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6. Table of Symbols

For notation simplicity, we adopted alphabetic symbols in
this paper to represent essential components in both our de-
signed GHN and NeuHMR. For better symbol-name cor-
respondences, here we justify implications of all symbols
used in the paper in Table 5 to help readers comprehend.

Symbols Implication
Common Symbols

V A video of a sequence of frames
T The number of frames in V
I An image from a V
J Human body joints
ω Angle rotations of → R24→3

Generalizable Human NeRF
c Radiance of x
ε↑ Density of x
w↑ Occupancy weight of x
C Radiance of a pixel
W Occupancy of a pixel
T Motion mapping function [48]

!GHN (·) The generalizable human NeRF model
ϑ Parameters for !GHN (·)
v SMPL mesh [28]
F Feature extractor backbone
F 2D feature maps F = F(I)
ϖ Camera projection

ϱ(·) Rendering network in GHN
n Number of inputs to GHN n = 2

NeuHMR
N Number of anchor frames N = T

10

N̂ Number of anchor frames after FPS
D Depth map of the rendered avatar
V Visibility of each joint
J Registered joint features in 3.3.1

!MLP (·) The motion field model
ς Parameters for !MLP (·)
R↑ Joint rotation residuals
T↑ Joint translation residuals
ε Standard deviation of the Gaussian

Table 5. Table of symbols used in this paper.

7. Limitations and Future Directions
Optimizing human poses without relying on 2D pseudo
ground truth keypoints presents a significant challenge.
While NeuHMR mainly follows data-driven optimizations
through neural rendering. The performance of NeuHMR is
correlated to the rendering quality of the GHN. Employ-
ing the most advanced model [31], NeuHMR may learn
better correspondences between 2D images and 3D human
appearance. However, render human in the presence of
changing appearances or incomplete observations, still re-
mains an unresolved problem. NeuHMR is also prone to
subpar human renderings due to appearance inconsistencies
across videos (e.g., Figure 6). Our method is designed to fo-
cus on per-frame optimization without considering valuable
temporal information, which may result in unstable estima-
tions across frames. Nevertheless, most existing stabilizers
[40, 54] can be integrated as a post-processing measure to
enhance our optimized poses.

Anchor frame #1 Anchor frame #2 Target frame Generalized 
rendering

Figure 6. GHNs are sensible to appearance changing. As shown in
the figure, the actor is moving across different scenes with varying
lighting conditions, which are different from the anchor frames.
This appearance change leads to unmatched rendering.

8. Comparison with More Baselines
In section 4, we present our primary comparison results
against two state-of-the-art video-based optimization meth-
ods [51, 54], which refine human meshes iteratively per
frame and across frames.

Here, we compare NeuHMR with additional baseline
methods that focus on per-frame optimization: (1) Optimiz-
ing human meshes by minimizing the distance between pro-
jected 3D mesh key points and pseudo ground-truth 2D key
points estimated from ViT-Pose [50]; (2) Optimizing human
meshes by minimizing the distance between the SMPL UV
and the UV-map estimated from DensePose [11]; (3) LGD
[43] — a method that deforms a canonical SMPL mesh
to align with pseudo ground-truth 2D key points; and (4)



Methods MPJPE↑ PVE↑
(1) 101.5 104.2
(2) 116.2 118.0

(3) LGD [43] 102.1 115.3
(4) KAMA [14] 99.8 114.4

Ours 95.4 109.6

Table 6. Comparison results on more baseline methods.

KAMA [14] — a method that refines inaccurate 3D pose
estimations by fitting both 2D and 3D pseudo ground-truth
key points.

We conducted the comparison experiments on the
EMDB dataset [18] and present the quantitative results in
Table 6. Our method, which applies optimization based on
low-level visual cues, demonstrates superior robustness and
effectiveness compared to all baselines that rely on pseudo
ground-truth data, which may introduce unexpected noise.
This finding is consistent with our discussion in section 1
and section 4.5.

9. More Extensive Studies
Unless otherwise noted, all extensive studies were per-
formed on the EMDB dataset.

9.1. Optimization of Appearance Model

In NeuHMR (Figure 2), a generalizable Human NeRF is
pre-trained, which provides an appearance model for fur-
ther optimization steps. Human NeRF models need full and
clear coverage of every angle of the human for training high
quality appearance model. Such coverage should not be as-
sumed in any in-the-wild videos. In fact, most videos in
EMDB have very sparse views — some body parts are fre-
quently visible while others are hardly shown in the video.
Optimizing the appearance model on such extremely un-
balanced data hurts its overall performance. As a result,
performance drops by 7.0 and 9.9 on MPJPE and MPVPE,
respectively, on EMDB with Hyrbik initialization.

9.2. Impact of Appearance Model

To optimize towards low-level visual constraints, a perfect
appearance model would be ideal. However, in our exper-
iments, we show that our method is robust even with an
average-quality appearance model and already achieves de-
cent results. To further validate our claim, we present ad-
ditional experiments here that by training the generalizable
Human NeRF for only 1

3 and 2
3 epochs before using it to

optimize poses. According to the results in Table 7, opti-
mization of NeuHMR is robust to different qualities of the
appearance model trained by Human NeRF.

Methods MPJPE↑ PVE↑
1
3 epochs 99.2 114.7
2
3 epochs 95.6 110.1

All epochs 95.4 109.6

Table 7. Ablation results on impact of quality of the appearance
model.

S MPJPE↑ PVE↑
S = 16 99.7 115.1
S = 32 99.0 114.4
S = 64 97.5 111.9
S = 256 95.6 109.2
S = 128 95.4 109.6

Table 8. Ablation results on number of joint candidates S.
9.3. Study on number of candidate samples S.

In the proposed joint matching constraint, we assume that
correct joints should be located near the predictions made
by the most advanced HMR estimators. S candidate po-
sitions are randomly sampled within a predefined distribu-
tion. More samples may lead to a higher probability of be-
ing at the ”correct” joint position and potentially better re-
sults. Here, we conduct extensive experiments by varying
the number of S to observe its impact on the final perfor-
mance of NeuHMR. As reported in Table 8, we observed
that NeuHMR is robust to different values of S, outper-
forming state-of-the-art counterparts for all choices of S.
NeuHMR reaches the best MPJPE when S = 128 and the
best PVE when S = 256.

9.4. Generalization ability of the Proposed GHN

NeuHMR relies on a human appearance model that can be
generalized from a pre-trained dataset to any given video
(section 3.2). Here we visualize the generalized human ap-
pearance models for all the actors in the EMDB dataset
in Figure 7. According to the rendered results, our GHN
shows its capability of generalizing human appearance with
acceptable artifacts. Note that our GHN model was trained
on ZJU-MoCap sequences only and the design of a monoc-
ular GHN is not the focus of this work. By training on
larger-scale datasets or adopting the state-of-the-art off-the
shelf GHN model, the rendering quality is anticipated to be
much better.

10. More Qualitative Results
To further compare the methods qualitatively, we provide
SMPL mesh visualizations on 2 outdoor videos and 2 indoor
videos by projecting them onto the 2D frames of the videos
for different actors. Please see the videos that are submitted
along with this supplementary document.
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Figure 7. Our generalized human appearance models on all actors in the EMDB dataset. The GHN model was only trained on ZJU-MoCap
sequences.

10.1. Comparison against GLAMR [54]
We mainly compare against GLAMR — another state-of-
the-art optimization-based HMR method. The video results
that have the suffix glamr.mp4 show comparisons be-
tween GLAMR and NeuHMR. We can easily observe better
pose corrections and translation alignments from the results
optimized by our methods.

10.2. Comparison against SLAHMR [51]
In section 4, we mentioned that SLAHMR failed on most of
long videos in EMDB, which makes it impossible to com-
pare fairly. Here we show visual comparisons in one of
the videos named as compare slahmr.mp4. We can see
that although SLAHMR seems to be effective at the first few
frames, it starts to collapse and fails to optimize the poses
for the rest of the video. On the other hand, NeuHMR is
able to provide stable refinements to the initially estimated
poses on those challenging long sequences.


