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ABSTRACT

Diffusion models have achieved great success in generating samples from complex
distributions, notably in the domains of images and videos. Beyond the experi-
mental success, theoretical insights into their performance have been illuminated,
particularly concerning the convergence of diffusion models when applied with
discretization methods such as Euler-Maruyama (EM) and Exponential Integrator
(EI). This paper embarks on analyzing the convergence of the higher-order dis-
cretization method (SDE-DPM-2) under L2-accurate score estimate. Our findings
reveal that to attain Õ(ϵ20) Kullback-Leibler (KL) divergence between the target
and the sampled distributions, the sampling complexity - or the required number of
discretization steps - for SDE-DPM-2 is Õ(1/ϵ0), which is better than the currently
known sample complexity of EI given by Õ(1/ϵ20). We further extend our analysis
to the Runge-Kutta-2 (RK-2) method, which demands a sampling complexity of
Õ(1/ϵ20), indicating that SDE-DPM-2 is more efficient than RK-2. Our study
also demonstrates that the convergence of SDE-DPM-2 under Variance Exploding
(VE) SDEs aligns with that of Variance Preserving (VP) SDEs, highlighting the
adaptability of SDE-DPM-2 across various diffusion models frameworks.

1 INTRODUCTION

Diffusion models , also known as Score-based Generative Models (SGMs), are a powerful generative
model which is widely used in image synthesis (Li et al., 2022; Rombach et al., 2022; Saharia et al.,
2022), video generation (Harvey et al., 2022; Wu et al., 2023) and molecular design (Anand & Achim,
2022; Xu et al., 2022).

Diffusion models operate through two primary processes: the forward process and the backward
(reverse) process. The forward process involves transforming the original data distribution into
Gaussian noise via a Stochastic Differential Equation (SDE). During this process, the gradient of the
log density function, known as the score function, is estimated by denoising score matching (Vincent,
2011) and sliced score matching (Song et al., 2020). The backward process, on the other hand, is
capable of generating samples from the target distribution using the estimated score function. This
is accomplished through an equivalent reverse SDE or a probability Ordinary Differential Equation
(ODE). Specifically, the reverse SDE usually can generate more diverse and high-quality samples
than the reverse ODE (Tachibana et al., 2021; Lu et al., 2022b), while the reverse ODE is faster than
the reverse SDE (Li et al., 2024).

Anderson (1982) showed that a continuous backward process could converge to a target distribution
using the ground truth score function. However, in real-world applications, we’re often limited to
estimating this score function based on the available data. Moreover, to implement the backward
process in practice, we need to discretize the reverse SDE or reverse ODE.

Commonly used discretization methods include Denoising Diffusion Probabilistic Models (DDPM)
(Ho et al., 2020), Denoising Diffusion Implicit Models (DDIM) (Song et al., 2021a), Exponential
Integrator (EI) (Zhang & Chen, 2023) and DPM-2 (Lu et al., 2022a). Song et al. (2021b) illustrated
that DDPM is essentially the Euler-Maruyama (EM) discretization of the reverse SDE, a first-order
discretization method. The Euler-Maruyama method directly discretizes the reverse SDE’s drift
term, leading to a high discretization error. To address this issue, Lu et al. (2022a); Zhang & Chen
(2023) designed a new discretization method named DPM or EI, which utilizes the linear part of
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the drift term. Although DPM and EI are also first-order discretization methods, they can generate
high-quality samples with fewer discretization steps than EM. Furthermore, Lu et al. (2022a;b)
proposed second-order discretization methods, DPM-2 and SDE-DPM-2, which utilizes the linear
part of the drift term and approximates the non-linear part using Taylor expansion the probability flow
ODE and the reverse SDE, respectively. A similar second-order discretization method, Runge-Kutta-2
(RK-2), differs from SDE-DPM-2 in discretizing the linear part of the drift term in the reverse SDE.
In the study by Lu et al. (2022b), SDE-DPM-2 is capable of producing high-quality samples with
fewer discretization steps in comparison to both DDPM and SDE-EI. To avoid confusion, we refer to
EI, DPM, and DPM-2 as the samplers for Probability ODEs and SDE-EI (SDE-DPM), SDE-DPM-2
as the sampler for reverse SDEs.

Several studies Yang & Wibisono (2022); Huang et al. (2024a); Li et al. (2024); Chen et al. (2024b)
have investigated the convergence of the first-order and the second-order discretization methods the
Probability Flow ODE, i.e. EI and DPM-2. However, the convergence analysis of reverse SDEs in
Diffusion models remains somewhat unexplored. The significance of reverse SDEs is underscored by
findings in Tachibana et al. (2021); Lu et al. (2022b), which demonstrate their superior performance
over Probability ODEs in terms of sample diversity and quality. Recent studies, such as those by
De Bortoli et al. (2021); Lee et al. (2023); De Bortoli (2022); Chen et al. (2023b;a), have primarily
focused on the convergence properties of first-order discretization methods, including the Euler-
Maruyama (EM) method and SDE-DPM. To achieve a KL divergence of Õ(ϵ20) between the target
distribution and the sampled distribution, SDE-DPM requires a sampling complexity of Õ

(
1
ϵ20

)
(Chen et al., 2023a; Benton et al., 2024).

In contrast, a growing body of work Li et al. (2019; 2024); Wu et al. (2024); Chen et al. (2024a);
Huang et al. (2024b) has investigated accelerated samplers for reverse SDEs. Notably, Li et al. (2024)
proposed an acceleration algorithm using a variant of DDPM, and Wu et al. (2024) introduced a variant
of the RK-2 method. Both methods achieve a KL divergence of Õ(ϵ20) with an improved sampling
complexity of Õ

(
1
ϵ0

)
. However, the convergence analysis of SDE-DPM-2 remains unexplored.

Furthermore, experimental results indicate SDE-DPM-2 can generate samples with better FID score
than the methods proposed in Li et al. (2024); Wu et al. (2024) with same discretization steps. This
paper aims to address this gap by providing a convergence analysis of SDE-DPM-2.

OUR CONTRIBUTIONS

1. In our study, we are the first to investigate the sampling complexity of SDE-DPM-2. Our
results demonstrate that for achieving a KL divergence of Õ(ϵ20), SDE-DPM-2 requires a
sampling complexity—or the necessary number of discretization steps—of Õ( 1

ϵ0
). This

sampling complexity is notably more efficient than that of SDE-DPM method, which
requires a complexity of Õ( 1

ϵ20
).

2. We further examine the sampling complexity associated with a different second-order
discretization method, namely RK-2. This method demands a sampling complexity of Õ( 1

ϵ20
)

which is worse than that of SDE-DPM-2 due to that RK-2 directly discretizes the linear part
of the drift term in the reverse SDE, leading to a higher discretization error. Our analysis
underscores the superior efficiency of SDE-DPM-2 over both EI and RK-2 in terms of
sampling complexity.

3. We broaden our analysis to Variance Exploding (VE) SDEs, demonstrating that the conver-
gence of SDE-DPM-2 under the VE-SDE framework aligns with that of Variance Preserving
(VP) SDEs. This alignment underscores the adaptability of SDE-DPM-2 method across
various diffusion models frameworks.

The following parts of this paper are organized as follows: Section 2 provides a brief overview of the
preliminary concepts. Section 3 introduces the assumptions and the main results. Section 4 provides
a sketch of the proof. Section 5 discusses the extension of our analysis to Variance Exploding (VE)
SDEs. Finally, Section 7 concludes the paper with a discussion of the results and potential future
research directions.
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2 PRELIMINARY

Song et al. (2021b) delineates two principal types of forward processes: Variance Preserving (VP)
SDE and Variance Exploding (VE) SDE. The VP-SDE maintains a bounded variance throughout
its evolution, culminating in a distribution that resembles white noise, denoted as N (0, Id). A
distinguished example of VP-SDE is the DDPM, pioneered by Ho et al. (2020). In contrast, the
VE-SDE is characterized by its variance which incrementally increases over time, a concept vividly
illustrated through the Score Matching and Langevin Dynamics (SMLD) framework by Song &
Ermon (2019). The focus of our discussion will be predominantly on the VP-SDE, owing to its
widespread application in the theoretical exploration of diffusion models, as evidenced by the works
of Yang & Wibisono (2022); Chen et al. (2023a); Li et al. (2024); Chen et al. (2024a). Furthermore,
we will demonstrate the applicability of our findings to VE-SDE, broadening the scope of our analysis.

We will first review the forward and backward processes of diffusion models. Additionally, we will
discuss the methods used to discretize the backward process, ensuring a comprehensive understanding.

2.1 FORWARD PROCESS

The forward process is defined as follows:
dxt = f(xt, t)dt+ g(t)dwt, x0 ∼ p0, t ∈ [0, T ] (1)

where f : Rd × R → Rd and g : R → R are the drift and diffusion coefficients, respectively. wt is a
d-dimensional Brownian motion. The initial distribution of x0 is p0, which is the data distribution.
We denote the solution of (1) at time t as xt and use pt to denote the distribution of xt. With the
increment of time, the distribution of xt will converge to the white noise distribution N (0, Id).

2.2 BACKWARD PROCESS

Suppose we run the forward process until time T > 0, ending at pT . There exists a backward process
(Anderson, 1982) which starts from xT ∼ q0 = pT , as follows (running backward from time T to 0):

dxt =
(
f(xt, t)− g(t)2∇ log pt(xt)

)
dt+ g(t)dw̃t

Where w̃t is a backward Brownian motion (with time flowing backward). The gradient of the
logarithm of pt(xt), ∇ log pt(xt), is the score function of pt(xt). For convenience, we can rewrite
the reverse process in forward time with x←t denoting xT−t. Then the reverse process can be written
as followed(from time 0 to T ):

dx←t =
(
−f(x←t , T − t) + g(T − t)2∇ log pT−t(x

←
t )
)
dt+ g(T − t)dwt (2)

We denote the distribution of x←t as qt. Anderson (1982) showed that with q0 = pt, the marginal
distribution of xt in the forward process (1) and x←T−t in the backward process (2) are the same:

pt(xt) = qT−t(x
←
T−t)

Backward Process with Estimated Score. If we have access to ∇ log pt(xt) for all time steps t, we
can run the backward process described in (2) to generate samples from the target distribution p0.
Nonetheless, acquiring the score function in real-world scenarios is often challenging. Consequently,
we commonly resort to methods like denoising score matching (Vincent, 2011) and sliced score
matching (Song et al., 2020) to estimate it from data. We use the symbol s(xt, t) to represent the
approximated score and substitute it into the backward process (2). Then, the backward process can
be written as:

dx←t =
(
−f(x←t , T − t) + g(T − t)2s(x←t , T − t)

)
dt+ g(T − t)dwt (3)

We adhere to the same settings used in the theoretical analysis of diffusion models (Yang & Wibisono,
2022; De Bortoli, 2022; Chen et al., 2023a), where the function f(xt, t) is defined as −x, and g(t)

as
√
2. Consequently, the forward process, as described in equation (1), aligns with the Ornstein-

Uhlenbeck (OU) process (Maller et al., 2009). Within this framework, the distribution xt given x0 is
Gaussian with mean e−tx0 and variance (1− e−2t)Id:

xt|x0 ∼ N (e−tx0, (1− e−2t)I) (4)

Then the backward process (2) can be written as:

dx←t = (x←t + 2s(x←t , T − t)) dt+
√
2dwt (5)
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2.3 DISCRETIZATION OF BACKWARD PROCESS

Given (5), we can implement SDE discretization methods to simulate the reverse process and generate
samples from the target distribution p0. Let 0 = t0 ≤ t1 ≤ · · · ≤ tN = T be the discretization
points. We denote the solution of (5) at time tk as x←tk , and use x←k to denote x←tk . We will introduce
two discretization methods, EI and SDE-DPM-2, as representatives of first-order and second-order
discretization methods, respectively.

The EI scheme: By discretizing the nonlinear term s(x←t , T − t) with s(x̂←k , T − tk), Then at each
time interval [tk, tk+1], we have

dx←t =(x̂t
← + 2s(x̂←k , T − tk)) dt+

√
2dWt

By integrating the above equation, we have

x̂←k+1 = ehk x̂←k + 2(ehk − 1)s(x̂←k , T − tk) +
√
e2hk − 1zk

where hk = tk+1 − tk and x̂←k is the solution for the EI scheme at time tk. zk ∼ N (0, Id) is the
standard Gaussian noise.

The SDE-DPM-2 scheme: By discretizing the nonlinear term s(x←t , T − t) with sT−tk(x̂
←
k ) +

s(1)(x̂←k , T − tk)(t − tk), where s(1)(x̂←k , T − tk) is the total first order derivative of sT−tk(x̂
←
k )

with respect to t. Then at each time interval [tk, tk+1], we have

dx←t =
(
x̂t
← + 2s(x̂←k , T − tk) + 2s(1)(x̂←k , T − tk)(t− tk)

)
dt+

√
2dWt

By integrating the above equation, we have

x̂←k+1 =ehk x̂←k + 2(ehk − 1)s(x̂←k , T − tk) +
√

e2hk − 1zk

+ 2(ehk − hk − 1)s(1)(x̂←k , T − tk)

As is introduced in Lu et al. (2022b), the total first-order derivative of s(x̂←k , T − tk) concerning t
is approximated with previous buffered values of s(x̂←k−1, T − tk−1) and s(x̂←k−2, T − tk−2), which
does not require extra computation of the score function. We check its efficiency with the experiments
on CIFAR-10 in empirical results in Section 6. The approximation is as follows:

s(1)(x̂←k , T − tk) ≈
s(x̂←k , T − tk)− s(x̂←k−1, T − tk−1)

tk−1 − tk
(6)

Note that SDE-DPM-2, SDE-DPM-Solver-2M and SDE-DPM-Solver++(2M) in Lu et al. (2022b)
are equivalent as they stated. The difference lies in the parameterization of the objective function
where SDE-DPM-2 is based on sθ, SDE-DPM-Solver-2M is based on ϵ-prediction objective and
SDE-DPM-Solver++(2M) is based on data prediction model xθ. We focus on the denoising score
matching form SDE-DPM-2 to maintain consistency with existing theoretical analysis work.

The key difference between EI and SDE-DPM-2 lies in how the score function is approximated
within the update scheme at each step: EI scheme approximates the score function at time [tk, tk+1]
with sT−tk(x̂

←
k ), while SDE-DPM-2 scheme approximates the score function at time [tk, tk+1] with

sT−tk(x̂
←
k )+ s(1)(x̂←k , T − tk)(t− tk). To ease the notations, we use

∂s(x̂←tk
,tk)

∂tk
to denote the partial

derivative concerning t at time tk,
∂s(x̂←tk

,t)

∂t |t=tk , and Jst to denote the Jacobian matrix of st.

We denote the distribution of x̂←k as q̂k. Our goal is to bound the KL divergence between p0 and q̂T ,
which will also yield a bound on the TV distance via Pinsker’s inequality.

3 MAIN RESULTS

3.1 RESULT OF SDE-DPM-2

Before introducing the main results, we first give the following assumptions:

Assumption 1. The data distribution has a bounded second moment, i.e., Ep0

[
∥x∥2

]
≤ M2.
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Assumption 2. the estimated score function with Taylor expansion is L2-accurate, i.e.,for all
k = 1, 2, · · · , N and t ∈ [tk−1, tk],

1

T

N∑
k=1

hkEptk
∥s (xtk , tk) +

∂s(xtk , tk)

∂tk
· (t− tk) + Jstk · (xt − xtk)

−∇ log ptk(xtk)−
∂∇ log ptk(xtk)

∂tk
· (t− tk)−∇2 log ptk(xtk) · (xt − xk)∥2 ≤ ϵ20

Assumption 3. The second-order derivative of the score function concerning t are bounded, i.e., for
all k = 1, 2, · · · , N and t ∈ [tk−1, tk], there exist constants C1 such that:

Ept

∥∥∥∥∂2∇ log pt(x)

∂t2

∥∥∥∥2 ≤ C1

where C is a constant independent of t and only depends on the moments of the initial distribution p0.
Assumption 4. The second-order derivative of the score function concerning x are bounded, i.e., for
all k = 1, 2, · · · , N and t ∈ [tk−1, tk], there exists a constant C2 such that:

EPt

∥∥∇3 log pt(x)
∥∥2 ≤ C2

Remark. The assumptions outlined in Assumption 1 are in line with that presented in Chen et al.
(2023b;a). Additionally, the introduction of new assumptions, specifically Assumptions 2, 3, and 4,
are designed for the analysis of second-order discretization methods.

Before we present the main findings, let’s delve into the reasoning that underpins Assumptions 2, 3,
and 4.

Assumption 2 builds upon the L2-accurate assumption from Chen et al. (2023b;a), which requires the
estimated score function to exhibit L2 accuracy:

Eptk

[
∥s(x, tk)−∇ log ptk(x)∥

2
]
≤ ϵ20

Assumption 2 presents a more stringent requirement. It demands that the Taylor expansion of the
estimated score function exhibit L2 accuracy. This heightened requirement is deemed justifiable,
given the advancements in methodology proposed by Meng et al. (2021). Specifically, their work
extends the utility of denoising score matching to the estimation of higher-order derivatives and
empirically demonstrated that the first derivative of the score can be learned effectively under Gaussian
mixture models. Such an approach significantly enhances the feasibility of accurately estimating the
score function through its Taylor expansion.

To facilitate the Taylor expansion of the true score function, we introduce Assumptions 3 and 4.
The core idea hinges on the premise that if the higher-order partial derivatives of the score function
concerning t and x are bounded, then we can accurately estimate the Taylor expansion of the score
function. In this paper, we demonstrate that Assumptions 3, and 4 hold under Gaussian Mixture
distributions, which can approximate any smooth distributions and are widely used in practice. The
constants C1, C2 only depend on the initial target distribution. See more details in Appendix E.

Now we introduce the main result of this paper. We give Theorem 3.1 to demonstrate the sampling
complexity SDE-DPM-2 method:
Theorem 3.1. under assumptions 1, 2, 3, and 4, SDE-DPM-2 has KL divergence bounded by:

KL(p0||q̂T ) ≲ (M2 + d)e−T + Tϵ20 +
C2d

3T 3

N2

similarly, choosing T = log(M2+d
ϵ20

) and N = Θ(
C0.5

2 d1.5T 1.5

ϵ0
) makes the KL divergence Õ(ϵ20).

Remark. The notation Õ hides the logarithmic factors present in the sampling complexity. The
gap between the estimated quantity q̂k and the target distribution p0 stems from three main sources:
1. The initial error, denoted as (M2 + d)e−T , originates from the starting point of the backward
process, which assumes a normal distribution γd = N (0, Id), instead of the desired distribution pT .
2. The error associated with the score function estimation is expressed as Tϵ20. 3. The discretization
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method introduces an error quantified by d2T 3

N2 . There also exists a work Li et al. (2024) providing
their results in terms of TV distance. By applying Pinsker’s inequality: TV (P,Q) ≤

√
KL(PQ),

our result Õ(ϵ20) in KL divergence yields Õ(ϵ0) in TV distance, and the sampling complexity to attain
Õ(ϵ0) in TV distance is poly(d)/ϵ.

We will provide a detailed proof of Theorem 3.1 in the Appendix C.1. Note that we focus on KL
divergence as the metric to bound the gap between q̂T and p0 like in several other works (Yang &
Wibisono, 2022; Chen et al., 2023a; Benton et al., 2024). There is also work (Li et al., 2024) provide
their result in terms of TV distance, and we will give a discussion in the Appendix A.2.

As a comparison, we also introduce Theorem 3.2 from Chen et al. (2023a) to demonstrate the
sampling complexity of the EI method:
Theorem 3.2 (Theorem 1 from Chen et al. (2023a)). Assume that the target distribution p0 and the
estimated score function s(x, t) satisfy

1. p0 has a bounded second moment, i.e., Ep0

[
∥x∥2

]
≤ M2.

2. ∇pt(xt) is L−Lipschitz on Rd.

3. the score function is L2-accurate, i.e.,for all k = 1, 2, · · · , N ,

Eptk

[
∥s(x, tk)−∇ log ptk(x)∥

2
]
≤ ϵ20

then the KL divergence between the target distribution p0 and the estimated distribution q̂T generated
by EI is bounded by:

KL(p0||q̂T ) ≲ (M2 + d)e−T + Tϵ20 +
d2T 2L2

N
(7)

choosing T = log(M2+d
ϵ20

) and N = Θ(d
2T 2L2

ϵ20
) makes the KL divergence Õ(ϵ20).

Comparing Theorem 3.1 and Theorem 3.2, the initial error and the estimation error of the score
function are consistent with those in Theorem 3.2. However, we present the error associated with the
discretization method as C2d

3T 3

N2 , marking a significant improvement over the previously noted error
of dT 2L2

N for EI. This enhancement underscores the superior sampling complexity of SDE-DPM-2
compared to the EI method. Specifically, the sampling complexity of SDE-DPM-2 is Õ( 1

ϵ0
), which

is notably more advantageous than the Õ( 1
ϵ20
) complexity of the EI method.

3.2 RESULT OF SECOND-ORDER RUNGE–KUTTA METHOD

Next, we will give the result of the second-order discretization method, the RK-2 method, and compare
it with the SDE-DPM-2 method. RK-2 is another representative of second-order discretization
methods, which is also referred to as the Heun’s method for SDEs. To demonstrate RK-2, we rewrite
the backward process (5) as follows:

dx←t = (x̂t
← + s(x̂←k , T − t)) dt+

√
2dWt

= f(x←t , t)dt+
√
2dWt

(8)

The update rule for the RK-2 method is given by:
x̃←k+1 = x̂←k + hkf(x̂

←
k , tk) (9)

x̂←k+1 = x̂←k +
hk

2

(
f(x̂←k , tk) + f(x̃←k+1, tk + hk)

)
+
√
2hkzk (10)

where (9), (10) represent the predictor and corrector steps, respectively. In Lemma B.3, we demon-
strate that the RK-2 method is equivalent to the following SDE (11):

dx←t =
(
x̂←tk + 2s(x̂←k , T − tk)

)
dt+

√
2dWt

+ 2

(
∂s(x̂←tk , T − tk)

∂tk
(t− tk) + Jstk (x

←
t − x̂←tk )

)
dt

(11)

Then we can give the following corollary:
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Corollary 3.3. Under Assumptions 1, 2, 3, and 4, the RK-2 method has KL divergence bounded by:

KL(p0||q̂T ) ≲ (M2 + d)e−T + Tϵ20 +
C2d

3T 3

N2
+

dT 2

N

choosing T = log(M2+d
ϵ20

) and N = Θ(
C0.5

2 d1.5T 1.5

ϵ0
+ dT 2

ϵ20
) makes the KL divergence Õ(ϵ20).

Remark. A key distinction between RK-2 and SDE-DPM-2 is in their treatment of the linear
component concerning xt of the drift term. While SDE-DPM-2 calculates the exact solution for
this linear component, RK-2 opts for an approximation, starting from the initial value x̂tk . This
approximation strategy results in RK-2 exhibiting a KL divergence of N = O(dT

2

ϵ20
) (only keeping the

dominant order for ϵ), which keeps the same order as EI.

Theorems 3.2, 3.1, and Corollary 3.3 highlight the advanced sampling efficiency of the SDE-DPM-2
method when compared to the RK-2 and EI methods. SDE-DPM-2 demonstrates superior per-
formance, achieving a sampling complexity of Õ( 1

ϵ0
), which is significantly more efficient than

the Õ( 1
ϵ20
) complexity observed for both EI and RK-2. This enhanced efficiency is largely due to

SDE-DPM-2’s more precise approximation of the nonlinear component of the drift term, denoted
as s(x, t), over that of EI, and its exact solution for the linear component concerning xt of the drift
term, in comparison to RK-2. Such improvements lead to a decrease in discretization error, markedly
boosting sampling efficiency from complex distributions. To provide a comprehensive understanding
of SDE-DPM-2, we also conduct comparisons of its properties with other SDE and ODE solvers in
Appendix A.1.

4 PROOF SKETCH

Drawing inspiration from the work of Chen et al. (2023a), which explores the convergence properties
of the EI method by decomposing the KL divergence between p0 and q̂T into three components,
namely, the initial error, the score function error, and the discretization error, we intend to adopt a
similar analytical framework.

Our focus will be on evaluating the convergence behavior of SDE-DPM-2. In Proposition 4.2, we
identify and categorize the bound of KL divergence, KL(p0, q̂T ) into the initial error, the score
function error, and the discretization error, when employing SDE-DPM-2. In Lemma 4.3, we
characterize the discretization error of SDE-DPM-2. By combining these results, we can derive
Theorem 3.1, which provides the sample complexity of SDE-DPM-2. The proof of Corollary 3.3 is
similar to that of Theorem 3.1.

4.1 COMPARISON OF UPDATE SCHEMES

The EI scheme approximates the score function at time [tk, tk+1] with sT−tk(x̂
←
k ),

dx←t =(x̂t
← + 2s(x̂←k , T − tk)) dt+

√
2dWt (12)

while the SDE-DPM-2 scheme approximates the score function at time [tk, tk+1] with sT−tk(x̂
←
k ) +

s(1)(x̂←k , T − tk)(t− tk). Moreover, by denoting s(1)(x̂←k , T − tk)(t− tk) as:

s(1)(x̂←k , T − tk)(t− tk) =
∂s(x̂←tk , T − tk)

∂tk
(t− tk) + Jstk · ∂x̂

←
t

∂t
(t− tk)

=
∂s(x̂←tk , t)

∂tk
(t− tk) + Jstk (x̂

←
t − x̂←tk )

at each time interval [tk, tk+1], the SDE-DPM-2 scheme can also be written as:

dx←t = (x̂t
← + 2s(x̂←k , T − tk)) dt+

√
2dWt

+ 2

(
∂s(x̂←tk , T − tk)

∂tk
(t− tk) + Jstk (x

←
t − x̂←tk )

)
dt

(13)
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4.2 KL DIVERGENCE DECOMPOSITION

With (12), Chen et al. (2023a) proposed that the KL divergence between p0 and q̂T when employing
the EI method is constrained by the initial error, the score estimation error, and the error due to
discretization, as detailed in Proposition 4.1.
Proposition 4.1 (proposition 8 from Chen et al. (2023a)). if the estimated score function s(x, t)
satisfies

Eptk

[
∥s(x, tk)−∇ log ptk(x)∥

2
]
≤ ϵ20

the KL divergence between p0 and q̂T with EI method is bounded by:

KL (p0∥q̂T ) ≤ KL (pT ∥γd) + Tϵ20 +

N∑
k=1

∫ tk

tk−1

E ∥∇ log ptk (xtk)−∇ log pt (xt)∥2 dt

Proposition 4.1 bound the KL divergence between p0 and q̂T with EI method by the ini-
tial error: KL (pT ∥γd), the error of the score function: Tϵ20, and the discretization error:∑N

k=1

∫ tk
tk−1

E ∥∇ log ptk (xtk)−∇ log pt (xt)∥2 dt.

Building on this framework, by employing (13), the KL divergence between p0 and q̂T when using the
DPM-2 method is similarly limited by the initial error, the score function error, and the discretization
error, which is elaborated in Proposition 4.2 as follows:
Proposition 4.2. With Assumption 2, the KL divergence between p0 and q̂T with DPM-2 method is
bounded by:

KL (p0∥q̂T ) ≤ KL (pT ∥γd) + Tϵ20

+

N∑
k=1

∫ tk

tk−1

E∥∇ log ptk(xtk) +
∂∇ log ptk(xtk)

∂tk
(t− tk)

+∇2 log ptk(xtk)(xt − xk)−∇ log pt(xt)∥2dt

See the derivation of Proposition 4.2 in Appendix C.1.

When examining Proposition 4.1 alongside Proposition 4.2, a key difference between the EI and
DPM-2 methodologies becomes evident, particularly in the context of their discretization errors.
Specifically, the discretization error associated with the EI method is characterized as follows:∫ tk

tk−1

E ∥∇ log ptk (xtk)−∇ log pt (xt)∥2 dt (14)

whereas for the DPM-2 method, it is characterized as:∫ tk

tk−1

E∥∇ log ptk(xtk)+
∂∇ log ptk(xtk)

∂tk
·(t−tk)+∇2

xtk
log ptk(xtk)·(xt−xk)−∇ log pt(xt)∥2dt

(15)

To derive Theorem 3.1, it is necessary to establish the discretization error for DPM-2. To this end,
we introduce the following lemma to analyze the discretization error of DPM-2. Specifically, the
discretization error of DPM-2 is bounded by Lemma 4.3:
Lemma 4.3. under Assumptions 1, 3, 4, the discretization error of DPM-2 ((15)) is bounded by:∫ tk

tk−1

E∥∇ log ptk(xtk) +
∂∇ log ptk(xtk)

∂tk
· (t− tk)

+∇2
xtk

log ptk(xtk) · (xt − xk)−∇ log pt(xt)∥2dt

≲ C2d
3h3

k

(16)

The proof of the lemma is detailed in Appendix C.1. And the initial error term KL (pT ∥γd) is
bounded in Lemma B.2.

By substituting (16) into Proposition 4.2, we can derive the main theorem, Theorem 3.1. As for
Corollary 3.3, Comparing 13 and 11, RK-2 will induce an additional term E ∥xt − xtk∥

2, which will
lead to a higher discretization error. See the detailed proof in Appendix C.2.
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5 DISCUSSION OF VE-SDE DPMS

We will briefly discuss that our analysis can be extended to the VE-SDE DPMs. The SE-SDE forward
process is as follows,

dx =

√
∂σ2(t)

∂t
dw (17)

following (17), the conditional distribution of xt given x0 is pt(xt|x0) ∼ N (x0, σ
2(t)Id).

We hereafter adopt the settings in Chen et al. (2023c), where σ2(t) = 2t, the forward process can be
written as:

dx =
√
2dw

then the backward process can be written as:

dx←t = 2 · s(x←t , T − t)dt+
√
2dwt (18)

When comparing (18) with (5), the notable distinction arises in the drift term, specifically in the
x←t component. Consequently, the approach to deriving the discretization error for VE-SDE DPMs
closely aligns with that employed for VP-SDE DPMs. It is observed that the discretization error
for both SDE-DPM-2 and RK-2 under the VE-SDE framework mirrors the previously established
discretization error term found in (15). From this observation, we can draw the following corollary:
Corollary 5.1. Under Assumptions 1 2, and if Assumptions 3, 4 also hold for VE-SDE (17), the KL
divergence between p0 and q̂T with DPM-2 or RK-2 method is bounded by:

KL (p0∥q̂T ) ≤ KL (pT ∥γd) + Tϵ20 +
C2d

3T 3

N2

Remark. In the context of equation (18), the KL divergence KL(pT |γd) converges at a rate of only 1
T ,

as shown by Lee et al. (2022). This rate is significantly slower than the exponential e−T convergence
observed under equation (1). Consequently, it may dominate the discretization error term of 1/T 2

for both SDE-DPM-2 and RK-2. If we disregard the initial error by assuming that the backward
process starts directly at pT , then setting T = log( 1

ϵ20
) and N = Θ

(
C0.5

2 d1.5T 1.5

ϵ0

)
reduces the KL

divergence to Õ(ϵ20). A detailed proof can be found in Appendix D.

Corollary 5.1 reveals that when utilizing the SDE-DPM2 method, VE-SDE DPMs achieve a con-
vergence order comparable to that of VP-SDE DPMs. This result highlights the consistency and
effectiveness of the SDE-DPM-2 approach across various diffusion models frameworks.

6 EMPIRICAL RESULTS

In order to present the practical scaling of our main result theorems more clearly and intuitively, we
conduct experiments on Gaussian mixture and CIFAR-10 dataset. Fig. 1a empirically shows the KL
divergence of SDE-DPM-2 and other methods under different discretization numbers. SDE-DPM-2
demonstrates a faster decrease rate compared to other solvers. Fig. 1b shows that the empirical results
and the theoretical results in the logarithmic scale. It is observed that RK-2 and SDE-DPM show
comparable empirical performance, both are less efficient than SDE-DPM-2. Moreover, we identified
a gap between existing theoretical results and empirical observations, as the KL divergence for each
method decreases more rapidly than the theoretical bounds. This may suggest potential directions for
future research to further improve the convergence rate of these methods.

While Lu et al. (2022a) demonstrated that SDE-DPM-2 generates better samples than SDE-DPM
through the image generation examples, we directly compare the FID score of SDE-DPM-2 and SDE-
DPM to further validate the effectiveness of the second-order method. We implement both solvers to
sample images from a pretrained model based on DDPM on CIFAR-10. Table 1 provides additional
support, which further substantiates the improved experimental performance of SDE-DPM-2 over
SDE-DPM, offering a more detailed empirical validation of its effectiveness.

Considering computational cost, SDE-DPM-2 efficiently updates the derivative of the score function
by leveraging previously stored results. This optimization ensures that the number of score function

9
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(a) KL bound of discretization numbers (b) Theoretical bound vs empirical bound

Figure 1: Results on Gaussian mixture

Sampling Steps SDE-DPM-2 SDE-DPM
20 17.98 ± 0.023 33.24 ± 0.097
30 15.19 ± 0.117 25.20 ± 0.287
50 13.66 ± 0.110 19.75 ± 0.166
100 12.96 ± 0.089 15.48 ± 0.155

Table 1: FID score on CIFAR-10 with different sampling steps. Each result is averaged over 5 runs.

evaluations remains the same as in SDE-DPM. For example, in the CIFAR-10 experiment, sampling
20,000 images takes approximately 753 seconds with SDE-DPM and 765 seconds with SDE-DPM-2.
The additional computational cost of SDE-DPM-2 is negligible.

7 CONCLUSION AND DISCUSSION

We conduct a detailed examination of KL(p0, q̂T ), focusing on the SDE-DPM-2 method. Our analysis
reveals that the SDE-DPM-2 method significantly outperforms the EI method in terms of sampling
complexity. Specifically, the sampling complexity for the SDE-DPM-2 method is Õ( 1

ϵ0
), which is

more efficient compared to the EI method’s Õ( 1
ϵ20
). Additionally, we also analyze the RK-2 method,

which involves a direct discretization of the linear component concerning xt of the drift term in the
reverse SDE. We find that it necessitates a sampling complexity of Õ( 1

ϵ20
). This indicates a lower

efficiency than the SDE-DPM-2 method, primarily due to the increased discretization error associated
with the RK-2 method’s direct approach to discretizing the linear drift term. Our findings underscore
the superior efficiency of the SDE-DPM-2 method over both the EI and RK-2 methods in terms of
sampling complexity.

Furthermore, we delved into the convergence behavior of the SDE-DPM-2 method within the VE-
SDE framework, finding that its convergence characteristics are consistent with those observed in
the VP-SDE framework. This consistency highlights the SDE-DPM-2 method’s adaptability across
different diffusion models frameworks.

In this study, our focus was solely on the second-order discretization method, namely SDE-DPM-2.
Future studies could investigate the convergence properties of higher-order discretization methods,
such as SDE-DPM-3, to see how they compare in efficiency with the SDE-DPM-2 method. Our
discussion was limited to Assumptions 3 and 4, considering the context of Gaussian distributions
and Gaussian Mixture Models (GMMs) within the Variance Preserving (VP) SDE framework. We
leave the examination of Assumptions 3 and 4 in more general scenarios, including non-Gaussian
distributions for future research.
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A COMPARISON WITH OTHER SOLVERS

A.1 COMPARISON OF SDE SOLVER PROPERTIES

We first introduce two key convergence measures for the approximation performance of SDE solvers:
Strong Order and Weak Order.

Definition A.1 (Strong Order, Definition 1.1 from Wang (2016)). Suppose y is the discrete-time
approximation of the solution x(t) of the SDE, and h is the step size. The strong order of the method
is p if there exists a constant C such that

E [∥x(T )− y(T )∥] ≤ Chp

Definition A.2 (Weak Order, Definition 1.2 from Wang (2016)). Suppose y is the discrete-time
approximation of the solution x(t) of the SDE, and h is the step size. The weak order of the method is
p if there exists a constant C such that

∥E [x(T )]− E [y(T )]∥ ≤ Chp

To comprehensively analyze the properties of the SDE-DPM-2 solver, Table 2 compares weak order,
strong order, and KL divergence order across various SDE solvers. Notably, some solvers, such as
SRA3 from Rößler (2010), exhibit higher weak and strong orders than SDE-DPM-2. However, the
sampling complexity of these methods remains unexplored. Investigating the sampling complexity of
such methods could be an intriguing direction for future work.

Solvers Weak Order Strong Order KL Order
EM 1 0.5 1

SDE-DPM 1 0.5 1
SDE-DPM-2 2 1 2

Heun 2 1 1
SRA1/2 from Rößler (2010) 2 1.5 -
SRA3 from Rößler (2010) 3 1.5 -

Stochastic Ralston method from Foster et al. (2024) 2 1.5 -

Table 2: Comparison of solvers with their respective weak, strong, and KL orders.

As detailed in Proposition 4.2 of the manuscript, the KL divergence could be decomposed into the
sum of the initial error, the estimation error of the score function, and the discretization error of
the drift terms of the Reverse SDE and the SDE induced by SDE-solvers. The forward process’s
convergence property (Lemma B.2) and the assumption of the L2 accuracy of the score function
help control the initial error and the estimation error of the score function. The main focus is on the
discretization error of the drift term. The drift term of the reverse SDE is ∇ log ptk(xtk) + xt, and in
the manuscript, the drift terms of the SDE solvers are listed as follows:

solvers drift term

EM ∇ log ptk(xtk) + xtk
SDE-DPM ∇ log ptk(xtk) + xt

SDE-DPM-2 ∇ log ptk(xtk) +
∂∇ log ptk

(xtk
)

∂tk
(t− tk) + xt

RK-2 (Heun) ∇ log ptk(xtk) +
∂∇ log ptk

(xtk
)

∂tk
(t− tk) + xtk

Table 3: Comparison of solvers and their corresponding drift terms

Both SDE-DPM-Solver and DPM-Solver-2 utilize the linearity of the drift term of the reverse SDE,
which eliminates the error of xt − xtk .

In comparison to solvers with weak order 1, the solvers with weak order 2 introduce an additional
term ∂∇ log ptk

(xtk
)

∂tk
(t− tk), which reduces the discretization error of the score function.
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It can be inferred that SDE solvers with higher weak/strong order, such as SRA1 from Rößler (2010)
and the stochastic Ralston method from Foster et al. (2024), might introduce higher-order terms
of derivatives of the score function. These could potentially reduce the discretization error of the
score function. However, these methods might still retain the dominating term xt − xtk in the drift
term’s discretization error. Consequently, due to the current analytical approaches prevalent in the
diffusion models community, it appears that we are limited to achieving a KL divergence order
of 1 for higher-order SDE solvers, such as SRA1 from Rößler (2010). Exploring the potential of
higher-order SDE solvers with alternative analytical approaches could be an interesting direction for
future work.

It is important to consider the potential increase in computational cost associated with higher-order
solvers, particularly due to the increased number of score function evaluations, which is the most
computationally expensive part of the diffusion models sampling process. Higher-order solvers may
lead to an increase in the number of score function evaluations, thereby escalating the computational
cost. This could be a factor that might require further investigation to balance convergence rate and
computational efficiency. Lu et al. (2022b) designed the SDE-DPM-Solver++(2M), which efficiently
updates the derivative of the score function using previously stored results, thereby maintaining the
computational cost equivalent to that of a first-order method.

We also provide the comparison of sampling complexity of both SDE and ODE solvers in table 4.

Solvers Sampling Complexity to attain Õ(ϵ2) in KL divergence
ODE: DDIM/ODE-EI poly(d)/ϵ (Li et al., 2024)

ODE-DPM-2 poly(d)/
√
ϵ (Li et al., 2024)

SDE-EI poly(d)/ϵ2 (Chen et al., 2023a)
SDE-DPM-2 poly(d)/ϵ (Ours)

Table 4: Comparison of sampling complexity of solvers.

A.2 DISCUSSION OF KL DIVERGENCE AND TV DISTANCE BOUND

As we mention in Section 3.1, our Õ(ϵ2) result in KL divergence yields Õ(ϵ) in TV distance.
Therefore, our result for the sampling complexity of SDE-DPM-2 solver is Õ( 1ϵ ) to attain Õ(ϵ) TV
distance. Table 5 compares the KL divergence and TV distance of the solvers:

solvers sample complexity attaining sample complexity attaining
Õ(ϵ) in KL divergence Õ(ϵ) in TV distance

SDE-DPM-Solver poly(d)/ϵ (Yang & Wibisono, 2022) poly(d)/ϵ2 (Chen et al., 2023b)
SDE-DPM-Solver-2 poly(d)/

√
ϵ (Ours) poly(d)/ϵ (Ours)

second-order SDE solver - poly(d)/ϵ (Li et al., 2024)in Li et al. (2024)

Table 5: KL divergence and TV distance of the solvers.

B USEFUL LEMMAS

Unless specifically noted otherwise, the lemmas discussed are developed within the framework of
the VP-SDE. Lemma B.1 establishes bounds on the expected values of ∥xt − xtk∥2 and ∥xt∥2.
Furthermore, Lemma B.2 sets a limit on the Kullback-Leibler divergence between pT and γd. Finally,
Lemma B.3 demonstrates that the Runge-Kutta-2 update scheme is equivalent to a specific SDE.
Lemma B.1 (lemma 10 from Chen et al. (2023b)). Under Assumption 1, suppose that hk ≤ 1 for
1 ≤ k ≤ N , for tk−1 ≤ t ≤ tk, we have

E ∥xt − xtk∥
2 ≲ d (tk − t) + (M2 + d) (tk − t)

2
,

and
E∥xt∥2 ≤ d+M2

15
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Lemma B.2 (lemma 9 from Chen et al. (2023a) ). Under Assumption 1, the initial error is bounded
by:

KL(pT ||γd) ≤ (M2 + d)e−T

Lemma B.3. the update scheme of Runge-Kutta-2 at each time interval [tk, tk+1], is equalvent to the
following SDE:

dx←t =
(
x̂←tk + 2s(x̂←k , T − tk)

)
dt+

√
2dWt

+ 2

(
∂s(x̂←tk , T − tk)

∂tk
(t− tk) +

∂s(x̂←tk , T − t)

∂x̂←tk
(x←t − x̂←tk )

)
dt

(19)

proof of Lemma B.3. Given the following SDE:

dx←t = f(x←t , t)dt+
√
2dWt

we approximate f(x̃←k+1, tk + hk) as:

f(x̃←k+1, tk + hk) = f(x̂←k , tk) + hk
f

∂tk
+ hkf(x̂

←
k , tk)

∂f

∂x̂←tk
+O(h2)

, then substituting this into the corrector step (10), we have:

x̂←k+1 = x̂←k +
hk

2

(
2f(x̂←k , tk) + hk

f

∂tk
+ hkf(x̂

←
k , tk)

∂f

∂x̂←tk

)
+
√
2hkzk +O(h3

k)

simplifying, we have:

x̂←tk+hk
= x̂←tk + hkf(x

←
tk
, tk) +

h2
k

2
(
∂f

∂tk
+ f(x←tk , tk)

∂f

∂x̂←tk
) +

√
2hkzk +O(h3) (20)

With (20), and f(x←tk , tk) = x←tk + 2s(x←tk , T − tk), we complete the proof.

Lemma B.4. for ∀tk, t ∈ [0, T ], we have the following inequality:

Ept ∥xt∥4 ≤ M4 + d2 + d

Ept
∥xt − xk∥4 ≤ d2(t− tk)

2 + (M4 + d2 + d)(t− tk)
2

where M4 := Ep0 ∥x0∥4.

Proof. since we have xt = e−tx0 +
√
1− e−2tz, where z ∼ N (0, Id), we have

Ept
∥xt∥4 = Ep0

∥∥∥e−tx0 +
√

1− e−2tz
∥∥∥4

≤ 3Ep0

∥∥e−tx0

∥∥4 + 3Ep0

∥∥∥√1− e−2tz
∥∥∥4

≤ 3e−4tEp0
∥x0∥4 + 3(1− e−2t)2(d2 + d)

≤ M4 + d2 + d

and for the second inequality, we have

Ept
∥xt − xk∥4 = E

∥∥∥∥∥
∫ tk

t

xudu+

∫ t′k

t

√
2dwu

∥∥∥∥∥
4

≲ E
∥∥∥∥∫ tk

t

xudu

∥∥∥∥4 + E

∥∥∥∥∥
∫ t′k

t

√
2dwu

∥∥∥∥∥
4

≤ (tk − t)

(∫ tk

t

E ∥xu∥4 du
)
+ d2(t− tk)

2

≤ (tk − t)2(M4 + d2 + d) + d2(t− tk)
2
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C PROOFS FOR THE MAIN THEOREMS

C.1 PROOF OF THEOREM 3.1

We will first give the proof of Proposition 4.2, and then provide the proof of Lemma 4.3.

PROOF OF PROPOSITION 4.2

The proof of Proposition 4.2 is similar to that of Proposition 4.1 as presented by Chen et al. (2023a).
By replacing the EI update scheme (12) with the SDE-DPM-2 scheme (13), we render the proof of
Proposition 4.2 straightforward.

Proof. For 0 ≤ j ≤ N − 1, let t′k = T − tk, considering the following SDEs starting from xt′k
= a,

for time t ∈ (t′k, t
′
k+1]:

dxt = [xt + 2∇ log pt(xt)] dt+
√
2dWt, xt′k

= a (21)

and its corresponding discretization approximation with ∇ log pt(xt) = s(a, t′k)+s(1)(a, t′k)·(t−t′k):

dyt =
[
ytk + 2s(a, T − tk) + 2s(1)(a, T − tk) · (t− t′k)

]
dt+

√
2dWt, yt′k = a (22)

Let xt, yt admit densities pt, qt, respectively. With Proposition 8 in Chen et al. (2023a), we have

d

dt
KL
(
pt|t′k(· | a)∥q̂t|t′k(· | a)

)
=− 2Ept|t′

k
(y|a)

∥∥∥∥∥∇ log
pt|t′k(y | a)
qt|t′k(y | a)

∥∥∥∥∥
2

+ Ept|t′
k
(y|a)

[〈(
2∇ log pt(y)− 2s (a, tN−k)− 2s(1)(a, T − tk) · (t− t′k)

)
,∇ log

pt|t′k(y | a)
qt|t′k(y | a)

〉]

≤Ept|t′
k
(y|a)

∥∥∥s(a, T − tk) + s(1)(a, T − tk) · (t− t′k)−∇ log pt(y)
∥∥∥2 ,

where the last inequality follows from the Cauchy-Schwarz inequality. Integrating the above inequality
from t′k to t′k+1, we have

KL(pt′k+1
(·|a)∥q̂t′k+1

(·|a)) ≤
∫ t′k+1

t′k

Ept|t′
k
(y|a)

∥∥∥s(a, T − tk) + s(1)(a, T − tk) · (t− t′k)−∇ log pt(y)
∥∥∥2 dt.

Then for each k ∈ [0, 1, · · · , N − 1], using chain rule in of KL divergence, we have

KL(pt′k+1
||qt′k+1

) ≤ Ept′
k
(a) KL

(
p′t′k+1

∣∣∣t′k(· | a)∥q′t′k+1

∣∣∣ t′k(· | a))+KL
(
pt′k∥qt′k

)
≤ KL

(
pt′k∥qt′k

)
+

∫ t′k+1

t′k

Ept(y)

∥∥∥s(a, T − tk) + s(1)(a, T − tk) · (t− t′k)−∇ log pt(y)
∥∥∥2 dt.
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summation over k yields

KL (p0∥q̂T ) ≤ KL (pT ∥γd) +
N−1∑
k=0

∫ t′k+1

t′k

Ept(y)

∥∥∥s(a, T − tk) + s(1)(a, T − tk) · (t− t′k)−∇ log pt(y)
∥∥∥2 dt

= KL (pT ∥γd) +
N∑

k=1

Eptk

∥∥∥s (xtk , tk) + s(1) · (t− tk)−∇ log pt(xt)
∥∥∥2 dt

= KL (pT ∥γd) +
N∑

k=1

Eptk

∥∥∥∥s (xtk , tk) +
∂s(xtk , tk)

∂tk
(t− tk) + Jstk (xt − xtk)−∇ log pt(xt)

∥∥∥∥2 dt
≤ KL (pT ∥γd)

+

N∑
k=1

E
∥∥∥∥s (xtk , tk) +

∂s(xtk , tk)

∂tk
(t− tk) + Jstk (xt − xtk)

−∇ log ptk(xtk)−
∂∇ log ptk(xtk)

∂tk
(t− tk)−∇2 log ptk(xtk)(xt − xk)

∥∥∥∥2 dt
+

N∑
k=1

∫ tk

tk−1

E
∥∥∥∥∇ log ptk(xtk) +

∂∇ log ptk(xtk)

∂tk
(t− tk)

+∇2 log ptk(xtk)(xt − xk)−∇ log pt(xt)
∥∥2 dt

≤ KL (pT ∥γd) + Tϵ20

+

N∑
k=1

∫ tk

tk−1

E
∥∥∥∥∇ log ptk(xtk) +

∂∇ log ptk(xtk)

∂tk
(t− tk)

+∇2 log ptk(xtk)(xt − xk)−∇ log pt(xt)
∥∥2 dt

PROOF OF LEMMA 4.3

Proof. With Taylor’s Formula, the score function concering t for an given xtk can be approximated
as:

∇ log pt(xtk) = ∇ log ptk(xtk) +
∂∇ log ptk(xtk)

∂tk
(t− tk) +

∂2∇ log ps(xtk)

∂s2
(t− tk)

2 (23)

Similarly, the score function concering x for an given t can be approximated as:

∇ log pt(x) = ∇ log pt(xtk)+∇2
xtk

log pt(xtk)·(x−xtk)+Id⊗(x−xtk)∇3
xts

log pt(xts)·(x−xtk)

(24)
where s ∈ [tk, t].

We divide (15) into two parts:∫ tk

tk−1

E
∥∥∥∥∇ log ptk(xtk) +

∂∇ log ptk(xtk)

∂tk
· (t− tk)

+ ∇2
xtk

log ptk(xtk) · (xt − xk)−∇ log pt(xt)
∥∥∥2 dt

≤
∫ tk

tk−1

E
∥∥∥∥∇ log ptk(xtk) +

∂∇ log ptk(xtk)

∂tk
· (t− tk)−∇ log pt(xtk)

∥∥∥∥2 dt (25)

+

∫ tk

tk−1

E
∥∥∥∇ log pt(xtk) +∇2

xtk
log pt(xtk) · (xt − xk)−∇ log pt(xt)

∥∥∥2 dt (26)
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where (25) and (26) are due to the triangle inequality. For (25), we have∫ tk

tk−1

E
∥∥∥∥∇ log ptk(xtk) +

∂∇ log ptk(xtk)

∂tk
· (t− tk)−∇ log pt(xtk)

∥∥∥∥2 dt
≤
∫ tk

tk−1

E
∥∥∥∥∂2∇ log ps(xtk)

∂s2
(t− tk)

2

∥∥∥∥2 dt (27)

≤
∫ tk

tk−1

C1(t− tk)
4dt (28)

≲ C1h
5
k (29)

• (27) is derived from (23),

• (28) is derived from Lemma E.1.

For (26), we have∫ tk

tk−1

E
∥∥∥∇ log pt(xtk) +∇2

xtk
log pt(xtk) · (xt − xk)−∇ log pt(xt)

∥∥∥2 dt
≤
∫ tk

tk−1

E
∥∥∥Id ⊗ (xt − xtk)∇3

xts
log pt(xts) · (xt − xtk)

∥∥∥2 dt (30)

≤
∫ tk

tk−1

d · C2E ∥xt − xtk∥
4
dt (31)

≲ d · C2

(
(tk − t)2(M4 + d2 + d) + d2(t− tk)

2
)

(32)

≲ C2d
3h3

k (33)

• (30) is derived from (24),

• (31) is derived from Lemma E.2,

• (32) is based on Lemma B.4.

Putting (29) and (33) together, we complete the proof.

PROOF OF THEOREM 3.1

Proof. with Proposition 4.2, Lemma B.2 and Lemma 4.3, we have

KL(p0||q̂T ) ≤ KL (pT ∥γd) + Tϵ20

+

N∑
k=1

∫ tk

tk−1

E∥∇ log ptk(xtk) +
∂∇ log ptk(xtk)

∂tk
· (t− tk)

+∇2
xtk

log ptk(xtk) · (xt − xk)−∇ log pt(xt)∥2dt

≲ (M2 + d)e−T + Tϵ20 +

N∑
k=1

C2d
3h3

k

≲ (M2 + d)e−T + Tϵ20 +
C2d

3T 3

N2

(34)

C.2 PROOF OF COROLLARY 3.3

The proof of Corollary 3.3 is similar to that of Theorem 3.1. The primary adjustment involves
replacing the SDE-DPM-2 scheme, as described by equation (13), with the Runge-Kutta-2 scheme,
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detailed in equation (11). This substitution introduces an additional term, E ∥xt − xtk∥
2, into the

calculation of the discretization error. Consequently, the argument supporting the proof of Corollary
3.3 is straightforward and follows logically from this modification.

Proof. First, we have the decomposition of the KL(p0||q̂T ) as follows:

KL(p0||q̂T ) ≤ KL (pT ∥γd) + Tϵ20

+

N∑
k=1

∫ tk

tk−1

E∥xtk − xt +∇ log ptk(xtk) +
∂∇ log ptk(xtk)

∂tk
· (t− tk)

+∇2
xtk

log ptk(xtk) · (xt − xk)−∇ log pt(xt)∥2dt

(35)

The initial and score estimation errors are identical to those found in SDE-DPM-2, as described by
equation 34. Additionally, the term xt − xtk in the discretization error originates from the update
scheme outlined in equation (11) using the Runge-Kutta-2 method. We then proceed to establish
bounds for the discretization error inherent in the Runge-Kutta-2 approach as follows:∫ tk

tk−1

E∥xtk − xt +∇ log ptk(xtk) +
∂∇ log ptk(xtk)

∂tk
· (t− tk)

+∇2
xtk

log ptk(xtk) · (xt − xk)−∇ log pt(xt)∥2dt

≤
∫ tk

tk−1

2E∥xtk − xt∥2dt+
∫ tk

tk−1

2E∥∇ log ptk(xtk) +
∂∇ log ptk(xtk)

∂tk
· (t− tk)

+∇2
xtk

log ptk(xtk) · (xt − xk)−∇ log pt(xt)∥2dt

≲ 2(dh2
k + (M2 + d)h3

k) + 2C2d
3h3

k (36)
The last inequality is derived from Lemma B.1 and Lemma 4.3. Then putting (36) into (35), we
complete the proof.

D DISCUSSION OF VE-SDE

We will first give Lemma D.1 to bound the expected value of ∥xt − xtk∥2 and ∥xt∥2 under the
VE-SDE. Then we will provide the proof of Corollary 5.1.
Lemma D.1. given the forward process of VE-SDE:

dxt =
√
2dWt (37)

Under Assumption 1, suppose that hk ≤ 1 for 1 ≤ k ≤ N , for tk−1 ≤ t ≤ tk, we have

E ∥xt − xtk∥
2 ≲ d (tk − t)

and
E∥xt∥2 ≤ M2 + 2d · t

proof of Lemma D.1. With (37), we have

E∥xt − xtk∥2 = E∥
∫ t

tk

√
2dwu∥2

= 2E∥
∫ t

tk

dwu∥2

≤ 2d(tk − t)

≲ d(tk − t)

we have xt|x0 ∼ N (x0, 2tId), then the second moment of xt, E∥xt∥2, is bounded by as:

E∥xt∥2 = E∥x0 +
√
2dwt∥2

≤ E∥x0∥2 + 2tE∥wt∥2

≤ M2 + 2d · t
The last inequality is derived from Assumption 1. We complete the proof.
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PROOF OF COROLLARY 5.1

With Lemma D.1, we now proceed to prove Corollary 5.1.

When comparing the backward process of VE-SDE, as described in the equation (18) with the
backward process of VP-SDE, outlined in the equation referred to as (5), it is notable that the
backward process of VE-SDE lacks the x←t term in the drift component. By implementing the same
proof strategy as that used in the proof of Corollary 3.3, the discretization errors for both the RK-2
and the SDE-DPM-2 under the VE-SDE framework are found to be identical. Therefore, for the sake
of clarity and illustration, we choose to use SDE-DPM-2 as a representative example to explicate the
proof of the Corollary 5.1.

Proof. similar to Proposition 4.2, we have the decomposition of the KL(p0||q̂T ) as follows:

KL(p0||q̂T ) ≤ KL (pT ∥γd) + Tϵ20

+

N∑
k=1

∫ tk

tk−1

E∥∇ log ptk(xtk) +
∂∇ log ptk(xtk)

∂tk
· (t− tk)

+∇2
xtk

log ptk(xtk) · (xt − xk)−∇ log pt(xt)∥2dt

(38)

the only difference between the discretization error of VE-SDE and that of VP-SDE is the expected
value of ∥xt − xtk∥2 and ∥xt∥2. Similar to the proof of Lemma 4.3, we have:∫ tk

tk−1

E∥∇ log ptk(xtk) +
∂∇ log ptk(xtk)

∂tk
· (t− tk)

+∇2
xtk

log ptk(xtk) · (xt − xk)−∇ log pt(xt)∥2dt

≤
∫ tk

tk−1

(2C2
1 (2E ∥xtk − xt∥2 + 2E ∥xt∥2) + 2C2

2 ) · h4
k

+

∫ tk

tk−1

C2
3E ∥xt − xtk∥

4
dt

(39)

Then applying Lemma D.1 to (39), we get∫ tk

tk−1

E∥∇ log ptk(xtk) +
∂∇ log ptk(xtk)

∂tk
· (t− tk)

+∇2
xtk

log ptk(xtk) · (xt − xk)−∇ log pt(xt)∥2dt

≤ 4C2
1 (dhk +M2 + 2d · t)h5

k + 2C2
2h

5
k + C2

3d
2h3

k

≲ C2
3d

2h3
k

(40)

Taking the result of (40) into (38), we finish the proof.

E DISCUSSION OF ASSUMPTIONS UNDER GAUSSIAN MIXTURES

In this section, we will provide that Assumptions 3 and 4 hold for general Gaussian Mixture Model
(GMM). Let us consider the general GMM with K components, where the mean and covariance
matrix of the k-th component are denoted by µk,t and Σk,t respectively. We reformulate the
assumptions as follows:
Lemma E.1. The second-order derivative of the score function concerning t are bounded, i.e., for
all k = 1, 2, · · · , N and t ∈ [tk−1, tk], there exist constants C1 such that:

Ept

∥∥∥∥∂2∇ log pt(x)

∂t2

∥∥∥∥2 ≤ C1

where C is a constant independent of t and only depends on the moments of the initial distribution p0.
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Lemma E.2. The second-order derivative of the score function concerning x are bounded, i.e., for
all k = 1, 2, · · · , N and t ∈ [tk−1, tk], there exists a constant C2 such that:

EPt

∥∥∇3 log pt(x)
∥∥2 ≤ C2

We first evaluate that Assumptions E.1 and E.2 hold for Gaussian Distribution.

E.1 GAUSSIAN DISTRIBUTION

Assume the target distribution is Gaussian, i.e., p0(x) = N (x;µ0,Σ0), where Σ0 is a positive definite
matrix.Following the forward process,

dx = −xdt+
√
2dw (41)

the distribution of xt at time t is given by

xt ∼ N (x;µt,Σt) = N (x; e−tµ0, e
−2t(Σ0 − Id) + Id).

Then the score function of pt(x) is

∇ log pt(x) =
∇pt(x)

pt(x)

=
N (x|µt,Σt)Σ

−1
t (µt − x)

N (x|µt,Σt)

= Σ−1t (µt − x)

(42)

the second derivative of the score function w.r.t. t is:

∂2∇ log pt(x)

∂2t

=
∂

∂t

(
∂Σ−1t

∂t
(µt − x)− Σ−1t µt

)
=
∂2Σ−1t

∂2t
(µt − x)− 2

∂Σ−1t

∂t
µt +Σ−1t µt.

(43)

Lemma E.3. the first and second derivative of the inverse covariance matrix of Gaussian distribution
w.r.t. t are:

∂Σ−1t

∂t
= −Σ−1t

(
∂Σt

∂t

)
Σ−1t . (44)

∂2Σ−1t

∂2t
=2Σ−1t

(
∂Σt

∂t

)
Σ−1t

(
∂Σt

∂t

)
Σ−1t − Σ−1t

(
∂2Σt

∂2t

)
Σ−1t (45)

where
∂Σt

∂t
= −2e−2tΣ0 + 2e−2tId,

and
∂2Σt

∂2t
= 4e−2tΣ0 − 4e−2tId.

Proof.

∂Id
∂t

=
∂ΣtΣ

−1
t

∂t
=

∂Σt

∂t
Σ−1t +Σt

∂Σ−1t

∂t
= 0

then we have:

Σt
∂Σ−1t

∂t
= −∂Σt

∂t
Σ−1t
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left multiply Σ−1t on both sides, we get:

∂Σ−1t

∂t
= −Σ−1t

∂Σt

∂t
Σ−1t

with the same method, we can also proof Eq.(45).

Since we have Σt = e−2t(Σ0 − Id) + Id, we can directly get

∂Σt

∂t
= −2e−2tΣ0 + 2e−2tId,

and
∂2Σt

∂2t
= 4e−2tΣ0 − 4e−2tId.

Thus we complete the proof.

Denote the eigenvalues of Σ0 as λ1 ≤ λ2 ≤ . . . ≤ λd.

Then we have the largest and smallest eigenvalues of Σt as:

λmin(Σt) = e−2t(λmin − 1) + 1 = min(1, λ1)

λmax(Σt) = e−2t(λmax − 1) + 1 = max(1, λd).

Lemma E.4. Assume p0(x) = N (x;µ0,Σ0) is a Gaussian distribution with Σ0 being a general
positive definite matrix, with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λd. We have the following bounds for the
second derivative of the score function w.r.t. t:∥∥∥∥∂2∇ log pt(x)

∂2t

∥∥∥∥ ≤C1∥x∥+ C2 (46)

with

C1 =

(
8(λd + 1)2

min(1, λ3
min(Σ0))

+
4(λd + 1)

min(1, λ2
min(Σ0))

)
and

C2 =

(
8(λd + 1)2

min(1, λ3
min(Σ0))

+
4(λd + 1)

min(1, λ2
min(Σ0))

+
4(λd + 1)

min(1, λ2
min(Σ0))

+
1

min(1, λ1)

)
∥µ0∥

and the bound for the second derivative of the score function w.r.t. x:

E
∥∥∥∥∂2∇ log pt(x)

∂x2

∥∥∥∥ = 0

Proof. First, we need to bound the largest eigenvalues of Σ−1t . The largest eigenvalue of Σ−1t is
directly bounded by

λmax(Σ
−1
t ) =

1

λmin(Σt)
=

1

min(λ1, 1)

from Eq.(43), we get

∂2∇ log pt(x)

∂2t
=

(
2Σ−1t

(
∂Σt

∂t

)
Σ−1t

(
∂Σt

∂t

)
Σ−1t

− Σ−1t

(
∂2Σt

∂2t

)
Σ−1t

)
(µt − x)

+ 2Σ−1t

(
∂Σt

∂t

)
Σ−1t µt +Σ−1t µt
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We have the following bound for the second derivative of the score function w.r.t. t:

∥∂
2∇ log pt(x)

∂2t
∥

= ∥
(
2Σ−1t

(
∂Σt

∂t

)
Σ−1t

(
∂Σt

∂t

)
Σ−1t

− Σ−1t

(
∂2Σt

∂2t

)
Σ−1t

)
(µt − x)

+ 2Σ−1t

(
∂Σt

∂t

)
Σ−1t µt +Σ−1t µt ∥

≤︸︷︷︸
(i)

(
8(λd + 1)2

λ3
min(Σt)

+
4(λd + 1)

λ2
min(Σt)

)
∥µt − x∥

+

(
4(λd + 1)

λ2
min(Σt)

+
1

λmin(Σt)

)
∥µt∥

≤︸︷︷︸
(ii)

(
8(λd + 1)2

λ3
min(Σt)

+
4(λd + 1)

λ2
min(Σt)

)
∥x∥

+

(
8(λd + 1)2

λ3
min(Σt)

+
4(λd + 1)

λ2
min(Σt)

+
4(λd + 1)

λ2
min(Σt)

+
1

λmin(Σt)

)
∥µ0∥ (47)

where (i) is from the triangle inequality, and the scaling of Matrix Spectral Norm; and (ii) is due to
∥µt∥ = e−t∥µ0∥ ≤ ∥µ0∥. With λmin(Σt) = min(1, λ1).

As for the derivative of the score function w.r.t. x, according to Eq.(42), we directly get

∂∇ log px(x)

∂x
= Σ−1t

The second derivative of the score function w.r.t. x is 0. We complete the proof.

E.2 GAUSSIAN MIXTURE DISTRIBUTION

E.2.1 DERIVATIVES OF THE SCORE FUNCTION W.R.T. t

Let us first consider the most simple case:

p0(x) = π1N (x;µ1, Id) + π2N (x :, µ2, Id)

, where π1 + π2 = 1, and π1, π2 > 0.

Let p1 = N (x;µ,Id), and p2 = N (x;µ2, Id) and π1 = π2 = 1
2 , we have

∇ log pt(x) =
p1(µ1 − x) + p2(µ2 − x)

p1 + p2

the first derivative w.r.t. t is

∂∇ log pt(x)

∂t

=
p21µ
′
1 + p22µ

′
2 + p1p2(µ

′
1 + µ′2) (1 + (µ1 − x)(µ2 − x))

(p1 + p2)2

−
p1p2

(
(µ1 − x)2µ′1 + (µ2 − x)2µ′2

)
(p1 + p2)2
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with the fact that µ′1 = −µ1, and µ′2 = −µ2, we rearrange the terms and get

∂∇ log pt(x)

∂t

=
p1p2

(
(µ1 + µ2)((µ1 − µ2)

2 − 1)− (µ1 − µ2)
2x
)

(p1 + p2)2

− p21µ1 + p22µ2

(p1 + p2)2

=
p1p2

(
(µ1 − µ2)

2(µ1 + µ2 − x)
)

(p1 + p2)2
− p1µ1 + p2µ2

p1 + p2

with the fact that
∂pi
∂t

= piµi(µi − x)

it seems the second derivative ∂2∇ log pt(x)
∂2t depend on x and x2.

Let us first evaluate the case for two components Gaussian Mixture Distribution:

assume p1(x) = N (x;µi,Σi) = 1
(2π)n/2 detΣi

e−
1
2 (x−µ1)

⊤Σ−1
1 (x−µ1), i = 1, . . . ,K we have the

following facts:

∇ log p(x) =
π1p1Σ

−1(µ1 − x) + π2p2Σ
−1(µ2 − x)

π1p1 + π2p2

p′i =
∂pi
∂t

=pi

(
µ⊤i Σ

−1(µi − x)− 1

2
tr

(
(µi − x)(µi − x)⊤

∂Σ−1

∂t

)
−1

2
pi
tr
(
Σ−1 ∂Σ

∂t

)√
det(Σ)

)
p′i = pi

(
µ⊤i Σ

−1(µi − x) + (µi − x)⊤
(
Σ−1(Σ−1 − Id)

)
(µi − x)

−1

2
pi
tr
(
Σ−1 ∂Σ

∂t

)√
det(Σ)

)
= pi(ui,1 + ui,2 + ui,3)

(48)

p′′i =
∂2pi
∂2t

=
∂pi
∂t

(ui,1 + ui,2 + ui,3) + pi

(
∂ui,1

∂t
+

∂ui,2

∂t
+

∂ui,3

∂t

)
=
∂pi
∂t

(ui,1 + ui,2 ++ui,3)

+ pi

(
µ⊤i Σ

−1(x− 2µi) + tr

(
(µi − x)µ⊤i

∂Σ−1

∂t

))
+ pi tr

(
−
(
µi(µi − x)⊤ + (µi − x)µ⊤i

) ∂Σ−1
∂t

)
+ pi tr

(
(µi − x)(µi − x)⊤

∂2Σ−1

∂2t

)

+ pi

−1

2

tr
(

∂Σ−1
i

∂t
∂Σi

∂t +Σ−1 ∂2Σi

∂2t

)
√
det(Σi)

+
1

4

(
tr
(
Σ−1 ∂Σ

∂t

))2√
det(Σ)


Thus, for Σ−1i ̸= Id, we have

∂∇ log pt(x)

∂t
=
(p2p

′
1 − p1p

′
2)(S1 − S2)

(p1 + p2)2

+
p1S

′
1 + p2S

′
2

p1 + p2
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∂2∇ log pt(x)

∂2t
=

∂

∂t

(
(p2p

′
1 − p1p

′
2)(S1 − S2)

(p1 + p2)2

)
+

∂

∂t

(
p1S

′
1 + p2S

′
2

p1 + p2

)
=part1 + part2

in the same method, we get

part1 =
(p2p

′
1 − p1p

′
2)(S

′
1 − S′2)

(p1 + p2)2

+
(p2p

′′
1 − p1p

′′
2)(S1 − S2)

(p1 + p2)2

− 2
(p2p

′
1 − p1p

′
2)(S1 − S2)(p

′
1 + p′2)

(p1 + p2)3

part2 =
p1S

′′
1 + p2S

′′
2

p1 + p2
+

(p2p
′
1 − p1p

′
2)(S

′
1 − S′2)

(p1 + p2)2

• Σ ̸= Id, p′′ will involve ∥x∥3.
• Σ = Id, we have the following bound:

the first derivative of the score function w.r.t. t is

E
∥∥∥∥∂ log pt(x)

∂t

∥∥∥∥
≤ E

∥∥(µ⊤1 Σ−1(µ1 − x)− µ⊤2 Σ
−1(µ2 − x)

)
(Σ−1(µ1 − µ2))

∥∥
+ E ∥µ1 − µ2∥

= E
∥∥(µ⊤1 (µ1 − x)− µ⊤2 (µ2 − x)

)
(µ1 − µ2)

∥∥+ ∥µ1 − µ2∥

≤
(
∥µ1∥2 + ∥µ2∥2 + ∥µ1 − µ2∥E ∥x∥

)
∥µ1 − µ2∥+ ∥µ1 − µ2∥

which is the form of C1 ∥x∥+ C2.
the second derivative of the score function w.r.t. t is

E
∥∥∥∥∂2 log pt(x)

∂2t

∥∥∥∥
≤ E

∥∥∥∥p′1p1 − p′2
p2

∥∥∥∥E ∥S′1 − S′2∥+ E
∥∥∥∥p′′1p1 − p′′2

p2

∥∥∥∥ ∥S1 − S2∥

+ E
∥∥∥∥p′1p1 − p′2

p2

∥∥∥∥ ∥S1 − S2∥
∥∥∥∥p′1p1 +

p′2
p2

∥∥∥∥
+ E ∥S′′1 ∥+ E ∥S′′2 ∥

which is the form of C1 ∥x∥2 + C2 ∥x∥+ C3.

E.2.2 DERIVATIVES OF THE SCORE FUNCTION W.R.T. x

Now we come to the bound of the derivative of the score function w.r.t. x.

The first derivative of the score function w.r.t. x for p(x) = π1N (x;µ1, Id) + π2N (x;µ2, Id), is

∂∇ log pt(x)

∂x

=− 1 +
π1π2p1p2

(
(µ1 − x)2 + (µ2 − x)2 − 2(µ1 − x)(µ2 − x)

)
(π1p1 + π2p2)2

=− 1 +
π1π2p1p2(µ1 − µ2)

2

(π1p1 + π2p2)2
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The second derivative of the score function w.r.t. x is

∂2∇ log pt(x)

∂x2
=
∂ ∂∇ log pt(x)

∂x

∂x

=− (µ1 − µ2)
3p1p2(p1 − p2)

(p1 + p2)3

if Σ1,Σ2 are not identity matrices, the first derivative of the score function w.r.t. x is as follows:

∂∇ log pt(x)

∂x

=− p1Σ
−1
1 + p2Σ

−1
2

(p1 + p2)
+

p1p2(S1 − S2)(S1 − S2)
⊤

(p1 + p2)2

the second derivative of the score function w.r.t. x is (verified on 1-d case):

∂ ∂∇ log pt(x)
∂x

∂x

=− p1p2
(p1 + p2)2

( Vec
(
Σ−11 − Σ−12

)
⊗ (S1 − S2)

⊤

+ (Σ−11 − Σ−12 )⊗ (S1 − S2) + (S1 − S2)⊗ (Σ−11 − Σ−12 )
)

− p1p2(p1 − p2)

(p1 + p2)3
Vec

(
(S1 − S2)(S1 − S2)

⊤)⊗ (S1 − S2)
⊤

(49)

where Sk = Σ−1k (µk − x), k = 1, 2 and Vec (A) involves concatenating the columns of the matrix
A sequentially to form a single column vector.
Lemma E.5. Assume the target distribution is a 2-component Gaussian Mixture Distribution on R1,
and denote p0(x) = 1

2N (x;µ1, σ1) +
1
2N (x;µ2, σ2), let δσ be absolute difference of σ1 and σ2, i.e.,

δσ = |σ1 − σ2|, we have the following bounds for the second derivative of the score function w.r.t. x:

E
∥∥∥∥∂2∇ log pt(x)

∂2x

∥∥∥∥2 ≤ C3 (50)

where

C3 =2
e−8tδσ
σ8
1,tσ

8
2,t

M2,t +
e−16tδσ
σ12
1,tσ

12
2,t

M6,t +

(
σ2
1,tµ2,t + σ2

2,tµ
3
1,t

σ6
1,tσ

6
2,t

)6

+

p1p2(
1

σ2
1,t

− 1
σ2
2,t

)(
µ1,t

σ2
1,t

− µ2,t

σ2
2,t

)

(p1 + p2)2

2

M2,t and M6,t are the second and sixth moments of the target distribution at time t, and µk,t = e−tµk,
and σk,t =

√
e−2tσ2

k + 1− e−2t, k = 1, 2.

Proof. From Eq.(49), we have

∂2∇ log pt(x)

∂2x

=
p1p2(

1
σ2
1,t

− 1
σ2
2,t

)2x

(p1 + p2)2

−
p1p2(

1
σ2
1,t

− 1
σ2
2,t

)(
µ1,t

σ2
1,t

− µ2,t

σ2
2,t

)

(p1 + p2)2

+

(
(σ2

2,t − σ2
1,t)x+ σ2

1,tµ2,t − σ2
2,tµ1,t

)3
p1p2(p1 − p2)

σ6
1,tσ

6
2,t(p1 + p2)3
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Thus we get

Ept

∥∥∥∥∂2∇ log pt(x)

∂2x

∥∥∥∥2

≤E

∥∥∥∥∥∥
p1p2(

1
σ2
1,t

− 1
σ2
2,t

)2x

(p1 + p2)2

∥∥∥∥∥∥
2

︸ ︷︷ ︸
term I

+ E

p1p2(
1

σ2
1,t

− 1
σ2
2,t

)(
µ1,t

σ2
1,t

− µ2,t

σ2
2,t

)

(p1 + p2)2

2

︸ ︷︷ ︸
term II

+ E

∥∥∥∥∥
(
(σ2

2,t − σ2
1,t)x+ σ2

1,tµ2,t − σ2
2,tµ1,t

)3
p1p2(p1 − p2)

σ6
1,tσ

6
2,t(p1 + p2)3

∥∥∥∥∥
2

︸ ︷︷ ︸
term III

for term I, we have

term I ≤ (| 1

σ2
1,t

− 1

σ2
2,t

|)4E ∥x∥2

≤ 2
e−8tδσ
σ8
1,tσ

8
2,t

E ∥x∥2

=︸︷︷︸
(i)

2
e−8tδσ
σ8
1,tσ

8
2,t

M2,t

for term II, it does not depend on x, we directly get

term II = (
p1p2(

1
σ2
1,t

− 1
σ2
2,t

)(
µ1,t

σ2
1,t

− µ2,t

σ2
2,t

)

(p1 + p2)2
)2

for term III, we have

term III ≤ E

∥∥∥∥∥
(
(σ2

2,t − σ2
1,t)x+ σ2

1,tµ2,t − σ2
2,tµ1,t

)3
σ6
1,tσ

6
2,t

∥∥∥∥∥
2

≤

(
σ2
1,tµ2,t + σ2

2,tµ
3
1,t

σ6
1,tσ

6
2,t

)6

+
e−16tδσ
σ12
1,tσ

12
2,t

M6,t

Although we analyze the case where the number of components is 2, the results can be easily extended
to the case where the number of components is K, p0(x) =

∑K
k=1 πkN (x;µk,Σk).

Lemma E.6. Assume p0 =
∑K

k=1 πkN (x;µk,Σk) is a Gaussian Mixture Distribution, and denote
pt(x) =

∑K
k=1 πkN (x;µk,t,Σk,t) =

∑K
k=1 πkpk along the forward process (41), we have the

following results for the score of pt and its derivatives: the score function of pt is

∇ log pt(x) =

∑K
k=1 πkpk

(
Σ−1k,t(µk,t − x)

)
∑K

i=j πkpk

=

∑K
k=1 πkpkSk,t∑K

k πkpk
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the derivative of the score function w.r.t. x is

∂∇ log pt(x)

∂x
= −

∑K
k=1 πkpkΣ

−1
k,t∑K

k=1 πkpk

+

∑K
k=1

∑
j=k+1 πkπjpkpj(Sk,t − Sj,t)

⊗2

(
∑K

k=1 πkpk)2

the second derivative of the score function w.r.t. x is

∂2∇ log pt(x)

∂x2

=−

∑K
k=1

∑
j=k+1 πkπjpkpj Vec

(
Σ−1k,t − Σ−1j,t

)
⊗ (Sk,t − Sj,t)

⊤

(
∑K

k=1 πkpk)2

− 1

(
∑K

k=1 πkpk)2

 K∑
k=1

∑
j=k+1

πkπjpkpj ·(
(Σ−1k,t − Σ−1j,t )⊗ (Sk,t − Sj,t) + (Sk,t − Sj,t)⊗ (Σ−1k,t − Σ−1j,t )

))
+

∑K
k=1

∑
j=k+1 πkpkπjpj Vec

(
(Sk,t − Sj,t)(Sk,t − Sj,t)

⊤)⊗ C⊤

(
∑K

k=1 πkpk)3

where

C =(πjpj − πkpk)(Sk,t − Sj,t)

+
∑
h̸=k,j

πhph(Sk,t + Sj,t − 2Sh,t)

With Lemma E.6, the proof for K−component Gaussian Mixture Distribution is similar to the
2-component case.
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