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A Proof of Results in Section 3

A.1 Proof of Theorem 3.3 (Global Integration Error, Infinite Time Version)

Proof. We write the solution of an SDE by x¢, s, (o + t) when the dependence on initialization
needs highlight. Denote ¢, = kh and x;, = xj, for better readability.

We will first make an easy observation that contraction and bounded 2nd-moment of the invariant
distribution lead to bounded 2nd-moment of the SDE solution for all time: let ¢, be a random variable
following the invariant distribution of Eq. (1), i.e., yy ~ p, then y, ~ 1 and

2 2 2
E ||lz.||” <2E|jx¢ — y,|” + 2E ||y, ]|
2 2
<2y |0 — Yol exp(—26t) + 2E ||y, ||

<ol exp(~29) + (2+ Sexp(-260) [ [lw] du
R
<ol +5 [l dn 2 0?
Rd
and then it follows that
E||zy]|* < 2F ||& — @i ||” + 2E ||2]|* < 263 + 202 (13)
Denote (x,y) a4 = (Ax, Ay), ||z||, = ||Az|| and

e =E|lzp — Zil[ 4 (14

where A is the non-singular matrix from Equation (4). Also denote that largest and smallest singular
values of A by oax and oy, respectively, and the condition number of A by k4 = Zmax Recall

Omin

er, = E ||x — 2, it is easy to see that
Omin€k < fr < OmaxCk- (15)
Further, we have the following decomposition
f13+1 =E [|zx41 — -’ik+1||2A
=B [y 00, (1) — @, (010) + T (110) — 2|
=K ‘ Tty i, (k1) — Tty 2 (tkH)Hi +E ||, 20 (tet1) — Tt ||124 (16)
O @

+2E(A (ﬂctk,wtA (trt1) — wtk,fik(tk+1)) A (e, 2, (1) — Trg)) -

®

Term @ is taken care of the contraction property

E 14 a0, (1) — @ty.0, (t100)] |, < 17 exp(~250). a7

Term @ is dealt with by the bound on local strong error
_ 2 _
E @1, (1) = @il < 0B (C3 + DIE @) n2=. (18)
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445  Term @ requires more efforts to cope with, and by the decomposition in Eq. (5) we have

E((@ty 2, (trt1) = oz (Crt1)s Tz (B 1) — Tg1) 4
=E(xi — Tk, Tt 2, (Tot1) — Trr1)a + E(z, x4, 2, (Eet1) — Trt1)a
i) ~ B _
=E(z), — Tk, B[zt 2 (tht1) — :ck+1\fk]>,4 + E(z, Sﬂtmk (tht1) — Trt1)a
(@) _ 2 2 %
i (E[[Bre (1) — 200l + (E 121%) " (Ellzton (trr) = @xaa]} )

(#i1) 1
< Umaxfk (E HE Lty &) (tk:Jrl) - mk+1|]:k H ) + 0’12nax (]E ||Z||2) ’ (E Hmtkﬁ:k (tk?+1) - i.kJrlHQ)

(i)
< Omax [k (01 + Di\/E ||53k|2) WPt 4 K AGmaxCo fiVh <C2 + Doy /E |fik||2> hP2

(v)
<KATmax(C1 + COCQ)ekhp2+2 + K40max (D1 + CoD2)\/E ||i'k||2flchp2+% (19)

—~

1
2

446 where (i) uses the tower property of conditional expectation and F, is the filtration at k-th iteration,
447 (1) uses Cauchy-Schwarz inequality, (¢i) is due to the relationship between ey and fy, (iv) is due to
a4s  local weak error, local strong error and Eq. (5), and (v) is due to p; > po + % and0 < h < hg <1.

449 Now plug Eq. (17), (18) and (19) in Eq. (16), we obtain
T SIRexp(=281) + 0% (3 + DEE |2 ]*) 12 + kadmax(Cr + CoC) fih#** 3
+HA0'max Dl +COD2) ]EHi’kHszh]th%

<1 - 5h> fi+ 00y 02 + D3E ||53k||2) h?P? 4 K A0 max (C1 + Oocz)fkhpﬁ%

+ KATmax(D1 + CoD2)\JE || @] fuh?* 2
(i4)
< (1 — 8/6h> f2 + KACmax (Cl + CoCs + \/iU(D1 + CoD2)) f/chpﬁ% + 2k% D3 f2h?P2
+ V2r4 (D1 + CoDo) fRRP2 4% + 02, (022 + 2D§U2> s
(”Z) 7 2 p2+ ﬂ
< (1= B ) fi + Kadmax (C1+ CoCa+ V2U(Dy + CoDs)) frh?*t= + —fk
+ 0% (CF +2D3U% ) 22
1
= (1 — 23h> f2 + KACmax (Cl + CoCs + \/§U(D1 + CoDz)) f/chpﬁ%
ro? (022 n zDgU2) h2p2

2
(iv) 1 ﬁ '%A IIlax (Cl + CoCs + \[U(Dl + OODQ))
< (1 — 2ﬁh> IR+ Tfeh+ 5 2P

+ 0% (CF +2D3U% ) 122

2
(€1 +CoCs + VAU(D + CoD) )
8

1
= (1 — 45h> fE+ k402, + O3 +2D3U? | hP2

450 where () is due to the assumption 0 < h < é ande™® < 1—-z+ % for() <z <1,

451 (ii) is due to the upper bound on E||z;||> in Eq. (13), (iii) holds prov1ded when h <

1 1
. VB po— L B po— L . . _ . .
452 min <74 NI Dz) SN (—8 VoA (D1 iCo D2)> 2Tz } and (iv) is due to Cauchy-Schwarz inequality.
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467
468

Unfolding the above inequality gives us

2
4 (01 + CoCs + \/iU(Dl + COD2))
i <t : e

Taking square root on both sides and using va? + % 4+ ¢ < a + b+ ¢,Va, b, ¢ > 0 yields

f < 2 o C1 4+ CoCs + \/§U(D1 + C()DQ)
k+1 =~ =~ 5~NMAUmax
VB NG

Finally using the relationship between ey, and fj,, we obtain

+ Oy + \@DQU> RP2=3

er < 2 9 <Ol + CoCsy + \/iU(Dl + CODQ)

S 73 +02+\T2D2U> hP2=%

A.2 Proof of Theorem 3.4 (Non-Asymptotic Sampling Error Bound: General Case)

Proof. Lety, ~ pand (2o, y,) are coupled such that E ||lzg — y,|° = W2(Law(x), 12). Denote
the solution of Eq. (1) starting from x¢, y, by x+, y, respectively, and ¢, = kh. We have

2
W (Law(@), p) <E |21 ~ y,,

2
<2E Hfik — Ty, H2 +2E Hwtk Yy,

@)

<2}, + 2B [[azo — yo|” exp (~2614)

=2¢2 + 2exp (—2Bty,) Wi (Law(x), 1)
where (4) is due to the contraction assumption on Eq. (1).

Taking square roots on both sides, we obtain

Wa(Law (@), 1) <\/2€% + 2exp (~26) WE (Law(zo). p)
<V2exp (—fkh) Way(Law (o), 1) + V2ey,

Invoking the conclusion of Theorem 3.3 completes the proof. O

A.3 Proof of Corollary 3.5 (Upper Bound of Mixing Time: General Case)

Proof. Given any tolerance € > 0, we know from Theorem 3.4 that if k is large enough and A is
small enough such that

V2 exp (—Bkh) Wy (Law(xg), 1) < g (20)
ChP2—3% < % @1
we then have W (Law(&y,), i) < e. Solving Inequality (20) yields
1 2v/2 L
kj 2 @log IWQ( aW(xo),/.L) é k* (22)
€

To minimize the lower bound, we want pick step size h as large as possible. Besides h < hy, Eq.
(21) poses further constraint on &, hence we have

h < min{hq, (260) e }.
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Plug the upper bound of h in Eq. (22), we have

1 20\ r2- % 2v/2Wy (Law(zo), 1)
kE* = rnatx{ﬁh1 3 < ) }+log . .
When high accuracy is needed, i.e., € < QC’hp *72 we have
1 1
e 20)mE log 2v2Ws(Law(@o),p) _ 5 (€7 F 1
/8 6?2*% € B 6‘727%

B Proof of Results in Section 4

B.1 Proof of Theorem 4.1 (Non-Asymptotic Error Bound: LMC)

Proof. From Lemma C.1 we know that Langevin dynamics is a member of the family of contractive
SDE, and with a contraction rate of strong-convexity coefficient 5 = m (w.r.t. identity matrix I ¢).

Next, we will need to work out the constants Cy, C, D1, Dy, Cy needed in Theorem 3.3. We have
Cy = ‘F , implied from Lemma C.3.

The local strong error and local weak error are bounded in Lemma D.1 and D.2 respectively. Note

that the coefficient C1/Cs in the bound for local strong/weak error depends on initial value, which
changes from iteration to iteration. Combined with Lemma D.3, we would obtain C; and C5, namely

1
d 8d 2 2d
01<2(L2+G)< + || +7+1> §2(L2+G)\/E+Hwo||2+1écl

~ 8d
Gh<oL <d+(|| ol +7>> <oy |2 gl 112 0

and

We collect all constants here in the proof for easier reference

1 m
A=Ijxq,ka=1,8=m, hg = 4LC_§

[2d
C1=2(L2+G)y/ = — lzoll> +1, D1 =0

Cy =2Lvm *‘FHCUOH +1, Dy =0.

)

Then the constant in Theorem 3.3 for LMC algorithm simplifies to

O 2 <C1+Cocz —|—C’2)

VB VB
gilo(LZ;L G) \/Qd +m <||'1:0H2 + 1) £ Crmc
m?2

Assuming L, m, G are all constants and independent of d, then clearly Cpyc = (’)(\/E) Then
applying Theorem 3.4 to LMC, we have

Wy (Law(Zy,), 1) < v2e ™ "Wy (Law(xg), 1) + V2CLmch (23)
for0 < h < 4,%]:. O
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B.2 Proof of Theorem 4.3 (Lower Bound of Mixing Time)

Proof. 1If we start from g = 154 and run LMC for the potential function in Eq. (11), we then have

(2) — § (1= ) o)+ V2RSS (1 —mh)* ()i, 1< < d
MET @ = L)k (@) + V2RYF (1= Lh)EU(E), d+1< i< 2d

and hence

N (l—mh)k,m(l—(l—mh)%)),1§i§d

(@k); ~ ko2 2% -
N (U= LR, 2 (1= (1= L)) ) d+ 1< i < 2d

Clearly, stability requires h < 2.

The squared 2-Wasserstein distance between the law of the k-th iterate of LMC and target distribution

18

2
W3 (Law(Zy), 1) =d(1 — mh)** + % (\/E\/W 1)
+d(1 = Lh)*" + % (E 1—(1—Lh)? — 1)

Suppose Wo(Law(Zy), 1) < €, we then must have

d(1 — mh)?* <&
2
d 2 \/—% )
ad (- - <
m<’/2—mh 1— (1 —mh) 1> <e

A necessary condition of Eq. (25) is that

Jm 2 Q 2 €2
14 Y2 > 1—(1—mh)2 =/ J1-S
VA ) (L=mh)* =\ 53— d

where (4) is due to Eq. (24). It follows from Eq. (26) that

4

h <
14

<

s
Sl
Sh

Revisiting Eq. (24) yields

2k
Q) omh)?\ i)
e >d(1—-mh)?* >d (1 — 2mh + ( ”; ) ) > de~4mkh

1 d
k> log £
2hm €

where (i) is due to mh < 2 < 1 and (ii) is due to e=* < 1fx+””—22,0 <z <l
Combine Eq. (27) and (28), we then obtain a lower bound of the mixing time

vd  Vd, Vd ~<x/ﬁ>
—:glog?:(a — .

d
ps V0
8me € €

(24)

(25)

(26)

27)

(28)
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C Some Properties of Langevin Dynamics

C.1 Contraction of Langevin Dynamics

Lemma C.1. Suppose Assumption 1 holds. Then two copies of overdamped Langevin dynamics have

the following contraction property
1

{Elly, — 2’} < lly - @l exp(—mt)

where x,y are the initial values of T+, y,.

Proof. x:, vy, are respectively the solutions to
de, = — V f(x,)dt + V2d B,
dy, = — Vf(y,)dt + V2dB,
where B, is a standard d-dimensional Brownian motion. Denote L; = 1E ||y, — x; ||* and take time
derivative, we obtain
da
dt
where () is due to the strong-convexity assumption made on f. We then obtain L; < Lg exp(—2mt)
and it follows that

(4)
Ly =-E(y, — 2, Vf(y,) — Vf(x:)) < —mE|ly, — x| = —2mL,

1

2] 2
{Elly, — 2} < lly — @] exp(—m1)

C.2 Growth Bound of Langevin Dynamics

Lemma C.2. Suppose Assumption I holds, then when 0 < h < ﬁ, the solution of overdamped

Langevin dynamics x. satisfies
m
Bz, — x| <6 <d+ o) |m2) h
where x is the initial value att = 0.

Proof. We have
2

h h
E|lzs — 2|’ =E —/ Vf(mt)dt+\/§/ B,
0 0
h h 2
0 0
. h 2
Yog / Vi(z)dt| + 4hd
0

h h 2
<2E (/0 HVf(wt)—Vf(m)HdtJr/o ||Vf(w)||dt> + 4hd

b 2
<9E <L/ ||mt—w||dt+h|\Vf<w>H> + 4hd
0

h 2
<4E | L2 </ mtw|dt> + 12|V f@)|?| + 4hd
0

(i#) h
Sahd + 402 ||V f @) + 4L2h/ E |z — o||? dt
0

17
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where (i) is due to Ito’s isometry, (4¢) is due to Cauchy-Schwarz inequality. By Gronwall’s inequality,
we obtain

E |z, — x| < 4h (d +h HVf(w)HQ) exp {4L2h2} .

Since ||V f()|| = ||Vf(x) = Vf(0)| < L], when 0 < h < -, we finally reach at

E|zy — 2| < dei (d+ 2hL? Hx||2) h<6 <d+ % ||ac||2> h

C.3 Bound on Evolved Deviation

Lemma C.3. Suppose Assumption I holds. Let x+,y, be two solutions of overdamped Langevin

dynamics starting from x,y respectively, for 0 < h < 4’%];, we have the following representation
Tp—Yp=T—-Y+=z

with m
2 2
El2l? < 7 e — yl*h

Proof. Letz = (xp, —yp,) — (x —y) = — f(jl Vf(xzs) — Vf(y,)ds. Ito’s lemma readily implies
that

h
E & — ynl® = |1z — || - 2E / (@s — Yo, V() — Vf(y,))ds

@) 9 h 9
<llw -yl - 2m [ Ellw. -y, |%ds
0

2
<z -yl
where (4) is due to strong-convexity of f. We then have that
2

E|z|* = |E

h
/0 Vf<ms>w<ys>ds]

h 2
( | [Evs@) - vrw)| ds)

h h
< /0 12ds /0 |9 s) - Vs ds

IN

h 2
gh/o E||Vf(x.) — VF(y,)|* ds

h
§L2h/ E|xs —y,|* ds
0
<L? |z —y|* h?
@) m
<7 |z —y|*h

where (i) is due to b < 1. O

D Some Properties of LMC Algorithm

D.1 Local Strong Error

Lemma D.1. Suppose Assumption I holds. Denote the one-step iteration of LMC algorithm with
step size h by T, and the solution of overdamped Langevin dynamics at time t = h by x,. Both the

18
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discrete algorithm and the continuous dynamics start from the same initial value x. If 0 < h < ﬁ,
then the local strong error of LMC algorithm satisfies

i ~
{IE |21 — wh||2}2 < Coh?

=

with Cy = 2L (d+ m ||w|\2) .

1
Proof. We have for0 < h < -,

2
E ||:f)1 — :I)hHQ =K

h
/0 V(@) - Vi(x)ds
h 2
<E (/O |V f(zs) = V() ds)

n 2
<I’E (/ |z, — || ds>
0

W , [ \
2 h/ E |z, — o] ds
0

(i1) )
<312 (d + % |m2) %

where (i) is due to Cauchy-Schwartz inequality and (4¢) is due to Lemma C.2. Taking square roots
on both side completes the proof. O

D.2 Local Weak Error

Lemma D.2. Suppose Assumption 1 and 2 hold. Denote the one-step iteration of LMC algorithm
with step size h by x1 and the solution of overdamped Langevin dynamics at time t = h by xy,.
Both the discrete algorithm and the continuous dynamics start from the same initial value x. If

0<h< ﬁ, then the local weak error of LMC algorithm satisfies

|EZ, — Exp|| < Cyh?

Nl

with Cy = 2(L? + G) (ﬁ + ) + 1) :

Proof. By Ito’s lemma, we have

dV f(xy) = V2 f(x,)Vf(x,)dt + V(Af(x,))dt + \/5/: V2f(x,)dBsy.
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It follows that

h
|IEzy — Expll = IE/O Vi(xs) — Vf(x)ds

= IE{/Oh /O —VZf(:cr)Vf(:c,.)+V(Af(az,.))drds+\/§/0h /O VQf(:cr)dB,.ds}

h s
- IE{/O /O v f(:cT.)Vf(m,.)—&—V(Af(sc,))drds}

</ ' | &2 s@)v st aras+ [ ' | EIv@ @) dras

SL/Oh/OSEHVf(:cT)Hdrds—&—/oh/osEHV(Af(:Br))Hdrds

(1) 5 h S G 5
<(L +G)/ / E |, | drds + —h
0 0

9 h s B E g 9
<(L*+G) E ||z, — x| drds + = ||| | + <h

(i7) h s 2
(1 + @) (/ / w/IE||:vT—:c||2drds+h2||zc||> +§h2
0 0
(#i1) h s h2 G
<(L*+G) (/ / \/6 <d+n;||a:||2> rdrds+2a:|> +§h2
0 0

4/6 1 G
=(L* +G) (*f (d+ % ||a:||2> h+ 3 a:) h? + §h2

(iv) 1 G
< (L% + G)hz\/(cu % |ac2) h+ s N2l + 542

(v) d G
< (1,2 2 2, My2
<( +G)h\/4HL+||a:|| +2h
<(L*+G) ,/—d + |lz|® + 1| h?
- 4k L

d AN
<2(L? — 1) m?
<22*+6) (g +lel+1)

where (i) is due to Assumption 2, (i3) is due to Jensen’s inequality, (ii¢) is due to Lemma C.2, (iv)
is due to v/a + Vb < v2v/a? + b% and (v) isdue to h < L. O
D.3 Boundedness of LMC Algorithm

Lemma D.3. Suppose Assumption 1 holds. Denote the iterates of LMC by x. If 0 < h < ﬁ we
then have the iterates of LMC algorithm are uniformly upper bounded by

- 8d
E [@]” < fl2ol” + 5, V20

20



551 Proof. We have
2
E |2rs1]? =E [ — AV (@5) + V2R

YR |2k + h2E ||V £ (@4)||” + 2hd — 20E(Zy, V f (1))
—E ||@ || + h2B ||V f (@) — VF(0)||* + 2hd — 20E (@, V f (a1,))

(4)
<E|zx|? + h’L°E |2k | + 2hd — 2hE(zy, V f(2))

(i)
< E @] + h2L2E ||z3]|® + 2hd — 2mhE |25

(iv)
<(1- th)IE |@]* + 2hd

552 where (7) is due to the independence between &, | and &, (i7) is due to Assumption 1, (i74) is due to

553 the property of m-strongly-convex functions, (V f(y) — Vf(x),y —x) > m ||y — | Va,y € RY,
ss4 and (iv) uses the assumption h < 1.
s55 Unfolding the inequality, we obtain
7 7 7 8d
E|zy* < (1 - th)kIE | Zol|” + 2hd <1 + th et (4mh)k1) < lxo|® + o

556 O
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