Candidate Set C1 C2
Algorithm Setting TL/Syndicated OP TL/Syndicated OP

Simulations 343.14 383.62 356.23 389.91LinUCB Movielens 346.16 390.10 359.10 408.67
Simulations 828.41 869.30 874.34 925.29LinTS Movielens 519.09 666.35 516.62 667.77
Simulations 271.45 350.85 298.68 367.97UCB-GLM Movielens 381.00 397.58 406.29 412.62
Simulations 433.27 445.43 448.21 458.71GLM-TSL Movielens 446.74 678.91 458.23 718.46
Simulations 510.03 568.81 530.29 567.10Laplace-TS Movielens 949.51 1063.92 958.10 1009.23
Simulations 406.28 417.30 414.82 427.05GLOC Movielens 571.36 513.90 568.91 520.72
Simulations 448.29 551.63 458.09 557.04SGD-TS Movielens 1016.72 1084.13 1038.94 1073.91

Table 3: Cumulative regrets of baselines under different hyperparameter tuning sets.

is no theoretical guarantee for OP. After introducing so many redundant values in the candidate set,
the TL (Syndicated) and OP algorithms would get disturbed and waste lots of concentration on those
unnecessary candidates.

In conclusion, we believe the existing algorithms relying on user-tuned candidate sets would perform
well if the size of the candidate set is reasonable and the candidate set contains some value very close to
the optimal hyperparameter value. However, in practice, finding the unknown optimal hyperparameter
value is a black-box problem, and it’s impossible to construct a candidate set satisfying the above
requirements at the beginning. If we discretize the interval finely, then the large size of the candidate
set would hurt the performance as well. On the other hand, our proposed CDT could adaptively
“zoom in” on the regions containing this optimal hyperparameter value automatically, without the
need of pre-specifying a “good” set of hyperparameters. And CDT could always yield robust results
according to the extensive experiments we did in Section 5.

A.4.4 ABLATION STUDY ON THE CHOICE OF T1 AND T2

For T1, we set it to T 2/(p+3) where p stands for the number of hyperparameters according to
Theorem 4.2. Specifically, for LinUCB, LinTS, UCB-GLM, GLM-TSL and Laplace-TS, we choose it
to be 118. For GLOC and SGD-TS, we set it as 45. Here we also rerun our experiments in Section 5
with T1 = 0 (no warm-up) since we believe a long warm-up period will abandon lots of useful
information, and then we report the results after this change:

We can observe that the results are almost identical from Table 4. For T2, Theorem 4.2 suggests
that T2 = O

(
T (p+2)/(p+3)

)
. In our original experiments, we choose T2 = 3T (p+2)/(p+3). To take

an ablation study on T2 we take T2 = kT (p+2)/(p+3) for k = 1, 2, 3 in each experiment, and to see
whether our CDT framework is robust to the choice of k.

According to Table 5, we can observe that overall k = 2 and k = 3 perform better than k = 1.
We believe it is because, in the long run, the optimal hyperparameter would tend to be stable, and
hence some restarts are unnecessary and inefficient. Note by choosing k = 1 our proposed CDT still
outperforms the existing TL and OP tuning algorithms overall. For k = 2 and k = 3, we can observe
that their performances are comparable, which implies that the choice of k is quite robust in practice.
We believe it is due to the fact that our proposed Zooming TS algorithm could always adaptively
approximate the optimal point. Although it is unknown which one is better in practice under different
cases, our comprehensive simulations show that choosing either one in practice will work well and
outperform all the existing methods. In conclusion, these results suggest that we have a universal way
to set the values of T1 and T2 according to the theoretical bounds, and we do not need to tune them
for each particular dataset. In other words, the performance of our CDT tuning framework is robust
to the choice of T1, T2 under different scenarios.

16

Under review as a conference paper at ICLR 2024

Algorithm Setting T1 = 0 T1 = T 2/(p+3)

LinUCB Simulation 298.28 303.14
Movielens 313.29 307.19

LinTS Simulation 677.03 669.45
Movielens 343.18 340.85

UCB-GLM Simulation 299.74 300.54
Movielens 314.41 311.72

GLM-TSL Simulation 339.49 333.07
Movielens 428.82 432.47

Laplace-TS Simulation 520.29 520.35
Movielens 903.16 900.10

GLOC Simulation 414.70 418.05
Movielens 455.39 461.78

SGD-TS Simulation 430.05 425.98
Movielens 843.91 838.06

Table 4: Ablation study on the role of T1 in our CDT framework.

Algorithm Setting k = 1 k = 2 k = 3
Simulation 328.28 300.62 298.28LinUCB Movielens 310.06 303.10 313.29
Simulation 717.77 670.90 677.03LinTS Movielens 360.12 352.19 343.18
Simulation 314.01 316.95 299.74UCB-GLM Movielens 347.92 325.58 314.41
Simulation 320.21 331.43 339.49GLM-TSL Movielens 439.98 428.91 428.82
Simulation 565.15 540.61 520.29Laplace-TS Movielens 948.10 891.91 903.16
Simulation 417.05 414.70 415.05GLOC Movielens 441.85 455.39 462.24
Simulation 450.14 430.05 414.57SGD-TS Movielens 852.98 843.91 830.35

Table 5: Ablation study on the role of T2 in our CDT framework.

A.4.5 COMPUTATIONAL TIME

We also report the computational running time for the 10 cases corresponding to Figure 1 plots 1-10.
Specifically, we display the average running time on each method in Table 6. We can observe that
all existing methods and our CDT can run very fast in practice, and our CDT is only slightly more
expensive in computation (CDT only takes at most two more seconds). In addition, we can conclude
that the main computation time comes from the contextual bandit algorithm we tune on. We can
see that GLM-TSL requires much more time than all other methods under different tuning methods.
Therefore, we can conclude that our CDT significantly outperforms all existing baselines without
increasing much computation.

B SUPPORTIVE REMARKS

Remark B.1. (Can’t use general bandit model selection methods) Although we acknowledge that
our problem setting has some similarities with the model selection in bandits. Agarwal et al. (2017);
Foster et al. (2019); Sharaf & Daumé III (2019), there are some significant discrepancies. To clarify
this point, we take the state-of-the-art corralling idea Agarwal et al. (2017) as an example: in theory,
it has regret bound or order O(

√
MT +MRmax) where M is the number of base models (number

17

Under review as a conference paper at ICLR 2024

Algorithm Setting Theory TL OP CDT
Simulation 2.11 2.61 2.60 3.69LinUCB Movielens 2.17 2.67 2.65 3.39
Simulation 2.19 2.67 2.62 3.53LinTS Movielens 2.04 2.49 2.45 3.46
Simulation 8.34 8.84 8.71 9.57UCB-GLM Movielens 7.89 8.44 8.35 9.47
Simulation 305.28 305.98s 306.02 307.24GLM-TSL Movielens 295.17 295.87 294.83 297.31
Simulation 525.62 526.31 526.24 527.75Laplace-TS Movielens 502.89 503.45 503.51 504.45

Table 6: Running time for each method in seconds.

of hyperparameter combinations in our setting) and Rmax is the regret of the worst candidate model
in the tuning set. Therefore, on the one hand, M is infinitely large in our problem setting with a
continuous candidate set, which means the regret bound would also be infinitely large. On the other
hand, in order to achieve sub-linear regret in hyperparameter tuning, the corralling idea requires that
all hyperparameter candidates yield sub-linear regret in theory, which is a very unrealistic assumption.
On the contrary, our work only assumes the existence of a hyperparameter candidate in the tuning
set which yields good theoretical regret. In experiments, it is very expensive to use since it requires
updating all base models at each round, and we have infinitely many base models under our setting.
Moreover, Ding et al. (2022b) includes the corralling idea in their experiments, and we can observe
that it performs terribly with almost linear regret in each setting. And this is because there is no
sub-linear regret guarantee for it in the hyperparameter tuning problem. In conclusion, the only
existing methods that really focus on hyperparameter tuning of bandits are OP and TL (Syndicated),
and we use both of them in our paper as baselines.
Remark B.2. (Justifications on assumptions) We further explain the motivations of the Lipschitzness
and piecewise stationarity assumptions of the expected reward function for hyperparameter tuning of
bandit algorithms.

For Lipschitzness, we get the motivation of our formulation shown in Eqn. 3 and Eqn. 4 from
the hyperparameter tuning work on the offline machine learning algorithms. Specifically, Bayesian
optimization is widely considered as the state-of-the-art and most popular hyperparameter tuning
method, which assumes that the underlying function is sampled from a Gaussian process in the
given space. By selecting a value x in the space and obtaining the corresponding reward, Bayesian
optimization could update its estimation of the underlying function, especially in the neighbor of
x sequentially. And it also relies on a user-defined kernel function, whose selection is also purely
empirical and lacks theoretical support. In our work, we use a similar idea as Bayesian optimization:
close hyperparameters tend to yield similar values with other conditions fixed. And this natural
extension motivates the Lipschitz assumption made in our paper. Therefore, it is fair to make a similar
and analogous assumption (close hyperparameters yield similar results given other conditions fixed)
for the hyperparameter tuning of bandit algorithms in our work. We validate this assumption using a
suite of simulations in Appendix A.

For the piecewise stationarity, as we mention in Section 3, it is inappropriate to assume the strict
stationarity of the bandit algorithm performance under the same hyperparameter value setting across
time T . As an example, for most UCB and TS-based bandit algorithms (e.g. LinUCB, LinTS,
UCB-GLM, GLM-UCB, GLM-TSL, etc.), the exploration degree of an arm is a multiplier of the
exploration rate and the uncertainty of an arm. In the beginning, a moderate value of the exploration
rate may lead to a large exploration degree for the arm since the uncertainty is large. On the contrary,
in the long run, a moderate value of exploration rate will lead to a minor exploration degree for the
arm since its value has been well estimated with small uncertainty. Therefore, a fixed hyperparameter
setting may suggest different results across different stages of time, and hence it is unreasonable to
expect the strong stationarity of the hyperparameter tuning for bandit algorithms at all time steps. On
the other hand, it would be very inefficient to assume a completely non-stationary environment as in
Ding et al. (2022b) which uses EXP3. In very close time steps, we could anticipate that the same
hyperparameter setting would yield a very similar result in expectation since the uncertainty of any

18

Under review as a conference paper at ICLR 2024

arm would be close. And using a non-stationary environment will totally waste this information and
hence is inefficient. Therefore, it is very well motivated to use a partial non-stationarity assumption
that lies in the middle ground between the above two extremes. Note our proposed tuning method
yields very promising results in extensive experiments under our formulations. And the stationary
environment can be regarded as a special case of our switching environment setting where the
functions in between all change points are the same.

Finally, we will explain why it is excessively difficult to present theoretical validation regarding these
assumptions in our paper. As we mentioned, our formulation is motivated by Bayesian optimization,
arguably the most popular method for hyperparameter tuning for offline machine learning algorithms.
And we use a similar idea: similar hyperparameters tend to yield similar values while other conditions
are fixed. However, people could hardly provide any theory backing for the analogous assumption of
Bayesian optimization for any offline machine learning algorithms (e.g. regression, classification),
and hyperparameter tuning is widely considered as a black-box problem for offline machine learning
algorithms. Not to mention that the theoretical analysis of hyperparameter tuning for any bandit
algorithm is much more challenging than that of offline machine learning algorithms since historical
observations along with hyperparameter values will affect the online selection simultaneously for the
bandit algorithms, and we can use different hyperparameters in different rounds for bandit algorithms.
Conclusively, our formulation is natural and well-motivated.

C DETAILED PROOF ON THE ZOOMING DIMENSION

In the beginning, we would reload some notations for simplicity. Here we could omit the time
subscript (or superscript) t since the following result could be identically proved for each round t.
Assume the Lipschitz function f is defined on Rpc , and v∗ := argmaxv∈A f(v) denotes the maximal
point (w.l.o.g. assume it’s unique), and ∆(v) = f(v∗) − f(v) is the “badness” of the arm v. We
then naturally denote Ar as the r-optimal region at the scale r ∈ (0, 1], i.e. Ar = {v ∈ A : r/2 <
∆(v) ≤ r}. The r-zooming number could be denoted as Nz(r). And the zooming dimension could
be naturally denoted as pz . Note that by the Assouad’s embedding theorem, any compact doubling
metric space (A,Dist(·, ·)) can be embedded into the Euclidean space with some type of metric.
Therefore, for all compact doubling metric spaces with cover dimension pc, it is sufficient to study on
the metric space ([0, 1]pc , ∥·∥l) for some l ∈ (0,+∞] instead.

We will rigorously prove the following two facts regarding the r-zooming number Nz(r) of (A, f)
for arbitrary compact set A ⊆ Rpc and Lipschitz function f(·) defined on A:

• 0 ≤ pz ≤ pc.

• The zooming dimension could be much smaller than pc under some mild conditions. For
example, if the payoff function f is greater than ∥v∗ − v∥β in scale in a (non-trivial)
neighborhood of v∗ for some β ≥ 1, i.e. f(v∗)− f(v) ≥ C(∥v∗ − v∥β) as ∥v∗ − v∥ ≤ r
for some C > 0 and r = Θ(1), then it holds that pz ≤ (1− 1/β)pc. Note β = 2 when we
have f(·) is C2-smooth and strongly concave in a neighborhood of v∗, which subsequently
implies that pz ≤ pc/2.

Proof. Due to the compactness of A, it suffices to prove the results when A = [0, 1]pc . By the
definition of the zooming dimension pz , it naturally holds that pz ≥ 0. On the other side, since the
space A is a closed and bounded set in Rpc , we assume the radius of A is no more than S, which
consequently implies that the r/16-covering number of A is at most the order of(

S
r
16

)pc

= (16S)pc · r−pc .

Since we know Ar ⊆ A, it holds that pz ≤ p. Secondly, if the payoff function f is locally greater
than ∥v∗ − v∥β in scale for some β ≥ 1, i.e. f(v∗)−f(v) ≥ C(∥v∗ − v∥β), then there exists C ∈ R
and δ > 0 such that as long as C ∥v − v∗∥β ≤ δ we have f(v∗)− f(v) ≥ C ∥v − v∗∥β . Therefore,
for 0 < r < δ, it holds that,

{v : r ≥ f(v∗)− f(v) > r/2} ⊆ {v : C ∥v − v∗∥β ≤ r} =

{
v : ∥v − v∗∥ ≤

(r

C

) 1
β

}

19

Under review as a conference paper at ICLR 2024

Figure 3: Cumulative regret plots of Zooming TS-R, Zooming and Oracle algorithms under the
switching environment.

20000 40000 60000 80000
Iterations

0

1000

2000

3000

4000

5000

6000
Cu

m
ul

at
iv

e
Re

gr
et

Simulations for triangle functions
Zooming
Zooming TS-R
Oracle

20000 40000 60000 80000
Iterations

0

500

1000

1500

2000

2500

Cu
m

ul
at

iv
e

Re
gr

et

Simulations for sine functions
Zooming
Zooming TS-R
Oracle

It holds that the r-covering number of the Euclidean ball with center v∗ and radius (r/c)(1/β) is of
the order of (r

C

) 1
β

r
16

pc

=

(
16

C
1
β

)pc

· r−(1− 1
β)pc

which explicitly implies that pz ≤ (1− 1/β)pc.

D INTUITION OF OUR THOMPSON SAMPLING UPDATE

Intuitively, we consider a Gaussian likelihood function and Gaussian conjugate prior to design our
Thompson Sampling version of zooming algorithm, and here we would ignore the clipping step for
explanation. Suppose the likelihood of reward ỹt at time t, given the mean of reward I(vt) for our
pulled arm vt, follows a Gaussian distribution N(I(vt), s

2
0). Then, if the prior of I(vt) at time t is

given by N(f̂t(vt), s
2
0/nt(vt)), we could easily compute the posterior distribution at time t+ 1,

Pr(I(vt)|ỹt) ∝ Pr(ỹt|I(vt))Pr(I(vt)),

as N(f̂t+1(vt), s
2
0/nt+1(vt)). We can see this result coincides with our design in Algorithm 1 and

its proof is as follows:

Proof.

Pr(I(vt)|ỹt) ∝ Pr(ỹt|I(vt))Pr(I(vt))

∝ exp

{
− 1

2s20
[(I(vt)− ỹt)

2 + nt(vt)(I(vt)− ft(vt))
2]

}
∝ exp

{
− 1

2s20
[(nt(vt) + 1)I(vt)

2 − 2(ỹt + nt(vt)ft(vt))I(vt)]

}
∝ exp

{
−nt+1(vt)

2s20

[
I(vt)

2 − 2
(ỹt + nt(vt)ft(vt))

nt+1(vt)
I(vt)

]}
∝ exp

{
−nt+1(vt)

2s20
(I(vt)− ft+1(vt))

2

}
Therefore, the posterior distribution of I(vt) at time t+ 1 is N(ft+1(vt), s

2
0

1
nt+1(vt)

).

This gives us an intuitive explanation why our Zooming TS algorithm works well when we ignore the
clipped distribution step. And we have stated that this clipping step is inevitable in Lipschitz bandit
setting in our main paper since (1) we’d like to avoid underestimation of good active arms, i.e. avoid
the case when their posterior samples are too small. (2) We could at most adaptively zoom in the
regions which contains v∗ instead of exactly detecting v∗, and this inevitable loss could be mitigated
by setting a lower bound for TS posterior samples. Note that although the intuition of our Zooming

20

Under review as a conference paper at ICLR 2024

TS algorithm comes from the case where contextual bandit rewards follow a Gaussian distribution,
we also prove that our algorithm can achieve a decent regret bound under the switching environment
and the optimal instance-dependent regret bound under the stationary Lipschitz bandit setting.

E PROOF OF THEOREM 4.1

E.1 STATIONARY ENVIRONMENT CASE

To prove Theorem 4.1, we will first focus on the stationary case, where ft := f, ∀t ∈ [T]. When
the environment is stationary, we could omit the subscript (or superscript) t in some notations
as in Section C for simplicity: Assume the Lipschitz function is f , and v∗ := argmaxv∈A f(v)
denotes the maximal point (w.l.o.g. assume it’s unique), and ∆(v) = f(v∗)− f(v) is the “badness”
of the arm v. We then naturally denote Ar as the r-optimal region at the scale r ∈ (0, 1], i.e.
Ar = {v ∈ A : r/2 < ∆(v) ≤ r}. The r-zooming number could be denoted as Nz(r). And
the zooming dimension could be naturally denoted as pz . Note we could omit the subscript (or
superscript) t for the notations just mentioned above since all these values would be fixed through all
rounds under the stationary environment.

E.1.1 USEFUL LEMMAS AND COROLLARIES

Recall that f̂t(v) is the average observed reward for arm v ∈ A by time t. And we call all the
observations (pulled arms and observed rewards) over T total rounds as a process.

Definition E.1. We call it a clean process, if for each time t ∈ [T] and each strategy v ∈ A that has
been played at least once at any time t, we have |f̂t(v)− f(v)| ≤ rt(v).

Lemma E.2. The probability that, a process is clean, is at least 1− 1/T .

Proof. Fix some arm v. Recall that each time an algorithm plays arm v, the reward is sampled IID
from some distribution Pv. Define random variables Uv,s for 1 ≤ s ≤ T as follows: for s ≤ nT (v),
Uv,s is the reward from the s-th time arm v is played, and for s > nT (v) it is an independent sample
from Pv . For each k ≤ T we can apply Chernoff bounds to {Uv,s : 1 ≤ s ≤ k} and obtain that:

Pr

(∣∣∣∣∣1k
k∑

s=1

Uv,s − f(v)

∣∣∣∣∣ ≥
√

13τ20 lnT

2k

)
≤ 2 · exp

(
− k

2τ20

13τ20 lnT

2k

)
= 2 exp

(
13

4
lnT

)
= 2T−3.25 ≤ T−3, (7)

since we can trivially assume that T ≥ 16. Let N be the number of arms activated all over rounds T ;
note that N ≤ T . Define X-valued random variables {xi}Ti=1 as follows: xj is the min(j,N)-th arm
activated by time T . For any x ∈ A and j ≤ T , the event {x = xj} is independent of the random
variables {Ux,s}: the former event depends only on payoffs observed before x is activated, while the
latter set of random variables has no dependence on payoffs of arms other than x. Therefore, Eqn. (7)
is still valid if we replace the probability on the left side with conditional probability, conditioned on
the event {x = xj}. Taking the union bound over all k ≤ T , it follows that:

Pr(∀t ≤ T, |f(v)− f̂t(v)| ≤ rt(v) |xj = v) ≥ 1− T−2, ∀v ∈ A, j ∈ [T],

Integrating over all arms v we get

Pr(∀t ≤ T, |f(xj)− f̂t(xj)| ≤ rt(xj)) ≥ 1− T−2, ∀j ∈ [T].

Finally, we take the union bound over all j ≤ T , and it holds that,

Pr(∀t ≤ T, j ≤ T, |f(xj)− f̂t(xj)| ≤ rt(xj)) ≥ 1− T−1,

and this obviously implies the result.

Lemma E.3. If it is a clean process, then B(v, rt(v)) could never be eliminated from Algorithm 1
for any t ∈ [T] and arm v that is active at round t, given that v∗ ∈ B(v, rt(v)).

21

Under review as a conference paper at ICLR 2024

Proof. Recall that from Algorithm 1, at round t the ball B(u, rt(u)) would be permanently removed
if we have for some active arm v s.t.

f̂t(v)− rt(v) > f̂t(u) + 2rt(u).

If we have that v∗ = argmaxx∈A f(x) ∈ B(u, rt(u)), then it holds that

f̂t(u) + 2rt(u) ≥ f(u) + rt(u) ≥ f(u) + Dist(u, v∗) ≥ f(v∗),

where the first inequality is due to the clean process and the last one comes from the fact that f is a
Lipschitz function. On the other hand, we have that for any active arm v,

f(v) ≥ f̂t(v)− rt(v), f(v∗) ≥ f(v).

Therefore, it holds that
f̂t(v)− rt(v) ≤ f̂t(u) + 2rt(u).

And this inequality concludes our proof.

Lemma E.4. If it is a clean process, then for any time t and any active strategy v that has been
played at least once before time t we have ∆(v) ≤ 5E[rt(v)]. Furthermore, it holds that E(nt(v)) ≤
O(ln (T)/∆(v)2).

Proof. Let St be the set of all arms that are active at time t. Suppose an arm vt is played at time t
and was previously played at least twice before time t. Firstly, We would claim that

f(v∗) ≤ It(vt) ≤ f(vt) + 3rt(vt)

holds uniformly for all t with probability at least 1− δ, which directly implies that ∆(vt) ≤ 3rt(vt)
with high probability uniformly. First we show that It(vt) ≥ f(v∗). Indeed, recall that all arms
are covered at time t, so there exists an active arm v∗t that covers v∗, meaning that v∗ is contained
in the confidence ball of v∗t . And based on Lemma E.3 the confidence ball containing v∗ could
never be eliminated at round t when it’s a clean process. Recall Zt,v is the i.i.d. standard normal
random variable used for any arm v in round t (Eqn. (6)). Since arm vt was chosen over v∗t , we have
It(vt) ≥ It(v

∗
t). Since this is a clean process, it follows that

It(v
∗
t) = f̂t(v

∗
t) + s0

√
1

nt(v∗t)
Zt,v∗

t
≥ f(v∗t) + s0

√
1

nt(v∗t)
Zt,v∗

t
− rt(v

∗
t) (8)

Furthermore, according to the Lipschitz property we have

f(v∗t) ≥ f(v∗)− Dist(v∗t , v
∗) ≥ f(v∗)− rt(v

∗
t). (9)

Combine Eqn. (8) and (9), we have

It(vt) ≥ It(v
∗
t) ≥ f(v∗) + s0

√
1

nt(v∗t)
Zt,v∗

t
− 2rt(v

∗
t)

= f(v∗) +

√
52πτ20 ln (T)

nt(v∗t)

(
Zt,v∗

t
− 1√

2π

)
≥ f(v∗), (10)

where we get the last inequality since we truncate the random variable Zt,v∗
t

by the lower bound
1/
√
2π according to the definition. On the other hand, we have

It(vt) ≤ f(vt) + rt(vt) + s0

√
1

nt(vt)
Zt,vt = f(vt) +

(
1 + 2

√
2πZt,vt

)
rt(vt) (11)

Therefore, by combing Eqn. (10) and (11) we have that

∆(vt) ≤
(
1 + 2

√
2πZt,vt

)
rt(vt). (12)

And we know that Zt,: is defined as Zt,: = max{1/
√
2π, Z̃t,:} where Z̃t,: is iid drawn from standard

normal distribution. In other words, Zt,vt follows a clipped normal distribution with the following
PDF:

f(x) =

{
ϕ(x) + (1− Φ(x))δ

(
x− 1√

2π

)
, x ≥ 1√

2π
;

0, x < 1√
2π

;

22

Under review as a conference paper at ICLR 2024

Here ϕ(·) and Φ(·) denote the PDF and CDF of standard normal distribution. And we have

E(Zt,vt) ≤
1√
2π

+

∫ +∞

1√
2π

xϕ(x)dx ≤ 1√
2π

+
1√
2π

e−
1
4π ≤

√
2

π

By taking expectation on Eqn. (12), we have ∆(vt) ≤ 5E(rt(vt)). Next, we would show that
E(nt(vt)) ≤ O(ln (T))/∆(vt)

2. Based on Eqn. (11) and the definition of rt(·), we could deduce
that √

nt(vt) ≤
√

13

2
τ20 ln (T)(1 + 2

√
2πZt,vt)

1

∆(vt)
,

which thus implies that

nt(vt) ≤
13

2
τ20 ln (T)(1 + 2

√
2πZt,vt)

2 1

∆(vt)2
= O(ln (T))(1 + 2

√
2πZt,vt)

2 1

∆(vt)2
. (13)

By simple calculation, we could show that

E(Z2
t,vt) ≤

1

2π
+

∫ +∞

1√
2π

x2ϕ(x)dx ≤ 1

π
+

1

2
≤ 1

⇒ E
[
(1 + 2

√
2πZt,vt)

2
]
≤ 1 + 4

√
2π

√
2

π
+ 8π < +∞.

After revisiting Eqn. (13), we can show that E(nt(vt)) ≤ O(ln (T))/∆(vt)
2. Now suppose arm v is

only played once at time t, then rt(v) > 1 and thus the lemma naturally holds. Otherwise, let s be
the last time arm v has been played according to the selection rule, where we have rt(v) = rs(v),
and then based on Eqn. (11) it holds that

It(v) ≤ f(v) +
(
1 + 2

√
2πZs,v

)
rt(v).

And then we could show that ∆(v) ≤ 5E(rt(v)). By using an identical argument as before, we could
show that E(nt(v)) ≤ O(ln (T))/∆(v)2.

Lemma E.5. Let X1, . . . , Xn be independent σ2-sub-Gaussian random variables. Then for every
t > 0,

P

(
max
1,≤,n

Xi ≥
√

2σ2(ln (T) + t)

)
≤ e−t.

Proof. Let u =
√
2σ2(ln (n) + t), we have

P

(
max
1,≤,n

Xi ≥ u

)
= P (∃i,Xi ≥ u) ≤

n∑
i=1

P (Xi ≥ u) ≤ ne−
u2

2σ2 = e−t.

E.1.2 PROOF OF THEOREM 4.1 UNDER STATIONARY ENVIRONMENT

Proof. By Lemma E.2 we know that it is a clean process with probability at least 1− 1
T . In other

words, denote the event Ω := {clean process}, and then we have that P (Ω) ≥ 1− 1
T . And according

to Lemma E.3 we’re aware that the active confidence balls containing the best arm can’t be removed
in a clean process. Remember that we use ST as the set of all arms that are active in the end, and
denote

Bi,T =

{
v ∈ ST : 2i ≤ 1

∆(v)
< 2i+1

}
, where ST =

+∞⋃
i=0

Bi,T ,

where i ≥ 0. Then, under the event Ω, by using Corollary E.4 we have E(nT (v)|Ω) ≤
O(lnT)/∆(v)2, and hence it holds that∑

v∈Bi,T

∆(v)E(nT (v)|Ω) ≤ O(lnT)
∑

v∈Bi,t

1

∆(v)
≤ O(lnT) · 2i|Bi,t|

23

Under review as a conference paper at ICLR 2024

Denote ri = 2−i, we have ∑
v∈Bi,T

∆(v)E(nT (v)|Ω) ≤ O(lnT) · 1
ri
|Bi,t|

Next, we would show that for any active arms u, v we have

Dist(u, v) >
1

4
√
2π ln (T)

min{∆(u),∆(v)} (14)

with probability at least 1 − 1
T . W.l.o.g assume u has been activated before v. Let s be the time

when v has been activated. Then by the philosophy of our algorithm we have that Dist(u, v) > rs(v).
Then according to Eqn. (12) in the proof Lemma E.4, it holds that rs(v) ≥ 1

2
√
2πZ

∆(v) for
some random variable Z following the clipped standard normal distribution. Define the event
Υ = {Zt,vt < 2

√
ln (T) for all t ∈ [T]}, then based on Lemma E.5 we have P (Υ) ≥ 1− 1

T . Then
under the event Υ, we have rs(v) ≥ 1

4
√

2π ln (T)
∆(v), which then implies that Eqn. (14) holds under

Υ. Since for arbitrary x, y ∈ Bi,T we have
ri
2

< ∆(x) ≤ ri,
ri
2

< ∆(y) ≤ ri,

which implies that under the event Υ

Dist(x, y) >
1

4
√
2π ln (T)

min{∆(x),∆(y)} > ri

8
√

2π ln (T)
.

Therefore, x and y should belong to different sets of (ri/8
√

2π ln (T))-diameter-covering. It follows
that |Bi,T | ≤ Nz(ri/8

√
2π ln (T)) ≤ O(ln(T)p)crpz

i ≤ Õ(crpz

i). Recall Nz(r) is defined as the
minimal number of balls of radius no more than r required to cover Ar. As a result, under the events
Ω and Υ, it holds that ∑

v∈Bi,T

∆(v)E(nT (v) |Ω ∩Υ) ≤ O(lnT) · 1
ri
Nz(ri) (15)

Therefore, based on Eqn. (15), we have

RL(T) =
∑
v∈ST

∆(v)E(nT (v))

= P (Ω ∩Υ)
∑
v∈ST

∆(v)E(nT (v) |Ω ∩Υ) + P (Ωc ∪Υc)
∑
v∈ST

∆(v)E(nT (v) |Ωc ∪Υc)

≤
∑

v∈ST :∆(v)≤ρ

∆(v)E(nT (v) |Ω ∩Υ) +
∑

v∈ST :∆(v)>ρ

∆(v)E(nT (v) |Ω ∩Υ) +
2

T
· T

≤ ρT +
∑

i<log2(
1
ρ)

1

ri
Õ(cr−pz

i) + 2

≤ ρT + Õ(1)
∑

i<log2(
1
ρ)

1

ri
cr−pz

i + 2

≤ ρT + Õ(1)

⌊log1/2 2ρ⌋∑
k=0

c2k(pz+1) + 2

≤ ρT + Õ(1) · 2 · 2⌊log1/2 2ρ⌋(pZ+1) + 2

≤ ρT + Õ(1)

(
1

2ρ

)pz+1

+ 2

By choosing ρ in the scale of

ρ = Õ

(
1

T

) 1
pz+2

,

it holds that

RL(T) = Õ

(
T

pz+1
pz+2

)
.

24

Under review as a conference paper at ICLR 2024

E.2 Switching (NON-STATIONARY) ENVIRONMENT CASE

Since there are c(T) change points for the environment Lipschitz functions ft(·), i.e.

T−1∑
t=1

1[∃m ∈ A : ft(m) ̸= ft+1(m)] = c(T).

Given the length of epochs as H , we would have ⌈T/H⌉ epochs overall. And we know that among
these ⌈T/H⌉ different epochs, at most c(T) of them contain the change points. For the rest of epochs
that are free of change points, the cumulative regret could be bounded by the result we just deduced for
the stationary case above. And the cumulative regret in any epoch with stationary environment could
be bounded as H(pz,∗+1)/(pz,∗+2). Specifically, we could partition the T rounds into m = ⌈T/H⌉
epochs:

[T1 + 1, T] = [ω0 = T1 + 1, ω1) ∪ [ω1, ω2) ∪ · · · ∪ [ωm−1, ωm = T + 1),

where ωi+1 = ωi + H for i = 0, . . . ,m − 2. Denote all the change points as T1 ≤ ρ1 < · · · <
ρc(T) ≤ T , and then define

Ω = {∪[ωi, ωi+1) : ρj ∈ [ωi, ωi+1),∃j = 1, . . . c; i = 0, . . . ,m− 1}.
Then it holds that |Ω| ≤ Hc(T). Therefore, it holds that

RL(T) ≤ Õ

(
Hc(T) +

(
T

H
+ 1

)
H

pz,∗+1
pz,∗+2

)
≤ Õ

(
Hc(T) +

T

H
·H

pz,∗+1
pz,∗+2

)
,

where the first part bound the regret of non-stationary epochs and the second part bound that of
stationary ones. By taking H = (T/c(T))(pz,∗+2)/(pz,∗+3), it holds that

RL(T) ≤ Õ

(
T

pz,∗+2
pz,∗+3 c(T)

1
pz,∗+3

)
.

And this concludes our proof for Theorem 4.1.

F ALGORITHM 1 WITH UNKNOWN c(T) AND pz,∗

F.1 INTRODUCTION OF ALGORITHM 3

When both the number of change points c(T) over the total time horizon T and the zooming dimension
pz,∗ are unknown, we could adapt the BOB idea used in Cheung et al. (2019); Zhao et al. (2020)
to choose the optimal epoch size H based on the EXP3 meta algorithm. In the following, we first
describe how to use the EXP3 algorithm to choose the epoch size dynamically even if c(T) and pz,∗
are unknown. Then we present the regret analysis in Theorem F.1 and its proof.

Figure 4: An illustration of Zooming TS algorithm with double restarts when c(T) is agnostic.

Although the zooming dimension pz,∗ is unknown, it holds that pz,∗ ≤ pc, and hence we could
simply use the upper bound of pz,∗ (denoted as pu) as pc instead (recall pc is the covering dimension).

25

Under review as a conference paper at ICLR 2024

Note that the upper bound pz,∗ could be more specific when we have some prior knowledge of the
reward Lipschitz function f(·): for example, as we mentioned in Appendix C, if the function f(·) is
known to be C2−smooth and strongly concave in a neighborhood of its maximum defined in Rpc ,
it holds that pz,∗ ≤ pc/2 and then we could use pu = pc/2 as the upper bound. Note that we also
use the BOB mechanism in the CDT framework for hyperparameter tuning in Algorithm 2, where
we treat the zooming TS algorithm with Restarts as the meta algorithm to select the hyperparameter
setting in the upper layer, and then use the selected configuration for the bandit algorithm in the lower
layer. However, here we would use BOB mechanism differently: we firstly divide the total horizon T
into several epochs of the same length H0 (named top epoch), where in each top epoch we would
restart the Algorithm 1. And in the i−th top epoch the restarting length Hi (named bottom epoch) of
Algorithm 1 could be chosen from the set J = {Ji := ⌈k⌉ : k ≥ 1, k = H0/2

i−1, i = 1, 2, . . . },
where the chosen bottom epoch size could be adaptively tuned by using EXP3 as the meta algorithm.
Here we restart the zooming TS algorithm from two perspectives, where we first restart the zooming
TS algorithm with Restarts (Algorithm 1) in each top epoch of some fixed length H0, and then for
each top epoch the restarting length Hi for Algorithm 1 would be tuned on the fly based on the
previous observations Cheung et al. (2019). Therefore, we would name this method Zooming TS
algorithm with Double Restarts.

As for how to choose the bottom epoch size Hi in each top epoch of length H0, we implement
a two-layer framework: In the upper layer, we use the adversarial MAB algorithm EXP3 to pull
the candidate from J = {Ji}. And then in the lower layer we use it as the bottom epoch size for
Algorithm 1. When a top epoch ends, we would update the components in EXP3 based on the rewards
witnessed in this top epoch. The illustration of this double restarted strategy is depicted in Figure 4.
And the detailed procedure is shown in Algorithm 3.

Theorem F.1. By using the (top) epoch size as H0 = ⌈T (pu+2)/(pu+4)⌉, the expected total regret of
our Zooming TS algorithm with Double Restarts (Algorithm 3) under the switching environment over
time T could be bounded as

RL(T) ≤ Õ

(
T

pu+2
pu+3 ·max

{
c(T)

1
pu+3 , T

1
(pu+3)(pu+4)

})
.

Specifically, it holds that

RL(T) ≤

T
pu+2
pu+3 c(T)

1
pu+3 , c(T) ≥ T

1
pu+4 ,

T
pu+3
pu+4 , c(T) < T

1
pu+4 ,

where pu ≤ pc is the upper bound of pz,∗.

Therefore, we observe that if c(T) is large enough, we could obtain the same regret bound as in
Theorem 4.1 given pz,∗.

F.2 PROOF OF THEOREM F.1

Proof. The proof of Theorem F.1 relies on the recent usage of the BOB framework that was firstly
introduced in Cheung et al. (2019) and then widely used in various bandit-based model selection
work Ding et al. (2022a); Zhao et al. (2020). To be consistent we would use the notations in Algorithm
3 in this proof, and we would also recall these notations here for readers’ convenience: for the i-th
bottom epoch, we assume the candidate Hji is pulled from the set J in the beginning, where ji
is the index of the pulled candidate. At round t, given the current bottom epoch length Hji for
some i, we pull the arm vt(Hji) ∈ A and then collect the stochastic reward Yt. We also define
ci(T) as the number of change points during each top epoch, and hence it naturally holds that∑⌈T/H0⌉

i=1 ci(T) = c(T). Given these notations, the expected cumulative regret could be decomposed

26

Under review as a conference paper at ICLR 2024

into the following two parts:

RL(T) = E

[
T∑

t=1

ft(v
∗
t)− ft(vt)

]
= E

⌈T/H0⌉∑
i=1

min{T,iH0}∑
t=(i−1)H0+1

ft(v
∗
t)− ft(vt(Hji))

= E

⌈T/H0⌉∑
i=1

min{T,iH0}∑
t=(i−1)H0+1

ft(v
∗
t)− ft(vt(H

∗))

︸ ︷︷ ︸

Quantity (I)

+ E

⌈T/H0⌉∑
i=1

min{T,iH0}∑
t=(i−1)H0+1

ft(vt(H
∗))− ft(vt(Hji))

︸ ︷︷ ︸

Quantity (II)

, (16)

where H∗ could be any restarting period in J , and we expect it could approximate the optimal choice
Hopt = (T/c(T))(pu+2)/(pu+3) in Theorem 4.1. (Here we replace pz,∗ by pu in Theorem 4.1 since
the underlying pz,∗ is mostly unspecified in reality.) According to the proof of Theorem 4.1 in
Appendix G, the Quantity (I) could be bounded as:

E

⌈T/H0⌉∑
i=1

min{T,iH0}∑
t=(i−1)H0+1

ft(v
∗
t)− ft(vt(H

∗))

 ≤ ⌈T/H0⌉∑
i=1

H∗ci(T) +
H0

H∗ (H
∗)

pu+2
pu+4

= H∗c(T) + T (H∗)
− 1

pu+2

However, it is clear that each candidate in J could at most be the length of top epoch size H0,
which we set to be ⌈T (pu+2)/(pu+4)⌉, and hence it would be more challenging if the optimal choice
Hopt = (T/c(T))(pu+2)/(pu+3) is larger than H0. To deal with this issue, we bound the expected
cumulative regret in two different cases separately:

(1) If Hopt = (T/c(T))(pu+2)/(pu+3) ≤ H0, which is equivalent to(
T

c(T)

)pu+2
pu+3

≤ H0 ⇔
(

T

c(T)

)pu+2
pu+3

≤ T
pu+2
pu+4 ⇔ c(T) ≥ T

1
pu+4 ,

then we know that there exists some H+ ∈ J such that H+ ≤ (T/c(T))(pu+2)/(pu+3) ≤ 2H+. By
setting H∗ = H+, the Quantity (I) could be bounded as:

Quantity (I) = Õ

(
H+c(T) + T (H∗)

− 1
pu+2

)
= Õ

(
Hoptc(T) + T (Hopt)

− 1
pu+2

)
= Õ

(
T

pu+2
pu+3 c(T)

1
pu+3

)
.

For the Quantity (II), we could bound it based on the results in Auer et al. (2002b). Specifically, from
Corollary 3.2 in Auer et al. (2002b), the expected cumulative regret of EXP3 could be upper bounded
by 2Q

√
(e− 1)LK ln(K), where Q is the maximum absolute sum of rewards in any epoch, L is the

number of rounds and K is the number of arms. Under our setting, we can set Q = H0, L = ⌈T/H0⌉
and K = |J | = O(ln(H0)). So we could bound Quantity (II) as:

E

⌈T/H0⌉∑
i=1

min{T,iH0}∑
t=(i−1)H0+1

ft(vt(H
∗))− ft(vt(Hji))

 ≤ 2
√
e− 1H0

√
T

H0
|J | ln(|J |) = Õ(

√
TH0)

= Õ

(
T

pu+3
pu+4

)
= Õ

(
T

pu+2
pu+3T

1
(pu+3)(pu+4)

)
= Õ

(
T

pu+2
pu+3 c(T)

1
pu+3

)
, (17)

where we have the last equality since we assume that c(T) ≥ T 1/(pu+4). Therefore, we have finished
the proof for this case. (2) If Hopt = (T/c(T))(pu+2)/(pu+3) > H0, which is equivalent to

27

Under review as a conference paper at ICLR 2024

Algorithm 3 Zooming TS algorithm with Double Restarts

Input: Time horizon T , space A, upper bound pu ≤ pc.
Initialization: the (top) epoch size H0 = ⌈T (pu+2)/(pu+4)⌉, N = ⌈log2(H0)⌉ + 1, J = {Hi =
⌈H0/2

i−1⌉}Ni=1.
1: Initialize the exponential weights wj(1) = 1 for j = 1, . . . , |J |.
2: Initialize the exploration parameter for the EXP3 algorithm as α = min

{
1,
√

|J| log(|J|)
(e−1)⌈T/H0⌉

}
.

3: for i = 1 to ⌈T/H0⌉ do
4: Update probability distribution for selecting candidates in J based on EXP3 as:

pj(i) =
α

|J |
+ (1− α)

wj(i)∑|J|
k=1 wk(i)

, j = 1, . . . , |J |.

5: Pull ji from {1, 2, . . . , |J |} according to the probability distribution {pj(i)}|J|j=1.
6: Run Zooming TS algorithm with Restarts using the (bottom) epoch size Hji for t = (i −

1)H0 + 1 to min{T, iH0}, and collect the pulled arm vt(Hji) and reward Yt at each iteration.
7: Update components in EXP3: rj(i) = 0 for all j ̸= ji; rj(i) =

∑min{T,iH0}
k=(i−1)H0+1 Yk/pj(i) if

j = ji, and then

wj(i+ 1) = wj(i) exp

(
α

|J |
rj(i)

)
, j = 1, . . . , |J |.

8: end for

(
T

c(T)

)pu+2
pu+3

> H0 ⇔
(

T

c(T)

)pu+2
pu+3

> T
pu+2
pu+4 ⇔ c(T) < T

1
pu+4 ,

then we know that Hopt is greater than all candidates in J , which means that we could not bound the
Quantity (I) based on the previous argument. By simply using H∗ = H0, it holds that

Quantity (I) = Õ

(
H0c(T) + T ·H

− 1
pu+2

0

)
= Õ

(
T

pu+3
pu+4

)
.

For Quantity (II), based on Eqn. (17), we have

Quantity (II) = Õ

(
T

pu+3
pu+4

)
.

Combining the case (1) and (2), it holds that

RL(T) ≤

T
pu+2
pu+3 c(T)

1
pu+3 , c(T) ≥ T

1
pu+4 ,

T
pu+3
pu+4 , c(T) < T

1
pu+4 .

And this concludes our proof.

G ANALYSIS OF THEOREM 4.2

G.1 ADDITIONAL LEMMA

Lemma G.1 (Proposition 1 in Li et al. (2017)). Define Vn+1 =
∑n

t=1 XtX
T
t , where Xt is drawn

IID from some distribution in unit ball Bd. Furthermore, let Σ := E[XtX
T
t] be the second moment

matrix, let B, δ2 > 0 be two positive constants. Then there exists positive, universal constants C1

and C2 such that λmin(Vn+1) ≥ B with probability at least 1− δ2, as long as

n ≥

(
C1

√
d+ C2

√
log(1/δ2)

λmin(Σ)

)2

+
2B

λmin(Σ)
.

28

Under review as a conference paper at ICLR 2024

Lemma G.2 (Theorem 2 in Abbasi-Yadkori et al. (2011)). For any δ < 1, under our problem setting
in Section 3, it holds that for all t > 0,∥∥∥θ̂t − θ∗

∥∥∥
Vt

≤ βt(δ),

∀x ∈ Rd, |x⊤(θ̂t − θ∗)| ≤ ∥x∥v−1
t

βt(δ),

with probability at least 1− δ, where

βt(δ) = σ

√
log

(
(λ+ t)d

δ2λd

)
+
√
λS.

In this subsection we denote α∗(δ) := βT (δ).

Lemma G.3 (Filippi et al. (2010)). Let λ > 0, and {xi}ti=1 be a sequence in Rd with ∥xi∥ ≤ 1, then
we have

t∑
s=1

∥xs∥2V −1
s
≤ 2 log

(
det(Vt+1)

det(λI)

)
≤ 2d log

(
1 +

t

λ

)
,

t∑
s=1

∥xs∥V −1
s
≤

√√√√T

(
t∑

s=1

∥xs∥2V −1
s

)
≤

√
2dt log

(
1 +

t

λ

)
.

Lemma G.4 (Agrawal & Goyal (2013)). For a Gaussian random variable Z with mean m and
variance σ2, for any z ≥ 1,

P (|Z −m| ≥ zσ) ≤ 1√
πz

e−z2/2.

Lemma G.5 (Adapted from Lemma G.2). For any δ < 1, under our problem setting in Section 3
with the regularization hyper-parameter λ ∈ [λmin, λmax] (λmin > 0), it holds that for all t > 0,∥∥∥θ̂t − θ∗

∥∥∥
Vt

≤ βt(δ),

∀x ∈ Rd, |x⊤(θ̂t − θ∗)| ≤ ∥x∥V −1
t

βt(δ),

with probability at least 1− δ, where

βt(δ) = σ

√
log

(
(λmin + t)d

δ2λd
min

)
+
√
λmaxS.

Proof. The proof of this Lemma is trivial given Lemma G.2. For any λ ∈ [λmin, λmax], according to
Lemma G.2 it holds that, for all t > 0,∥∥∥θ̂t − θ∗

∥∥∥
Vt

≤ βt(δ),

∀x ∈ Rd, |x⊤(θ̂t − θ∗)| ≤ ∥x∥V −1
t

βt(δ),

with probability at least 1− δ, where

βt(δ) = σ

√
log

(
(λ+ t)d

δ2λd

)
+
√
λS ≤ σ

√
log

(
(λmin + t)d

δ2λd
min

)
+
√
λmaxS.

29

Under review as a conference paper at ICLR 2024

G.2 PROOF OF THEOREM 4.2

Recall the partition of the cumulative regret as:

R(T) = E

[
T1∑
t=1

(
µ(x⊤

t,∗θ
∗)− µ(xt

⊤θ∗)
)]

︸ ︷︷ ︸
Quantity (A)

+E

[
T∑

t=T1+1

(
µ(x⊤

t,∗θ
∗)− µ(xt(α

∗(t)|F∗
t)

⊤θ∗)
)]

︸ ︷︷ ︸
Quantity (B)

+ E

[
T∑

t=T1+1

(µ
(
xt(α

∗(t)|F∗
t)

⊤θ∗)−µ(xt(α
∗(t)|Ft)

⊤θ∗)
)]

︸ ︷︷ ︸
Quantity (C)

+ E

[
T∑

t=T1+1

(µ
(
xt(α

∗(t)|Ft)
⊤θ∗)−µ(xt(α(it)|Ft)

⊤θ∗)
)]

︸ ︷︷ ︸
Quantity (D)

.

For Quantity (A), it could be easily bounded by the length of warming up period as:

E

[
T1∑
t=1

(
µ(x⊤

t,∗θ
∗)− µ(xt

⊤θ∗)
)]
≤ T1 = O(T

2
p+3) ≤ O(T

p+2
p+3). (18)

For Quantity (B), it depicts the cumulative regret of the contextual bandit algorithm that runs with the
theoretical optimal hyperparameter α∗(t) all the time. Therefore, if we implement any state-of-the-
arm contextual generalized linear bandit algorithms (e.g. Filippi et al. (2010); Li et al. (2010; 2017)),
it holds that

E

[
T∑

t=T1+1

(
µ(x⊤

t,∗θ
∗)− µ(xt(α

∗(t)|F∗
t)

⊤θ∗)
)]
≤ Õ(

√
T − T1) = Õ(

√
T). (19)

For Quantity (C), it represents the cumulative difference of regret under the theoretical optimal hyper-
parameter combination α∗(t) with two lines of history F and F∗. Note for most GLB algorithms,
the most significant hyperparameter is the exploration rate, which directly affect the decision-making
process. Regarding the regularization hyperparameter λ, it is used to make Vt invertible and hence
would be set to 1 in practice. And in the long run it would not be influential. Moreover, there is
commonly no theoretical optimal value for λ, and it could be set to an arbitrary constant in order
to obtain the Õ(

√
T) bound of regret. For theoretical proof, this hyperparameter (λ) is also not

significant: for example, if the search interval for λ is [λmin, λmax], then we can easily modify the
Lemma G.3 as:

t∑
s=1

∥xs∥2V −1
s
≤ 2 log

(
det(Vt+1)

det(λI)

)
≤ 2d log

(
1 +

t

λmin

)
,

t∑
s=1

∥xs∥V −1
s
≤

√√√√T

(
t∑

s=1

∥xs∥2V −1
s

)
≤

√
2dt log

(
1 +

t

λmin

)
.

We will offer a more detailed explanation to this fact in the following proof of bounding Quantity (C).
Furthermore, other parameters such as the stepsize in a loop of gradient descent will not be crucial
either since the final result would be similar after the convergence criterion is met. Therefore, w.l.o.g
we would only assume there is only one exploration rate hyperparameter here to bound Quantity
(C). Recall that α(t) is the combination of all hyperparameters, and hence we could denote this
exploration rate hyperparameter as α(t) in this part since there is no more other hyperparameter.
Here we would use LinUCB and LinTS for the detailed proof, and note that regret bound of all other
UCB and TS algorithms could be similarly deduced. We first reload some notations: recall we denote

30

Under review as a conference paper at ICLR 2024

Vt = λI +
∑t−1

i=1 xix
⊤
i , θ̂t = V −1

t

∑t−1
i=1 xiyi where xt is the arm we pulled at round t by using our

tuned hyperparameter α(it) and the history based on our framework all the time. And we denote

Xt = argmax
x∈Xt

x⊤θ̂t + α∗(t) ∥x∥V −1
t

Similarly, we denote Ṽt = λI +
∑t−1

i=1 X̃iX̃
⊤
i , θ̃t = Ṽ −1

t

∑t−1
i=1 X̃iỹi, where X̃t is the arm we pulled

by using the theoretical optimal hyperparameter α∗(t) under the history of always using {α∗(s)}t−1
s=1,

and ỹt is the corresponding payoff we observe at round t. Therefore, it holds that,

X̃t = argmax
x∈Xt

x⊤θ̃t + α∗(t) ∥x∥Ṽ −1
t

.

By using these new definitions, the Quantity (C) could be formulated as:

E

[
T∑

t=T1+1

(µ
(
xt(α

∗(t)|F∗
t)

⊤θ∗)− µ(xt(α
∗(t)|Ft)

⊤θ∗)
)]

︸ ︷︷ ︸
Quantity (C)

= E

[
T∑

t=T1+1

µ(X̃⊤
t θ∗)− µ(X⊤

t θ∗)

]

For LinUCB, since the Lemma G.2 holds for any sequence (x1, . . . , xt), and hence we have that with
probability at least 1− δ, ∥∥∥θ̂ − θ

∥∥∥
Vt

≤ βt(δ) ≤ α∗(T, δ), (20)

where

βt(δ) = σ

√
log

(
(λ+ t)d

δ2λd

)
+
√
λS = α∗(t).

And we will omit δ for simplicity. For LinUCB, we have that

X⊤
t θ̂t + α∗(t) ∥Xt∥V −1

t
≥ X̃⊤

t θ̂t + α∗(t)
∥∥∥X̃t

∥∥∥
V −1
t

≥ X̃⊤
t θ∗ + α∗(t)

∥∥∥X̃t

∥∥∥
V −1
t

+ X̃⊤
t (θ̂t − θ∗) ≥ X̃⊤

t θ∗.

Therefore, it holds that

X⊤
t θ∗ + α∗(t) ∥Xt∥V −1

t
+X⊤

t (θ̂t − θ∗) ≥ X̃⊤
t θ∗

X⊤
t θ∗ + 2α∗(t) ∥Xt∥V −1

t
≥ X̃⊤

t θ∗,

which implies that
(X̃t −Xt)

⊤θ∗ ≤ 2α∗(T) ∥Xt∥V −1
t

.

By Lemma G.3 and choosing T1 = T 2/(p+3), it holds that,

T∑
t=T1+1

∥Xt∥V −1
t
≤

T∑
t=T1+1

∥Xt∥
√

λmin(Vt) = O(T × T−1/(p+3)) = O(T (p+2)/(p+3)).

And then it holds that,

T∑
t=T1+1

(
X̃T

t θ −Xtθ
)
= Õ

(
α∗(T)

T∑
t=T1+1

∥∥∥X̃t

∥∥∥
V −1
t

)
= Õ(T (p+2)/(p+3)). (21)

Note βt(δ) contain the regularizer parameter λ, and it’s often set to some constant (e.g. 1) in practice.
If we tune λ in the search interval [λmin, λmax], then we can still have the identical bound as in Eqn.
(20) by using the fact that

βt(δ) = σ

√
log

(
(λ+ t)d

δ2λd

)
+
√
λS ≤ σ

√
log

(
(λmin + t)d

δ2λd
min

)
+
√
λmaxS.

31

Under review as a conference paper at ICLR 2024

This result is deduced in our Lemma G.5, which implies that tuning the regularizer hyperparameter
would not affect the order of final regret bound in Eqn. (21). Therefore, as we mentioned earlier, we
could only consider the exploration rate as the unique hyperparameter for theoretical analysis.

For LinTS, we have that

X⊤
t θ̂t + α∗(T) ∥Xt∥V −1

t
Zt ≥ X̃⊤

t θ̂t + α∗(T)
∥∥∥X̃t

∥∥∥
V −1
t

Z̃t

≥ X̃⊤
t θ∗ + α∗(T)

∥∥∥X̃t

∥∥∥
V −1
t

Z̃t + X̃⊤
t (θ̂t − θ∗)

≥ X̃⊤
t θ∗ + α∗(T)

∥∥∥X̃t

∥∥∥
V −1
t

Z̃t +
∥∥∥X̃t

∥∥∥
V −1
t

∥∥∥θ̂t − θ∗
∥∥∥
Vt

≥ X̃⊤
t θ + (α∗(T)Z̃t − α∗(T))

∥∥∥X̃t

∥∥∥
V −1
t

,

where Zt and Zt,∗ are IID normal random variables, ∀t. And then we could deduce that

X⊤
t θ∗ + α∗(T) ∥Xt∥V −1

t
Zt +X⊤

t (θ̂t − θ∗) ≥ X̃⊤
t θ + (α∗(T)Z̃t − α∗(T))

∥∥∥X̃t

∥∥∥
V −1
t

X⊤
t θ∗ + α∗(T) ∥Xt∥V −1

t
Zt + α∗(T) ∥Xt∥V −1

t
≥ X̃⊤

t θ + (α∗(T)Z̃t − α∗(T))
∥∥∥X̃t

∥∥∥
V −1
t

(X̃t −Xt)
⊤θ∗ ≤ (α∗(T)− α∗(T)Z̃t)

∥∥∥X̃t

∥∥∥
V −1
t

+ (α∗(T) + α∗(T)Zt) ∥Xt∥V −1
t

:= Kt

where Kt is normal random variable with

E(Kt) ≤ 2α(T)T−1/(p+3), SD(Kt) ≤
√
2α∗T−1/(p+3).

Consequently, we have

T∑
t=T1+1

(
X̃T

t θ −XT
t θ
)
≤

T∑
t=T1+1

Kt := K

E(K) = 2α∗(T)T (p+2)/(p+3) = Õ(T
p+2
p+3), SD(K) ≤

√
2α∗T

p+1
2p+6 = O(T

p+1
2p+6).

Based on Lemma G.4, we have

P

(
T∑

t=T1+1

(
X̃T

t θ −XT
t θ
)
≥ K > (2α∗ +

√
2)T

p+2
p+3

)
≤ 1

c
√
π
√
T
e−c2T/2. (22)

This probability upper bound is minimal and negligible, which means the bound on its expected value
(Quantity (C)) could be easily deduced. Note we could use this procedure to bound the regret for
other UCB and TS bandit algorithms, since most of the proof for GLB algorithms are closely related
to the rate of

∑T
t=T1+1 ∥Xt∥V −1

t
and the consistency of θ̂t. In conclusion, we have that Quantity (C)

could be upper bounded by the order Õ(T
p+2
p+3).

For Quantity (D), which is the extra regret we paid for hyperparameter tuning in theory. Recall
we assume µ(xt(α|Ft)

⊤θ∗) = gt(α) + ηFt,α for some time-dependent Lipschitz function gt. And
(ηFt,α − E[ηFt,α]) is IID sub-Gaussian with parameter τ2 where E[ηFt,α] depends on the history Ft.
Denote νFt,α = ηFt,α − E[ηFt,α] is the IID sub-Gaussian random variable with parameter τ2, then
we have that

yt = gt(α(it)) + νFt,α(it) + E[ηFt,α(it)] + ϵt

Since νFt,α(it), ϵt is IID sub-Gaussian random variable independent with Ft, we denote ϵ̃Ft,α(it) =

νFt,α(it) + ϵt as the IID sub-Gaussian noise with parameter τ2 + σ2. And then we have

yt = gt(α(it)) + E[ηFt,α(it)] + ϵ̃Ft,α(it), E(yt) = gt(α(it)) + E[ηFt,α(it)]

µ(xt(α|Ft)
⊤θ∗) = gt(α) + E[ηFt,α].

32

Under review as a conference paper at ICLR 2024

For Quantity (D), recall it could be formulated as:

E

[
T∑

t=T1+1

(µ
(
xt(α

∗(t)|Ft)
⊤θ∗)− µ(xt(α(it)|Ft)

⊤θ∗)
)]

︸ ︷︷ ︸
Quantity (D)

.

Since both terms in Quantity (D) are based on the same line of history Ft at iteration t, and the value
of E[ηFt,α] only depends on the history filtration Ft but not the value of α. Therefore, it holds that

E

[
T∑

t=T1+1

(µ
(
xt(α

∗(t)|Ft)
⊤θ∗)− µ(xt(α(it)|Ft)

⊤θ∗)
)]

︸ ︷︷ ︸
Quantity (D)

=

T∑
t=T1+1

gt(α
∗(t))− E[gt(α(it))]

≤
T∑

t=T1+1

sup
α∈A

gt(α)− E[gt(α(it))].

Therefore, Quantity (D) could be regarded as the cumulative regret of a non-stationary Lipschitz
bandit and the noise is IID sub-Gaussian with parameter τ20 = (τ2 + σ2). We assume that, under the
switching environment, the Lipschitz function gt(·) would be piecewise stationary and the number
of change points is of scale Õ(1). Therefore, Quantity (D) can be upper bounded the cumulative
regret of our Zooming TS algorithm with restarted strategy given c(T) = Õ(1). By choosing
T2 = (T − T1)

(p+2)/(p+3) = Θ(T (p+2)/(p+3)), and according to Theorem 4.1, it holds that,

T∑
t=T1+1

sup
α∈A

gt(α)− E[gt(α(it))] ≤ Õ

(
T

p+2
p+3

)
. (23)

By combining the results deduced in Eqn. (18), Eqn. (19), Eqn. (21) (or Eqn. (22)) and Eqn. (23),
we finish the proof of Theorem 4.2 for linear bandits. For generalized linear bandits, under the default
and standard assumption in the generalized linear bandit literature that the derivative of µ(·) could be
upper bounded by some constant given |x| ≤ S, the regret could be bounded by further multiplying a
constant in the same order.

33

