A PROOF OF IDENTIFIABILITY

A.1 PROOF OF THEOREM 4.1

Theorem 4.1.  All model parameters are identified by the observed data distribution P(X;, Dy |
A).

Proof. We want to show that each unique set of parameter assignments leads to a different distribu-
tion over the observed data. To do this, we divide our argument into four lemmas:

Lemma A.1. Parameters F, b,V are identified by P(X; | A = ap).

Proof. We want to show that if two parameter sets { F, b, U} and {F,b, ¥} yield
the same observed data distribution P(X, | A = ayg), the parameter sets must be
identical.

We first note that at t = 0, we have Z, = Zy ~ N(0, 1) for group ag. Then the
mapping between severity and features

XOZF‘Z0+b+Et
EtNN<0,\I/>

captures a factor analysis model with factor loading matrix F' and diagonal co-
variance matrix ¥. Att = 0, the feature distribution for group ag has the standard
factor analysis distribution (Shapiro, 1985):

Xo~N(b, FFT + ).

Assuming the two sets of parameters map to distributions of Xy with the same

mean, it must hold that b = b. Thus, parameter b is identified by data distribution
P(Xo | A= a).
Further, the covariance matrix of Xy induced by each set of parameters must be
the same: F(F)T + ¥ = F(F)T + U. Element-wise equality of the covariance
matrix gives us the following, where subscripts ¢ refer to the i-th element of each
parameter vector: o
FiF; = FiF; Vi, j,i#j ey
(F)? + ¥ = (F)* + ¥ @

Using the equality constraint (1) for multiple pairs of indices, we have that for all
assignments of distinct indices ¢, j, k:

(FiF; = BF) N (FiFy, = FijF) — = =% 3)
F,  Fy
- F,  F
k k 7 F
Together, equations 3 and 4 give us:
F, F . .

where oo € {—1,+1}. Since we have fixed Fy > 0 for all factor loading matrices
F, the sign of « is fixed:

Fo=aFy = a=1 = F,=F, Vie|0,d), (5)

meaning we have identified F'.
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Lastly, using equations (2) and (5) we get F; = F; = ¥; = ¥,;. We have now
shown that if two parameter sets induce the same distribution of X at time ¢ = 0,
they must have the same exact value assignments. Therefore F’, b, ¥ are identified
by P(X; | A= ag). O

Lemma A.2. Global parameters F,b, U and parameters ,u(Z ), O'ZU), ,ugg), oR for each group a are

identified by P(X; | A).

Proof. By Lemma A.l, we know that F,b, U are identified by P(Xy |
A = ap). We want to show that for any group a, if two parameter sets

{,uZO o(Zao),,uR 7UR)} and {,U,ZO Uz?,ﬂgg),UR } yield the same observed data

distribution P(X; | A = a), the parameter sets must be identical. In this proof we
consider an arbitrary group a and omit the (a) superscript for brevity.

We model the following:
Zo~ N (MZO ) UZ02)

RNN(,U'RvO—RQ)
Zt:ZO+Rt — ZtNN(HR't+HZO7UR2‘t2+UZO2)
Xt :F'Zt+b+6t,Wher66tNN(O,\IJ) (6)

We see that equation (6) captures a factor analysis model with factor loading ma-
trix F' and diagonal covariance matrix ¥, meaning

Xe ~ N+ Flup -t +pg,), Flog” - 2 + 0, 2)FT +0),

Recalling that Fy > 0, we first consider ¢ = 0, where Xg ~ N (b
Fuy,,F(o,2)F" + ¥). In order for the two parameter sets to map to distri-
butions of X with the same mean, it must be the case that

b+ Fpz, =b+Flyz, = iz, = iz,

Further, for the two parameter sets to map to distributions with the same covari-
ance matrix, it must hold that
2\ T ~ o\pT ~
Floz )F' +VY =F(6, ) F" +V = 0y, =0y,
since we know o, .G, > 0. So we have identified yi, and o, . We next
consider any time ¢ # 0. For the two parameter sets to map to distributions of

Xt with the same mean, given that we have already shown p, mustequal i, , it
must hold that

b+ Fug-t+pg,) =b+F(ig-t+[iz) = kg =g

For the two parameter sets to map to distributions with the same covariance matrix,
given that we have already shown o, must equal 7 , it must hold that

Flog -+ 0,2 )FT + UV =FGg - *+6,2)F" +V = o =054

since 0,05, > 0. Thus we have shown that for any group a, group-specific
values of py , 0 , jig, 0 are identified by P(X; | A = a).

O

Lemma A.3. Global parameters 3, 3, and the parameter 5}(:) for each group a are identified by
P(D; | A).
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Proof. We want to show that if two parameter sets {3, 0, ,Bgl)} and {30,

Bz, ﬂj(f)} yield the same observed data distribution P(D; | A = a), the param-
eter sets must be identical. Unless otherwise specified, we consider an arbitrary
group a and omit the (a) superscript for brevity. We also assume 1, # 0, since in
general the severity of a progressive disease should change over time and it does
not make sense to learn progression in the case that it does not.

Each event when a patient visits the hospital (D; = 1) is generated by an inhomo-
geneous Poisson process parameterized by A, where log(A\:) = By + 8, Z:+8,4.

In order for two data distributions to have identical P(D; | A = a) they must
have identical expected rates Ez, r[\:]: Ez, r[\] is the expected rate of events
(across the population) at time t—if two distributions have a different expected
rate of events at any time ¢, then P(D; | A = ao) must differ at that point in time
as well. Thus if two sets of parameters {5, 8, 54} and {Bo, Sz, 54} yield the
same observed data distribution P(D; | A = a), they must also generate the same
observed values Ez, r[)\] at all timesteps ¢. We finish the proof by showing that

this holds only if {3y, 84, B4} = {607 Bz, BA}'

EZO’R[At]://)\t~P(ZO)«P(R) dZydR

By Lemma A.2, we know that y1, ,0, , g, 0p are identified by P(X; | A).
Then

IS S G IR VN
P(Zy) = 27T(O'Z0)2 p ( 2(020)2 )
_ 1 exp [ — (R— NR)2
PR = e, o j2((}}3);2)
EZO,RP‘t] = EXp(f(ﬁo, BZv BA? t)) (7

(ﬂZC’R)Q

wmﬂ%ﬁzmw—(2>ﬁH@Mw(%+“ﬂ%>

2
5 + Bziz, + 5A>

The expression in 7 must be equal for {3,, 5,, 84} and {BNO, Bz, BA} at all
timesteps ¢. Since exp is an injective function, this means that f(8,, 84, 84,t) =

f (Bg, Bz,8 4, t) for all £. By equality of polynomials, each of the individual poly-
nomial coefficients must be equal must be equal for this to hold.

We first consider the case for group ag, since we pin 51(4%) at 0 as a reference for

all other groups. Given that we have already identified /L%:)O), U(Z(ZO), ugg"), agg"),

g 2 ~ 3 ag 2 ~ ~
(5{)4‘@22%)"'52#20) = (50"5‘(522%)-#52#20) = By =bo

Now we return to our analysis of any arbitrary group a. Given that we have already
identified py , 0, , g # 0,05,

Bzig = BZNR = Bz = Bz

g 2 ~ 3 g 2 ~ ~
<5o+(ﬂ2220)+5zuzo+5,4) = <5o+(52220)+ﬁ2#zo+5,4> = Ba=Pa

Thus we have shown that 3, 8,,, and Bgl) for any group a are identified by P(D; |
Zi, A).
O
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By showing that each parameter of the model is uniquely recovered from the observed data, we have
proved that our model is identifiable.

O

B PROOFS OF BIAS

In this section, in order to capture the effect of failing to account for one disparity at a time, we
consider the setting where everything between two groups is the same except for disparity of focus.
It is clear to see from our analysis that these results hold even more generally—as long as all existing
disparities disfavor or favor the same group (e.g. a disadvantaged group with respect to one disparity
is not advantaged with respect to another, in which case the effects could cancel each other out),
our proofs of bias will hold. Throughout our proofs, we assume that all PDFs and conditional PDFs
have positive support over their entire domain, and that all PDFs are differentiable, a very reasonable
assumption over our setting.

B.1 THEOREM 4.3

Theorem 4.3. A model that does not take into account disparities in initial disease severity Zy
will underestimate the disease severity of groups with higher initial severity and overestimate that
of groups with lower initial severity. Specifically, if P(Zy | A = a) strictly MLRPs P(Zy) for some
group a, then B[ Z; | X¢] < E[Z; | X+, A = a. Similarly, if P(Zy) strictly MLRPs P(Zy | A = a)
for some group a, then E[Z, | X{] > E[Z; | X, A = a.

Proof. We want to show that E[Z, | X;, A = a] > E[Z, | X;]. We first show that P(Z, | X; =
x, A = a) strictly MLRPs P(Z, | X;) with respect to Zy:

P(X|Zo,A=a)P(Zp|A=a)

0 (P(Zy| Xy,A=a)\ O P(X;[A=a)
a7, ( P2 X)) 02 P(X.|Z0)P(Zo) (Bayes Rule)
P(X¢)
9 P(Zo|A=a)
_ 9 | PXA=a)
=z \ Pz (Xt LA|Zy,R)
P(X¢)

B P(Xy) 0 P(Zy| A=a)
N P(Xt | A= a) aZo P(Zo)
>0 (Disparity assumption)

Since MLRP implies first-order stochastic dominance (FOSD) (Klemens, 2007), this proves that
P(Zy | Xt, A = a) strictly FOSDs P(Z | X;) and thus that E[Z; | X}, A = a] > E[Z, | X¢]. By
linearity of expectation,

E[Zo | X;, A=a] +E[f(R,t)| X;, A=a] > E[Zy | X + E[f(R,¢) | X.], Vt>0
— E[Zt | Xt,A = a] > ]E[Zt |Xt]

It is clear to see that this argument extends naturally to show that if a group tends to come in at
earlier disease stages than the rest of the population, that their severity will be overestimated: If
there exists a group a such that P(Zy) strictly MLRPs P(Z; | A = a) with respect to Z, and
E[R | Xi] > E[R | X, A = a, then we will see that E[Z; | X;, A = a] < E[Z; | X;]. Hence any
model that does not take into account demographic disparities in initial disease severity levels at a
patient’s first visit will lead to biased estimates of severity. [

B.2 PROOF OF THEOREM 4.4

Theorem 4.4. A model that does not take into account disparities in rate of progression R will
underestimate the disease severity of groups with higher progression rates and overestimate that of
groups with lower progression rates. Specifically, if P(R | A = a) strictly MLRPs P(R) for some
group a, then E[Z; | X3] < E[Z; | X+, A = a). Similarly, if P(R) strictly MLRPs P(R | A = a)
for some group a, then E[Z; | Xi] > E[Z; | X3, A = a.
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R is a patient’s linear rate of progression, so we model a patient’s severity over time as Z; =
f(R,t) + Zy, where f is linearly increasing in R.

Proof. We want to show thatE[Z,; | X;, A = a] > E[Z; | X;]. We first show that P(R | X;, A = a)
strictly MLRPs P(R | X;) with respect to R:

P(X|R,A=a)P(R|A=a)

0 P(R|Xt7A:a) _ 9 P(X(|A=a)
oR < P(RIX) )~ 0B | PximrGe) (Bayes Rute)
P(X1)
5 P(R|A=a)
_ P(X:[A=a)
=35 | —Pam (X L A|Zy,R)
P(X:)
 P(Xy) 0 (P(R|A=a)
- P(X¢{|A=a) OR P(R)
>0 (Disparity assumption)

Since MLRP implies FOSD (Klemens, 2007), this also implies that P(R | X;, A = a) strictly
FOSDs P(R | X;). It follows directly that E[R | X;, A = a] > E[R | X;]. By linearity of
expectation,
E[f(R7t)+ZO|Xt7A:a]>E[f(Rat)+Z0‘Xt]7 vVt >0
- E[Zt | Xt,A = CL] > E[Zt ‘ Xt]

It is clear to see that this argument extends naturally to show that if a group tends to progress more
slowly than the rest of the population, that their severity will be overestimated: if there exists a
group a such that P(R) strictly MLRPs P(R | A = a) with respect to R and E[Z, | X;] > E[Z) |
X, A = al, then we will see that E[Z; | X;, A = a] < E[Z; | X;]. Thus any model that does not
take into account demographic disparities in patient progression rates will lead to biased estimates
of severity. O

B.3 PROOF OF THEOREM 4.5

Theorem 4.5. A model that does not take into account disparities in visit frequency M\ (conditional
on disease severity) will underestimate the disease severity of groups with lower visit frequency and
overestimate that of groups with higher visit frequency. Specifically, if it holds for some group a that

51(4“) < ﬁff) foralla # a, then E[Z; | Dy] < E[Z; | Dy, A = a). Similarly, if it holds for some
group a that ﬁff) > ﬁff) foralla # a, then E[Z; | Dy) > E[Z; | Dy, A = al.

We model a patient’s visit pattern using an inhomogeneous poisson process characterized by visit
rate A, such that log(A:) = g(Z:) + 51(4A) for some function of severity g(Z;) and group-specific

adjustments 61(4’4). In our proof, we assume the large-sample limit in which \; can be perfectly

estimated from the observed data, and thus treat it as observed; we show empirically that our results
hold in finite samples as well. We assume g(Z;) is a strictly monotonically increasing function of
severity.

Proof. We want to show that E[Z; | Dy, A = a] > E[Z; | D;]. We do this by calculating each term
separately.

We first consider E[Z; | Dy, A = a]. Observing D; over time gives us an observed value of visit
rate A\;. The strictly monotone assumption of g ensures g is invertible, and the fact that all visit rates

At are characterized by log(\;) = g(Z;) + ﬁff) ensures that this holds over the entire range of \;
values. This gives us:

E[Z, | Dy, A=a] =E {g_l (log()\t) - ﬂﬁ(‘)) ’ Dy, A = a]

=g~ (log(n) - 85"
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We next consider the case where a model infers severity without taking into account disparities in
visit rate conditional on severity. Estimating severity Z; based solely on visit observations gives:

]E[Zt\Dt]:P(A:a)]E[Zt|Dt,A:a]+P(A7éa)]E[Zt|Dt,A7éa]

=P(4=a)-E|g~" (log(\) - 8) | DiA=a

+ P(A+#a)-E |7 (log(n) - 55") ‘Dt,Ayéa]

<P(A=a)-E|g! (log()\t)f 1(4'4)) D, A=a

FP(A£a) E |4 (log()\t) - 5,‘“) ‘ Dy, A= a] ()
— P(a=a)- (57" (toeh) ~ A7) + PlA £ - (57 (log(n) - 8))
= g7 (log(\) - 5Y)
=E[Z; | Di, A = a]
As justification for ():

BXL) < 5,(4A), VA #a (Disparity assumption)
— log(\) — B > log(M) — BYY, VA #£a, VA,
= g! (log()\t) - gl)) >g ! <log()\t) - E4A)> , VA#a, Vi

strictly monotonically increasing == ¢! strictly monotonically increasing)
g y y g g y y g

— E [gl (1og(\) = 857) | D14 = a} >E [gl (1og(h) = 857) | DA # a]

It is clear to see that this argument extends naturally to show that if a group tends to visit the hospital
more frequently conditional on severity, that their severity will be overestimated: if there exists a
group @ such that 3, (@ > [31(4’4) forall A # a, then we will see that E[Z; | Dy, A = a| < E[Z; | Dy].
Thus any model that does not take into account demographic disparities in patient visit rates given
their severity will lead to biased estimates of severity. O

C SIMULATIONS

Figure S1 shows the results of 30 simulation runs, where we randomly instantiate the parameters of
our model and then generate data to fit on. We generate simulated data for 1000 patients on each
run, each of whom is assigned to one group (50% chance of being from either group). We visualize
the recovery of each parameter by plotting true parameter values versus recovered posterior mean
values, with one dot per run.

To generate data with prevalent disparities, we set our priors to f, —~ N(0,2.5) and gy ™
TN(1,0.5) (normal distribution restricted to positive values) for the non-pinned group; pp ~
N(0,3) and o, ~ TN (1,0.01) (normal distribution restricted to positive values) for both groups;
F ~ TN(1,1) (normal distribution restricted to values above 0.5 to enforce positive constraint) for
Fy; F ~ N(0, 2) for all other features; b ~ N(0,1); 1 ~ TN (8,1) (normal distribution restricted
to positive values); 3, ~ N (1.5,0.1); 8, ~ N(0.5,0.1); and 3, ~ N(0,2) for the non-pinned
group.

D NYP HEART FAILURE DATA PROCESSING

This study was conducted in accordance with Health Insurance Portability and Accountability Act
(HIPAA) guidelines and with Institutional Review Board (IRB) approval.
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Cohort filtering. We analyze patients with heart failure with reduced ejection fraction (HFrEF)
whom we identify, following clinical guidance, by filtering the available NYP data for patients
who have at least one LVEF measurement below 50% and who have been recorded as receiving
a diuretic prescription. To ensure we have relatively complete records for each patient, we then
filter for patients who are likely to receive most of their cardiology care within the NYP system, by
filtering for patients whose home zipcode is in the New York metropolitan area and who have at least
two LVEF or BNP records at least 6 months apart within our data. Lastly, NYP switched electronic
health record (EHR) systems, introducing inconsistencies in record-keeping across sites and years;
to ensure our records are consistently recorded, we analyze data from Weill Cornell Medical Center,
one of NYP’s two largest sites, between January 1, 2012 (the start of reliable record-keeping) to
October 2, 2020 (NYP Cornell’s transition to a new EHR). This ensures records are consistently
recorded in our data.

Feature processing. We convert pBNP to BNP with the conversion pBNP = 6.25 * BNP (Rgrth
et al., 2020) and then log-transform BNP values to get one combined log,(BNP) feature (Hendricks
et al., 2022). We then normalize (z-score) all feature values so that each feature has mean 0 and
variance 1. Because patient blood pressure and heart rate are much more likely to be measured at
hospital visits unrelated to heart failure (while visiting another specialist in the NYP system), we
limit patient observations to visits where a patient had one measurement of at least one of LVEF and
BNP.

We encode demographic categories by making A a one-hot encoding of race/ethnicity groups.
Lastly, we describe the time scale of our model. As mentioned in §6, we discretize time in 1-
week bins; if a patient has multiple measurements of one feature within a timestep, we average all
measurements within that timestep. Discretizing time in this way allows us to capture more long-
term changes rather than acute changes in patient status. We normalize time so that the total time
range in our model is 0 to 1. The longest patient trajectory in our data is 446 weeks (timesteps), so
we normalize timestep values so that they range from O to 1; we therefore have fractional, discrete
time values, each representing one week as 1/446 units of time.

E MODEL EVALUATION

Fitting model on real data. We fit our model on real data using weakly informative priors: p1, ~
N(0,1) and o, ~ TN (1,1) (normal distribution restricted to positive values) for the non-pinned
groups; i, ~ N(0,1) and o, ~ TN(1.5,1) (normal distribution restricted to positive values)
for both groups; b ~ N(0,1); ¥ ~ TN(1,0.5) (normal distribution restricted to positive values);
By ~ N (2.5,1); 8, ~N(0,1); and 8, ~ N (0, 1) for the non-pinned group.

For F, we set model priors using Factor Analysis: at ¢t = 0, we have Z; = Zy ~ N (0, 1) for group
ag, meaning the mapping between severity and features
Xo=F -Zy+b+¢
€t ~ N (0, \I/)

captures a factor analysis model with factor loading matrix F' and diagonal covariance matrix ¥. We
run factor analysis using feature measurements from the first timestep of all White patients (our ag
group) and use the estimates of F' from Factor Analysis as the mean of our priors on F'. We define
the variance of our priors on F'to be 1, and we pin the sign of Fyygr to be negative for identifiability.
Since we have no inherent value scale for what F' values should be, Factor Analysis allows us to fit
the model on more substantiated priors for feature scaling factors.

We then fit the model and get the parameter estimates from 1000 samples. For any time ¢, we can
calculate an estimate of Z; and X, for each sample, based on the sample’s parameter estimates; we
then take the average over all samples to get a patient’s estimate of Z; and X;. In order to get actual
feature value estimates, we can linearly transform X; to undo the normalization for each feature and
recover an estimate of each feature value at t. We can then use our model’s estimates of Z; and
predicted feature values to analyze and evaluate our model’s behavior.

Comparison to baselines. We filter out patients who do not have at least three visits (since several
of the baselines we fit require this many visits per patient, as we describe below), leaving a total of
1834 patients: 1118 White, 347 Black, 216 Hispanic, and 153 Asian patients.
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To evaluate our model’s ability to reconstruct feature values, we compare our model to PCA and FA.
PCA and FA require consistent dimensionality of the input data, so we fit all models on the first three
visits for each patient. We train two variants of both PCA and FA: the first attempts to reconstruct
patient visits from a single latent dimension (analogous to Z in our model), taking as input the X}
vector at one visit (4 features total) and representing it with a single latent component. The second
variant attempts to reconstruct patient trajectories from two latent dimensions (analogous to Zy and
R in our model), taking as input a concatenated vector of features X; from the first three visits (12
features total) and representing it with two latent components. We impute missing values as the
overall mean of the data for both PCA and FA, since these methods cannot naturally handle missing
data.

To evaluate our model’s ability to predict future feature values, we compare our model to last time-
step, logistic regression, and quadratic regression. Unlike PCA and FA, these methods do not require
consistent dimensionality in the input data, so we fit the models to the first three years of observed
data. Last-timestep predicts all future feature values to be equal to the most recent feature value
observed in the training data for that patient; if there is no observed feature value, the baseline
predicts the population mean. Linear regression regresses values on time for each patient and each
feature to predict future feature values. For patients with fewer than 2 observations for a given
feature value, we use the population mean for the preceding or subsequent timestep. Quadratic
regression follows a similar approach. Because linear regression and quadratic regression can overfit
the data and make unrealistic predictions, we clip their predicted feature values to a range determined
by that observed within the training data.

Ablated Model. We compare our full model to an ablated version of the model that does not
account for any of our three disparities. We do this by removing all group-specific parameters from
the model, while leaving everything else the same: we learn one value of y1, and o5 and exclude 5,
from the model. Since the distribution of Z; must be fixed for at least one group for identifiability
(to fix the scale of Z;), the distribution is pinned for all groups. Factor Analysis for model priors on
Fis also fit on all patients rather than only on white patients.

F DISPARITIES ESTIMATES

We first describe our calculations for §6.3 to estimate how much later Black and Asian patients start
receiving care for heart failure compared to White patients. Our model learns the following:

,U(ZBOlaCk) _ u(Z\’(\)’hite) +0.22
M(Z/?)sian) _ M(Z\Zhite) +0.27

The learned average rate of progression across all patients is 0.62. This means that Black patients
come in 0.22/0.62 = 0.35 units of time later in their disease progression than White patients, and
Asian patients come in 0.27/0.62 = 0.44 units of time later than White patients. Given that one unit
of time is the longest patient trajectory, 8.5 years, this leads us to 3.0 and 3.8 years for Black and
Asian patients, respectively.

Next we describe our calculations to estimate how much less frequently Black patients visit the
hospital than White patients at the same disease severity. Our model learns that

ﬂz(flack) _ BgWhite) —0.11

At the same disease severity Z;, Black patients will have a visit rate of
At =exp(By + By - Zp + ( iwmte) —0.11))
=exp(By + By - Zs + 51(4Whlte)) -exp(—0.11)

= 0.897 - exp(ﬂo + 8,7+ 5‘(4While))

So at the same disease severity, we estimate that Black patients have a visit rate that is 90% that of
a White patient’s visit rate.
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G SUPPLEMENTARY FIGURES AND TABLES

Model parameter recovery
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Figure S1: Parameter recovery from fitting our model to synthetic data. The priors from which
we draw the synthetic data are: p, ~ N(0,2) and 0, ~ TN(1,1) (normal distribution re-
stricted to positive values) for the non-pinned group; pp ~ N (0,2) and o ~ TN(1,1) (normal
distribution restricted to positive values) for both groups; F ~ TA(1,1) (normal distribution re-
stricted to values above 0.5 to enforce positive constraint) for F; F' ~ N (0, 2) for all other features;
b~ N(0,1); v ~ TN (5,1) (normal distribution restricted to positive values); 3, ~ N (1.5,0.2);
B, ~N(0.5,0.1); and 3, ~ N (0, 2) for the non-pinned group.
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Our model FAyisii  PCAyiit FApatient PCApatient

RMSE: informative 0.67 0.86 0.77 0.76 0.67
RMSE: all 0.82 0.89 0.77 0.77 0.72

Table S1: Our model compared to standard baselines for reconstruction performance. We
compare to factor analysis and principal component analysis fit at the patient visit level (FAyisit,
PCA,;s;;) and at the trajectory level (FApatient, PCApatiens). Models are fit on the first 3 visits from
each patient and evaluated on same data using root mean squared error (RMSE).

Our model Linear regression Quadratic regression Latest timestep

RMSE: informative 0.99 1.6 23 0.89
RMSE: all 0.98 1.8 25 0.98

Table S2: Our model compared to standard baselines for predictive performance. We compare
to linear regression, quadratic regression, and latest timestep prediction, each fit at the patient feature
level. Models are fit on data from the first 3 years of each patient’s disease trajectory and evaluated
on visits after 3 years using root mean squared error (RMSE).

24



All parameters
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Figure S2: All parameters learned from fitting model on NYP heart failure cohort. Parameters
of primary interest for interpreting our model (a subset of the parameters shown here) are highlighted

in Figure 3.
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