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Abstract

While Transformer models have achieved re-001
markable success in various domains, the effec-002
tiveness of information propagation through003
deep networks remains a critical challenge.004
Standard hidden state residuals often fail to005
adequately preserve initial token-level informa-006
tion in deeper layers. This paper introduces007
ResFormer, a novel architecture that enhances008
information flow by incorporating value resid-009
ual connections in addition to hidden state010
residuals. And a variant is the SVFormer,011
where all layers share the first layer’s value em-012
bedding. Comprehensive empirical evidence013
demonstrates ResFormer achieves equivalent014
validation loss with 13.3% fewer model param-015
eters and 15.4% less training data compared to016
Transformer, while maintaining similar mem-017
ory usage and computational cost. Besides, SV-018
Former reduces KV cache size by nearly half019
with only a small performance penalty and can020
be integrated with other KV-efficient methods,021
yielding further reductions in KV cache, with022
performance influenced by sequence length and023
cumulative learning rate.024

1 Introduction025

The Transformer (Vaswani et al., 2017) model has026

become one of the leading architectures in recent027

years, excelling in both language modeling (De-028

vlin et al., 2019; Lan et al., 2020; Brown et al.,029

2020) and computer vision tasks (Dosovitskiy et al.,030

2021). Among its variants, decoder-only architec-031

tures have become the most prominent (Kaplan032

et al., 2020; Dubey et al., 2024). The discovery of033

scaling laws (Hoffmann et al., 2022; Kaplan et al.,034

2020) has driven the pursuit of larger Transformer035

models by increasing network depth and width.036

In a standard decoder-only transformer, initial037

token embeddings contain localized information,038

which rapidly evolves into abstract semantic fea-039

tures through early attention layers (Sun et al.,040

2024b; Clark et al., 2019). As Transformer deep- 041

ens, a critical question arises: How effectively 042

is the initial information propagated to deeper 043

layers? One common answer is that residual 044

connections of hidden states ensure access to ini- 045

tial information throughout the network. How- 046

ever, some studies (Zhou et al., 2021; Shi et al., 047

2022) have identified that the smoothing effect 048

of attention mechanisms leads to over-smoothing, 049

where token representations become increasingly 050

similar as the network deepens. This indicates 051

that in deeper layers, sequence-level features be- 052

come dominant, while token-level features are di- 053

luted. DenseFormer (Pagliardini et al., 2024) ap- 054

plied the idea of learnable dense connections from 055

DenseNet (Huang et al., 2016) to transformers, 056

and the learned connection coefficients shows that 057

deeper layers indeed require larger attention to 058

initial embeddings. Given the low similarity be- 059

tween initial token embeddings and deeper hidden 060

states (Sun et al., 2024b), their directly summation 061

may significantly impact the modeling of attention 062

distribution for abstract semantic information in 063

later layers. NeuTRENO (Nguyen et al., 2023) 064

alleviates over-smoothing from the view of regular- 065

izers by considering the difference between value 066

vectors of the first and current layers. 067

In this paper, we propose ResFormer, which en- 068

hances the propagation of initial local information 069

by introducing value residual connections in addi- 070

tion to the standard hidden residual connections. 071

Specifically, ResFormer applies a residual connec- 072

tion between the value vectors of the current layer 073

and the first layer before the attention operation. In 074

other words, both value states share the existing 075

attention matrix of the current layer. The value 076

states of the first attention layer and the preceding 077

hidden states differ only by a linear transforma- 078

tion along the channel dimension, both represent- 079

ing token-level raw information. We hypothesize 080

that introducing residual connections for values has 081
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Figure 1: Simplified illustration of the vanilla Transformer, NeuTRENO, DenseFormer, ResFormer, and SVFormer,
with only three-layer structures and no operations other than attention. Ai, Vi, and Hi denote the attention matrix,
value vectors, and attention outputs at the i-th layer, respectively. ⊕, ⊖, and ⊗ represent standard matrix addition,
subtraction, and multiplication, respectively.

a less impact on modeling attention distributions082

for sequence-level semantic information in higher083

layers and complements the original hidden state084

residual. Fig. 1 illustrates a comparison of the extra085

skip connections introduced by different models.086

During inference, deep networks require substan-087

tial KV cache, severely impacting model deploy-088

ment (Xiao et al., 2024). Existing KV -efficient089

methods often process keys and values simultane-090

ously. Building on ResFormer, we decouple the091

value from the attention operation and propose a092

new kind of Transformer (SVFormer) where all093

layers share a single value states.094

We experiment on a 20B SlimPajama sub-095

sampled dataset, using settings similar to popular096

large language models (Wei et al., 2023; Dubey097

et al., 2024; Kaplan et al., 2020). We compare dif-098

ferent models based on the valid loss against the099

vanilla Transformer. Results show that ResFormer100

outperforms the vanilla Transformer, DenseFormer,101

and NeuTRENO. ResFormer achieves equivalent102

validation loss with 13.3% fewer model parameters103

and 15.4% less training data compared to Trans-104

former, while maintaining similar memory usage105

and computational cost. Besides, SVFormer, while106

reducing the KV -cache by nearly half, requires a107

12.2% increase in parameters to achieve the same108

validation loss as Transformer. And SVFormer109

performs better when the training sequence length110

is longer. It further reduces the KV cache when111

integrated with GQA (Ainslie et al., 2023).112

2 Related Work 113

2.1 Shortcut Connections 114

Deep learning models often consist of multiple lay- 115

ers, posing a challenge to minimize information 116

loss during transmission. ResNet (He et al., 2016) 117

mitigates the vanishing gradient problem with iden- 118

tity connections. Stochastic Depth (Huang et al., 119

2016) enhances training by randomly dropping lay- 120

ers. DenseNet (Huang et al., 2017) allows subse- 121

quent layers to directly access the hidden states of 122

all preceding layers. These two methods further 123

enhance the information flow after ResNet. 124

Related research indicates that, although increas- 125

ing depth continues to yield performance improve- 126

ments in language modeling tasks, the gains be- 127

come less significant with further increases (Petty 128

et al., 2024). Furthermore, (Zhou et al., 2021) illus- 129

trates that a 32-layer ViT underperforms a 24-layer 130

ViT. DenseFormer (Pagliardini et al., 2024) inte- 131

grates weighted fusion of outputs from all preced- 132

ing layers after each layer. To explore why increas- 133

ing depth in Transformers does not yield expected 134

gains, (Wang et al., 2022) finds that self-attention 135

acts as a low-pass filter, smoothing token repre- 136

sentations in ViTs. Additionally, (Shi et al., 2022) 137

investigates over-smoothing from a graph perspec- 138

tive in BERT-based language modeling tasks. Neu- 139

TRENO (Nguyen et al., 2023) adds the difference 140

between the value vectors of the first and current 141

layers to each layer’s attention output and signifi- 142
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cantly alleviates the over-smoothing problem.143

2.2 KV cache compressing144

The KV cache significantly impacts the efficiency145

of long-text model inference, attracting extensive146

research. One category of Transformer-based meth-147

ods addresses this by employing parameter or148

activation value sharing techniques. The most149

representative works include Multi-Query Atten-150

tion (Shazeer, 2019) and Grouped-Query Attention151

(Ainslie et al., 2023) which suggest to share key152

and value across a group of queries. Besides, CLA153

(Brandon et al., 2024) and LISA (Mu et al., 2024)154

respectively point out that we can reuse keys, val-155

ues, or the attention matrix across layers to reduce156

redundancy between layers. While these methods157

typically process both key and value simultane-158

ously, SVFormer is the first approach to decouple159

value from query and key during attention.160

3 Method161

3.1 Notations162

Let Hn ∈ Rl×d be the input hidden state of the163

n-th layer, where l denotes the sequence length164

and d is the dimension size. For each layer, the165

hidden state Hn−1 will be firstly projected into166

Qn,Kn,Vn ∈ Rl×d through three linear projec-167

tions WQ
n ,WK

n ,WV
n ∈ Rd×d respectively. After168

these projections, the attention operation (Attn),169

output projection (WO
n ∈ Rd×d), and Multi-Layer-170

Perceptron (Mlp) are applied sequentially:171

Un = Attn(Qn,Kn,Vn). (1)172

Hn = Mlp(UnW
O
n ). (2)173

3.2 NeuTRENO and DenseFormer174

After Eqn. 1, NeuTRENO adds the difference be-175

tween the first and current layer’s value:176

Un = Attn(Qn,Kn,Vn) + λn(V1 −Vn). (3)177

After Eqn. 2, DenseFormer performs a weighted178

average between all previous hidden states:179

Hn = λn,nMlp(UnW
O
n ) +

n−1∑
i=1

λn,iHi. (4)180

where H0 = Embedding(X) for the input X. λn181

in Eqn. 3 and{λn} in Eqn. 4 are new parameters.182

3.3 ResFormer 183

In contrast, before Eqn. 1, ResFormer introduces a 184

skip connection from the first layer’s value V0 = 185

H0W
V
1 to current layer’s value Vn = HnW

V: 186

Vn = λn,1V1 + λn,2HnW
V. (5) 187

where λn,1 and λn,2 are flexible scalars. 188

When all λ1 and λ2 are predetermined constants, 189

it is termed Constant-ResFormer. If {λn,1 = 190

λn,2}Nn=1, where N is the total number of lay- 191

ers, the model is called Identity-ResFormer. An- 192

other variant where some layers have λ1 = 0 is 193

referred to as Sparse-ResFormer. Besides, if 194

λ1 and λ2 are trainable parameters, the model 195

is termed Learnable-ResFormer. Unless other- 196

wise specified, λ1 and λ2 are initialized to 0.5 for 197

Learnable-ResFormer and are predetermined as 0.5 198

for Identity-ResFormer. 199

A more general form is the Dense-ResFormer, 200

defined as Vn = λn,nHnW
V +

∑n−1
i=1 λn,iVi 201

for n ≥ 2, where {λn} are constants or trainable 202

scalars. Unless noted, all λ are initialized to 1 here. 203

3.4 SVFormer 204

Shared Parts - values keys keys & values

Valid Loss 2.739 2.743 2.753 2.776

Table 1: Results of sharing different parts every 2 layers.

Beyond ResFormer, SVFormer adopts standard 205

attention in the first layer and obtain the attention 206

output Un for n-th layer where n ≥ 2 through 207

Un = AnV1. Its main advantage is that it only 208

requires computing and storing the value vectors 209

for the first layer, saving nearly half of the KV 210

cache during inference. Similar methods like CLA 211

reduce KV cache by sharing both of the key and 212

value vectors every two layers. However, the re- 213

sults in Table 1 show that sharing values has less 214

negative impact compared with sharing keys. 215

4 Experiments 216

4.1 Setting 217

Training Details Following (Brandon et al., 218

2024), we choose the Llama-like architecture and 219

SlimPajama (Soboleva et al., 2023) data for main 220

experiments. Specifically, the architecture includes 221

pre-normalization, SwiGLU activations (Shazeer, 222

2020), rotary position embedding (Su et al., 2024), 223

and no dropout. For slimpajama, we randomly sam- 224

ple nearly 20B tokens based to the original data 225

3



distribution of seven domains during training and226

adopt tokenizer used for “RedPajama-INCITE-7B-227

Base". See Table 8 in Appendix for data details.228

Unless otherwise noted, we train all models229

using AdamW optimizer with 0.1 weight decay,230

β1 = 0.9, β2 = 0.95 and the max grad norm 1.0.231

The batch size is set to be around 2M tokens (Zhang232

et al., 2024) with a sequence length of 2,048 and233

the total steps is fixed 10,000 steps (Kaplan et al.,234

2020). We adopt linear learning rate warmup for235

the first 1,200 steps with the initial learning rate236

and the peak learning rate to be 1e-7 and 6e-4 re-237

spectively. The cosine decay schedule gradually238

decays to 10% of the peak learning rate by the239

end of training (Zhou et al., 2024; Wei et al., 2023).240

The detailed hyperparameters for models of various241

sizes and different training sequence lengths in Ap-242

pendix A.3. Moreover, All models are trained with243

8 Nvidia A100 80G GPUs using mixed-precision244

training in FP16. We adopt deepspeed zero-2 opti-245

mizer and flash attention mechanism.246

Evaluation For model evaluation and compari-247

son, we primarily utilized the average validation248

loss across seven domains, computed on the en-249

tire SlimPajama validation split. Additionally, we250

randomly selected a fixed set of 1,000 sample se-251

quences for subsequent visualization analysis.252

4.2 Scaling Analysis of ResFormer253
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Figure 2: (Left) Validation loss as model size scales
from 82M to 468M parameters. (Right) Validation loss
for the 468M parameter model evaluated every 2B to-
kens. ResFormer achieves approximately 13.3%-15.4%
reduction in both model parameters and training data.

We analyzed how ResFormer and Transformer254

scale at model size and data size. ResFormer and255

Transformer are trained on similar experiment set-256

ting. On the one hand, we trained model with 82M,257

180M, 320M and 468M parameters on 20B training258

tokens and evaluated them on a separate validation259

set. As shown in Fig.2 (Left), ResFormer achieves260

equivalent validation loss to the Transformer while261

utilizing 13.3% fewer model parameters. On the262

other hand, we evaluated the 468M models every263

2B tokens and ResFormer needs 15.4% fewer train-264

ing tokens to achieve the same loss as Transformer. 265

4.3 ResFormer vs. NeuTRENO, DenseFormer 266

Model Initial Form Loss

Vanilla Transformer - 2.739

DenseFormer∗ H′
n=1×Hi +

∑n−1
i=1 0×Hi 2.722

NeuTRENO U′
n = 0.4(V1 − Vn) + Un 2.72

Identity-ResFormer V′
n = 0.5V1 + 0.5Vn 2.712

Dense-ResFormer∗ V′
n =

∑n
i=1 1×Vi 2.709

Learnable-ResFormer∗ V′
n = 0.5V1 + 0.5Vn 2.705

Constant-ResFormer V′
n = 2V1 + 0.5Vn 2.7

Sparse-ResFormer

 V′
n = Vn, 1 ≤ n ≤ 5

V′
n = V1, 6 ≤ n ≤ 8

2.696

Sparse-ResFormer


V′

n = Vn, 1 ≤ n ≤ 5

V′
n = 5V1 + 0.5Vn,

6 ≤ n ≤ 8

2.687

Table 2: Average valid loss for 8-layer, 82M-parameter
models. “Initial form" shows deviations from vanilla
transformer. Red numbers are the λ values from Eqn. 3,
Eqn. 4, and Eqn. 5. For models marked with “*" , λ is
learnable, and the red numbers indicate the initial value;
otherwise, red numbers are fixed constants.

We compared the average validation loss of dif- 267

ferent models with 82M parameters trained on 20B 268

tokens. In our experimental setup, NeuTRENO 269

performed best with λ = 0.4, achieving compara- 270

ble results to DenseFormer. All ResFormer vari- 271

ants, including the simplest Identity-ResFormer, 272

demonstrated significant performance improve- 273

ments. The λ values for Constant-ResFormer 274

and Sparse-ResFormer were optimized through 275

multiple experiments. While Sparse-ResFormer 276

achieved the best overall performance, it is chal- 277

lenging to pre-determine the optimal layers for 278

V1 connections and their corresponding λ1 values 279

in more general scenarios. Although, Learnable- 280

ResFormers are struggle to identify the optimal 281

value residual pattern, they outperform Identity- 282

ResFormer. Interestingly, the second to last row 283

shows that Sparse-ResFormer achieved better per- 284

formance despite having three fewer WV. 285

Both Constant-ResFormer and NeuTRENO rely 286

on predetermined λ constants. Fig. 3 shows the 287

performance curves of these models against vary- 288

ing λ. Results indicate that Constant-ResFormer 289

significantly outperforms NeuTRENO and demon- 290

strates greater robustness across a wider range of λ 291

values, achieving optimal performance at λ = 2. 292
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4.4 Truly Better or Just Faster?293
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Figure 4: (Left) Average gradient norms of model out-
puts with respect to parameter matrices across different
layers in Transformer and ResFormer. (Right) Compari-
son of Transformer and ResFormer performance across
various learning rates during training.

To verify that ResFormer’s performance im-294

provements are not solely due to accelerated train-295

ing from its shortcuts, we examined model perfor-296

mance across different learning rates. We com-297

pared Identity ResFormer and Vanilla Transformer298

under five learning rate settings. As shown in299

Fig. 4 (Right), both models achieved optimal re-300

sults around a learning rate of 0.003, with Iden-301

tity ResFormer significantly outperforming Vanilla302

Transformer across all rates.303

Analysis of the grad norm for the four param-304

eter matrices (WQ, WK, WV, WO) in each305

layer’s attention module revealed that Identity Res-306

Former’s output had approximately twice the grad307

norm for WV
1 and half for WO

1 in the first layer308

compared to Vanilla Transformer. This indicates309

that a portion of the gradient originally propagated310

to V1 through H1 is now transmitted via the value311

residual directly for Identity ResFormer.312

In this way, we conducted the other two ablation313

experiments on Vanilla Transformer: doubling the314

learning rate for only the first layer, and doubling it315

exclusively for WV
1 in the first layer. Neither mod-316

ification yielded significant improvements. This317

further demonstrates that the performance improve-318

ments brought by ResFormer are unrelated to the319

changes in gradient magnitude.320

4.5 Ablation Study of Value Residual 321
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Figure 5: (Left) Impact of value skip connections source
from different layers on model performance, where all
connections are identity connections and λ = 1 in
Dense-ResFormer. (Right) Average validation loss of
various Sparse-ResFormer configurations, which retain
only single or multiple skip connections from V1.

Where From, Where To? We analyzed which 322

value skip-connections are necessary for the vanilla 323

transformer. For an 8-layer transformer, we added 324

various pre-defined value skip-connections (with 325

constant λ) and evaluated the resulting validation 326

loss. As shown in Fig. 5 (Left), we first exam- 327

ined the impact of skip-connections from differ- 328

ent sources. Our findings indicate that only skip- 329

connections originating from the first layer’s value 330

(V1) yield significant performance improvements. 331

Skip-connections from the second layer’s value 332

(V2) offer no significant benefit to subsequent lay- 333

ers. Skip-connections from later layers, occurring 334

only in the final few layers, even lead to perfor- 335

mance degradation. Both of the two special cases 336

in Fig. 5 (Left) include V1 skip-connections. How- 337

ever, when these connections occur only between 338

adjacent layers, the information in V1 fails to ef- 339

fectively reach the final layers. Conversely, dense 340

value skip-connections dilute the impact of V1 with 341

information from other sources. 342

Furthermore, we investigated spare ResFormer, 343

a variant of identity ResFormer where the value 344

residual connection V′
n = 0.5V1 + 0.5Vn is ap- 345

plied selectively to specific layers. As shown in 346

Fig. 5 (Right), for an 8-layer model, when limited 347

to a single layer, applying the residual connection 348

to the 7th layer yields the most significant improve- 349

ment. When applied to multiple layers, the greatest 350

benefit is observed when incorporating layers 6 to 351

8. Extending the residual connection to earlier lay- 352

ers, such as the 5th, diminishes the overall effect. 353

It suggests that the model’s final few layers benefit 354

most from the first layer’s value information. 355

We further trained 8-layer and 24-layer 356

Learnable-ResFormers, as well as an 8-layer 357

Learnable-Dense-ResFormer, and visualized the 358
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Figure 6: (Left) Visualization of λ1/λ2 across differ-
ent layers in the 82M and 468M Learnable-ResFormer.
(Right) Heatmap visualization of learned λ across dif-
ferent layers in the 468M Dense-Learnable-ResFormer.

learned λ values. As shown in Fig. 6, the later lay-359

ers tend to require more value residual connections360

from V1, which aligns with the findings in Fig. 5.361

Fortunately, the Learnable-ResFormer can, to some362

extent, identify similar sparse residual patterns to363

those of the best performing Sparse-ResFormer in364

Table 2. Notably, the Learnable-Dense-ResFormer365

learns value residual patterns that closely resemble366

those of the Learnable-ResFormer.367

Residual Type Initial Form Valid Loss

- - 2.7389
value residual V′

n = 0.5V1 + 0.5Vn 2.7049
hidden residual H′

n = 0.5H0 + 0.5Hn 2.7812
value residual V′

n = 0×V1 + 1Vn 2.7298
hidden residual H′

n = 0×H0 + 1Hn 2.7216

Table 3: Comparison of additional value residual (to
V1) and hidden residual (to H0) connections against the
default hidden residual, under various λ initializations.
Trainable λ parameters are highlighted in red.

Why needed beyond hidden residual? Our ex-368

periments revealed that V1 information provides369

additional benefits to later network layers, despite370

both H1 and V1 containing initial, unfused token371

information. H0 is propagated through default hid-372

den residual connections, but it may be diluted by373

subsequent information, hindering its effective uti-374

lization in later layers. To test this hypothesis, we375

introduced an additional skip connection to H0 :376

H′
n = λ1H1 + λ2Hn, where λ is learnable. We377

conducted experiments with two λ initialization378

settings and compared them to value residual.379

Results showed that when λ1 = λ2 initially, the380

extra hidden residual had adverse effects. How-381

ever, initializing λ1 = 0 yielded some improve-382

ments, suggesting possible dilution of H0 informa-383

tion. Nevertheless, these gains were smaller than384

those from value residual connections, which con-385

sistently outperformed vanilla transformers across386

different initializations. Actually, the connection387

H0 : H′
n = λ1H1 + λ2Hn, is similar to applying388

residuals to queries, keys, and values at the same389

time, may disrupt attention distributions and hinder 390

higher-level semantic information fusing. The re- 391

duction performance brought by identity residuals 392

of queries or keys shown in Table 5 can support it. 393

Hidden Residual Starts Place Value Residual Target Place Valid Loss

H0 (Default) - 2.7389
H0 (Default) V1 2.7117
H0 (Default) V2 2.7375

H1 - 2.7802
H1 V2 2.784
H2 - 2.8196
H2 V2 2.7873
H2 - 2.8196
H2 V3 2.8333
H3 - 3.0568
H3 V3 2.8832

Table 4: Comparison of performance across different
value residual target and varying hidden residual start
settings. “value residual target place" Vi indicates the
earliest value accessible to subsequent layers, while
“hidden residual starts place" denotes the earliest hidden
state available, without prior residual connections.
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Figure 7: (Left) The relative training loss curve between
different cross layer residual and vanilla hidden residual.
(Right) Layer-to-layer hidden states similarity.

Why V1 instead of V2? In Fig. 5 (Left), con- 394

nections to V1 show significant improvement, 395

while those to V2 yield minimal gains. This 396

likely occurs because the original hidden residual 397

propagates information from H1 to the network 398

(V2 = H1W
V
2 ). To verify, we adjusted residual 399

connections, introducing them at different points. 400

For example, starting from H1, we use H1 = 401

Layer1(H0) instead of H1 = Layer1(H0) +H0. 402

Table 4 results show that when residual connec- 403

tions begin from H0 or H1, allowing H2 and sub- 404

sequent layers access to H1, V2 + Vn offers no 405

improvement. However, starting from H2, skip 406

connections from V2 provide substantial benefits. 407

Regarding the disparity in information propagation 408

between V2 (via H1) and V1 (via H0), we posit 409

that after the first layer’s integration, H1 contains 410

higher-level semantic information more similar to 411

subsequent hidden states, see Fig. 7 (Right). This 412

may ensure that the attention distribution remains 413

relatively undisturbed when connecting to H1. Be- 414

sides, Fig. 7 (Left) shows that Dense-ResFormer 415

performs better than ResFormer when there is no 416

cross layer hidden residual. 417

Superior to other residual For vanilla trans- 418

formers, to better propagate information from 419
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Residual Type Valid
Loss

- 2.739
Query 2.742
Key 2.746

Attention 2.757
Value 2.712

Table 5: The impact
of various residual types,
where all residual connec-
tions adopt a form similar
to V′

n=0.5V1 + 0.5Vn.

Residual Mapping Valid
Loss

- 2.739
Identity Mapping 3.137

Cross Layer
Attention 2.729

Current Attention 2.712

Table 6: Comparison of
different mapping matri-
ces when adding V1 to
Un, with “Current At-
tention" corresponding to
Identity-ResFormer.

the first layer, new residual connections can420

be introduced at various points in addition to421

the existing hidden residual: query states Q,422

key states K, value states V, and post-softmax423

attention matrix A. Results in Table 5 indicate424

that only the value residual connection improves425

performance. When connecting V1 and Vn,426

three approaches free of extra parameters are427

possible: (1) the proposed residual connection,428

directly summing the two and then sharing429

an attention matrix; (2) cross layer attention430

(Softmax
(
Qn Concat(Kn,K1)

T
)
Concat(Vn,V1)),431

recomputing an attention matrix for V1 based on432

K1 and Qn; and (3) directly adding V1 to Un in433

Eqn. 1, equivalent to using an identity mapping434

as V1’s attention matrix in layer N . The second435

approach significantly increases computational436

cost. Results in Table 6 demonstrate that sharing437

the attention matrix yields the best performance.438

4.6 Post-Analysis of ResFormer439
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Figure 8: (Left) Token-to-token similarity across se-
quence for value states at different place. (Right) Simi-
larity between first layer values and other layers’ values.

How value residual works? We performed post-440

analysis on trained ResFormer and vanilla Trans-441

former models to understand value residual learn-442

ing. Fig. 8 (Left) shows cosine similarities between443

value states at different layers and the first layer,444

averaged across token positions. For ResFormer,445

we calculated this before and after applying value446

residual. Results show that in vanilla Transformers,447

the first layer’s value has low similarity with other448

layers. In contrast, ResFormer maintains high simi- 449

larity between the first layer’s value and the post- 450

residual values in subsequent layers due to value 451

residual connections. Notably, in layers where Res- 452

Former relies more heavily on the first layer’s value 453

(see Fig. 6), the pre-residual value exhibits lower 454

similarity with the first layer’s value, indicating that 455

WV in these layers is learning the value residual. 456

For ResFormer, we also examined the average 457

pairwise similarity between tokens’ values before 458

and after the residual connection. The results Fig. 8 459

(Right) reveal that with value residual connections, 460

the learned values (before the value residual) from 461

each layer become increasingly similar as the net- 462

work deepens. We hypothesize that this is because, 463

given the default hidden residual and value resid- 464

ual, each layer learns a ∆V, with the magnitude 465

of necessary adjustments decreasing in later layers. 466

This phenomenon is unique to ResFormer and not 467

observed in vanilla Transformers.
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Figure 9: (Left) The change in test loss as model mod-
ules are progressively removed, starting from the back
to front while keeping the first layer intact. (Right) The
number of core features in each layer’s hidden state af-
ter PCA dimensionality reduction, where core features
represent the minimum number of principal components
required to explain 99% of the variance. 468

Representation and Module Analysis We an- 469

alyzed the overall network changes, focusing on 470

the hidden state representation capabilities and the 471

contributions of different modules. (Tyukin et al., 472

2024) suggests that removing Attention in Trans- 473

formers has a significantly smaller impact than 474

removing Mlp. We progressively removed atten- 475

tion or MLP layers, starting from the last layer 476

while retaining the first layer. Fig. 9 (Left) demon- 477

strates that for ResFormer, the impact of removing 478

Attention is more comparable to that of remov- 479

ing Mlp, in contrast to vanilla Transformers. This 480

indicates that the Attention in ResFormer, with 481

value residual, contribute more significantly to each 482

layer’s hidden states than in vanilla Transformers. 483

Furthermore, we performed PCA dimensional- 484

ity reduction on the hidden states of each layer in 485

both ResFormer and vanilla Transformer models. 486
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We determined the minimum number of principal487

components required to explain 99% of the vari-488

ance. Fig. 9 reveals that ResFormer, starting from489

the second layer where value residual connections490

are introduced, consistently produces hidden states491

with a higher minimum number of principal com-492

ponents compared to vanilla Transformers. This493

suggests that ResFormer generates hidden states494

with higher information density.495

4.7 SVFormer vs. GQA,CLA496
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Figure 10: The relative training loss for SVFormer and
other KV efficient model compared with vanilla atten-
tion. The numbers in parentheses represent the training
sequence length. Left: Model with nearly 1/2 KV
cache. Right: Model with nearly 1/8 KV cache.
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Figure 11: Left: The relative training loss for SVFormer
under different sequence lengths with a fixed batch size
of 2M tokens. Right: Analysis of critical point, and we
predict it for length 64,000 using linear regression with
the last 1,000 data points.

In the Fig. 10, at a training sequence length of497

64,000, SVFormer demonstrates lower final loss498

compared to existing KV -efficient methods such499

as CLA and GQA. Moreover, it can be used con-500

currently with GQA to enhance KV efficiency501

further. However, we observed that with a train-502

ing sequence length of 2,048, SVFormer underper-503

forms compared to GQA. The results indicate that504

sequence length significantly affects SVFormer’s505

performance. Thus, we conducted more compre-506

hensive experiments on sequence length.507

Effects of sequence length. Results in Fig. 11508

(Left) demonstrate that SVFormer will always509

be gradually surpassed by vanilla attention dur-510

ing training while its training speed is faster than511

vanilla Transformer at the early stage. However,512

as the training sequence length increases, the SV-513

Former model performs better. In this way, we514
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Figure 12: The relative training loss for SVFormer under
different hyper-parameter setting and the validation loss
as model size scales from 82M to 468M parameters.

focus on the critical point, defined as the number of 515

training steps exceeded. Fig. 11 (Right) illustrates 516

that the relationship between the critical point and 517

sequence length exhibits an exponential trend. We 518

argue that it’s due to the challenge deep models 519

face in fully optimizing the increasingly larger first- 520

layer value matrix as the sequence length grows. 521

Other Factors. Fig. 12a and Fig. 12b show SV- 522

Former benefits more from smaller learning rates 523

than from warmup. This aligns with performance 524

correlating to total summed learning rate (Kaplan 525

et al., 2020). Larger models, requiring smaller 526

learning rates, suit SVFormer better. Fig. 12c in- 527

dicates the SVFormer-Transformer difference is 528

not architecture-sensitive. Compared with Trans- 529

former, SVFormer requires a 12.2% increase in 530

parameters to achieve the same loss while reducing 531

the KV -cache by nearly half. 532

5 Conclusion 533

In this paper, we demonstrate the inadequacy of ex- 534

isting hidden residual connections in propagating 535

information from the initial token-level to deeper 536

layers. To address this limitation, we propose Res- 537

Former, which incorporates a residual connection 538

between the value vectors of the current layer and 539

those of the first layer prior to the attention oper- 540

ation. Furthermore, we introduce SVFormer, an 541

extension of ResFormer, which achieves a nearly 542

50% reduction in the KV cache. We conducted 543

extensive experiments on language modeling tasks 544

to evaluate the efficacy of these two Transformer 545

variants across diverse scenarios. 546
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Limitations547

The proposed learnable ResFormer, still falls short548

of identifying the optimal λ setting through cur-549

rent training, instead converging on a relative opti-550

mum. This limitation suggests that further refine-551

ment of initialization strategies and learning algo-552

rithms may be necessary. Due to computational553

constraints, we were unable to conduct experimen-554

tal validation on larger-scale models at this time.555

Ethics Statement556

On the one hand, the data employed in this paper is557

sourced from publicly available datasets provided558

by the company, which have undergone a certain559

level of filtering. On the other hand, the models560

trained in our study are solely utilized for experi-561

mental analysis and will not be publicly deployed.562
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A Appendix767

A.1 Downstream Evaluations768

We compare the different models on several classi-769

cal reasoning tasks following (Zhang et al., 2024)770

in a zero-shot way. The tasks include Hellaswag771

(Zellers et al., 2019), OpenBookQA (Mihaylov772

et al., 2018), WinoGrande (Sakaguchi et al., 2019),773

ARC-Easy and ARC-Challenge (Clark et al., 2018)774

and PIQA (Bisk et al., 2020). The results in Table 7775

show that ResFormer achieved an average accuracy776

improvement of nearly 3% compared to the vanilla777

Transformer.778
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(b) Token importance.
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(c) Norms of value states.
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Figure 13: The token importance (Xiao et al., 2024),
value-state norms (Guo et al., 2024b), and hidden-state
norms (Sun et al., 2024a) of the first token across layers
of 468M models. “Attention Entropy" refers to the
entropy of token importance across each sequence.

Attention Pattern Analysis Given the attention779

matrix A ∈ Rl×l at one layer, we use entropy780

e to represent its concentration effect. To ob-781

tain entropy E, calculate the importance vector782

a = 1
l

∑l
j=1Aij firstly where A is a lower tri-783

angular matrix. The entropy can be formulated784

as follows: e = −
∑l

i=1 a
′
i loga

′
i, where a′ii =785

ai/
(∑l

i=1 ai

)
for i = 1, 2, . . . , l and the higher786

the entropy e, the greater the degree of clustering787

in a, i.e., attention matrix A is more likely to focus 788

on several specific tokens. 789

Fig. 13a illustrates that the clustering effect of 790

attention increases significantly with the number 791

of layers for the vanilla Transformer, whereas the 792

clustering effect is relatively less pronounced for 793

the ResFormer. We further visualize the attention 794

weights, value-state norms ∥v∥2, and hidden-state 795

norms ∥h∥2 of tokens at different layers and posi- 796

tions. Given that attention clustering often occurs 797

on the first token, we primarily show its results in 798

Fig. 13. The results indicate that using ResFormer 799

significantly mitigates attention sinks (Xiao et al., 800

2024), value-state drains (Guo et al., 2024b) and 801

residual-state peaks (Sun et al., 2024a). (Guo et al., 802

2024a) attributes these phenomena to the mutual 803

reinforcement mechanism of model and we sug- 804

gest that the value shortcut disrupts this mechanism 805

by alleviating value-state drains. Specifically, for 806

tokens lacking semantic information like start to- 807

kens, a large value state magnitude can adversely 808

affect the prediction of subsequent tokens if they 809

are overly attended to. When there is no value-state 810

drains, models will reduce attention clustering to 811

these tokens to minimize loss. 812

A.2 Pre-train Dataset 813

Based on the equation D ≥ 5000 ·N0.74 (Kaplan 814

et al., 2020) where D is data size and N is the 815

number of non-embedding parameters, we need 816

to collect at least 17.5B for model has N = 700M 817

non-embedding parameters (corresponding to com- 818

plete 1B model with 2,048 hidden size, 50,277 819

vocab size and 2,048 sequence length) to avoid 820

over-fitting. Besides, (Xie et al., 2024) indicates 821

that the mixture proportions of pre-training data do- 822

mains significantly affects the training results. In 823

this way, we sampled 20B tokens data from original 824

627B data based on the original data proportions 825

shown in the Table 8. 826

A.3 Training Details 827

Section 4.1 introduces the main experimental hy- 828

perparameters used in the paper. This section 829

further details the training parameters for various 830

model sizes and training sequence lengths. Ta- 831

ble 10 demonstrates the differences among models 832

of various sizes. The configurations for the num- 833

ber of layers, attention heads, hidden dimensions, 834

and FFN dimensions are based on (Biderman et al., 835

2023). Additionally, the λ in Eqn. 3 is set to be 0.4 836

for NeuTRENO. Moreover, as reported in Table 9, 837
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Model Max Length HellaSwag Obqa WinoGrande ARC-c ARC-e PIQA Avg

Transformer 2,048 0.263 0.142 0.492 0.199 0.331 0.572 0.333
ResFormer 2,048 0.273 0.148 0.512 0.182 0.414 0.604 0.355
Transformer 64,000 0.267 0.142 0.485 0.179 0.322 0.570 0.328
ResFormer 64,000 0.274 0.136 0.513 0.184 0.407 0.588 0.350

Table 7: Zero-shot accuracy on commonsense reasoning tasks.

Data source proportions Tokens

Commoncrawl 50% 10 B
C4 20% 4 B

GitHub 10% 2 B
Books 5% 1 B
ArXiv 5% 1 B

Wikpedia 5% 1 B
StackExchange 5% 1 B

Table 8: The details of pre-train dataset.

the batch size that a single GPU can accommodate838

varies depending on the length of the training se-839

quences. Note that the total number of tokens in840

each batch is consistently 2 million.841
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Max Sequence Length 512 2,048 8,192 32,000 64,000

Total Batch Size 4,096 1,024 256 64 32

Per-GPU Batch Size 128 32 8 2 1

Gradient Accumulation Step 32

GPUs 8

Table 9: Training details for training dataset with different sequence length.

Model Size 2M 82M 180M 468M

Layers 4 8 12 24

Attention Heads 2 8 12 16

Hidden Dimension 16 512 768 1,024

FFN Dimension 56 1,792 2,688 3,584

Tie Word Embedding False

(Peak Learning Rate, Final Learning Rate) (6e− 4, 6e− 5)

Learning Rate Schedule Cosine Decay

Vocabulary Size 50,277

Activation Function SwiGLU

Position Embedding RoPE (θ = 10,000)

Batch Size 2M tokens

Data Size 20B tokens

(Warmup Steps, Training Steps) (120, 10,000)

Adam β (0.9, 0.95)

Dropout 0.0

Weight Decay 0.1

Table 10: Training details for models with different size.
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