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A APPENDIX

A.1 THEORETICAL DISCUSSION OF EGCM MODEL

In this section, we conduct in-depth analysis for our multi-behavior contrastive learning paradigm.
Specifically, we discuss the benefits brought by the augmented behavior-aware self-supervised
learning tasks from two dimensions: i) Cross-behavior mutual information maximization; ii) User
interest representation discrimination. The detailed theoretical discussion is presented as follows:

A.1.1 CROSS-BEHAVIOR MUTUAL INFORMATION MAXIMIZATION

In our multi-behavior contrastive learning framework, we propose to capture the multi-behavior
commonality, by maximizing the mutual information between type-specific behavior embedding
(ebi ∈ Rd×1) and multi-behavior representation (ei ∈ Rd×1). In particular, we define our information
maximization function as I(zi, zp), where zi, zp represents the anchor and positive instance in the
same hypersphere, respectively. Without loss of generality, the embedding z is formally defined
as: z = e/ ∥ e ∥. In our multi-behavior contrasting scenario, the mutual information estimation is
performed between the fused representation Eu and behavior-specific embdding in {E1

u,E2
u, ...,Eb

u}.
Such contrastive-based self-supervision signals are integrated into the BPR loss function to enhance
the robustness of user representation paradigm.

Motivated by the research in Van den Oord et al. (2018); Hjelm et al. (2018); Bachman et al. (2019);
Tian et al. (2020a), our augmented contrastive loss can form the lower bound of the information
maximization function I(·) as:

I(zi, zp) ≥ log(k)− Lcl (11)
where k is the number of negative samples. The inequality suggests that smaller Lcl results in
larger I(·). In other words, minimizing Lcl is equivalent to maximizing the lower bound of mutual
information in I(·).
The above situation can be extended to the multi-behavior modeling process. In addition to the
equivalence between the contrastive objective and lower bound of information maximization, the
self-supervised Lcl is closely related to function I(·). It can provide a theoretical basis for our
multi-behavior recommender system as follows:

h∗
θ(zi, zp) ∝

p(zi, zp)
p(zi)p(zp)

∝ p(zi|zp)
p(zi)

(12)

where h∗ is the optimal point of hθ = exp(s(ebu, eu)/τ) that is proportional to the density ratio
between the joint distribution p(zi, zp) and the product of marginals p(zi)p(zp). This quantity is
the point-wise mutual information, and the extended multi-behavior form can be implemented by
optimizing the sum of a set of pair-wise objectives Tian et al. (2020a).

A.1.2 USER INTEREST REPRESENTATION DISCRIMINATION

Contrastive loss is a hardness-aware loss function Wang & Liu (2021); Wu et al. (2021). It can
push away the hard negative samples a lot from the anchor by giving them greater gradients under
contrastive training framework. This property is beneficial to our multi-behavior graph neural
architecture. One of the most important challenges in existing GNN architecture lies in how to
achieve a nice trade-off between high-order connectivity modeling and over-smoothing issue Li
et al. (2018). Stacking more graph-based information propagation layers is more like to involve
over-smoothing issue for encoding collaborative effects. Hence, enhance the discrimination ability
of user interest representation paradigm is necessary and challenging for recommender system. To
tackle the above challenge, our multi-behavior contrastive learning framework will assign larger
gradients to hard negative samples so as to enhance the discrimination of user representations.

Embedding Normalization. To map the embeddings with arbitrary value distributions into the same
hyperspace, we perform the embedding normalization as zi = ei/ ∥ ei ∥, where ei denote the output
prior to normalization. The gradient of the loss with respect to ei is related to that with respect to zi
via the chain rule presented as follows:

∂Li(zi)
∂ei

=
∂Li(zi)
∂zi

∂zi
∂ei

(13)

13



Under review as a conference paper at ICLR 2023

∂zi
∂ei

=
∂

∂ei

(
ei
∥ ei ∥

)
=
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∥ ei ∥
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(
∂(1/ ∥ ei ∥)

∂ei

)T

=
1
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(
I − eieTi
∥ ei ∥2

)
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1
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) (14)

Gradients of Negative Pairs. We use the loss function Li to calculate the partial derivative of the
anchor point to analyze the influence of different samples over the gradients:

∂Li

∂zi
=

∂

∂zi

(
−log exp (zi · zP /τ)∑

VA
exp (zi · zA/τ)

)
= −1

τ
· zP +

1

τ

∑
VA

zA · exp (zi · zA/τ)∑
VA

exp (zi · zA/τ)

=
1

τ

(∑
VN

zN · exp (zi · zN/τ)∑
VA

exp (zi · zA/τ)
+

zP ·
(
exp (zi · zP /τ)−

∑
VA

exp (zi · zA/τ)
)∑

VA
exp (zi · zA/τ)

) (15)

The two terms of the formula represent the gradient of positive samples and negative samples
respectively. Here, zN represents the instance from the set of negative samples and zP , zA are from
the positive sample set and the entire set. We then mainly focus on the negative part, which can be :

1

τ
·
∑

VN
zN · exp (zi · zN/τ)∑
VA

exp (zi · zA/τ)
=

1

τ · ∥ ei ∥
·
∑

VN
(zN − (zi · zN ) · zi) · exp (zi · zN/τ)∑

VA
exp (zi · zA/τ) (16)

Temperature and Gradient.The proportional term of the norm of the gradient of each term in the
sum formula is as follow:

∥zN − (zi · zN ) · zi ∥

∣∣∣∣∣ exp (zi · zN/τ)∑
VA

exp (zi · zA/τ)

∣∣∣∣∣
∝
√
1− (zi · zN )2 · exp (zi · zN/τ)

(17)

As zi and zN are both unit vectors, we introduce another variable x with the definition of x =
zi · zN ∈ [−1, 1] to abbreviate the final result of Eq. 17:

c(x) ∝
√

1− (x)2 · exp (x/τ) (18)

where c(x) is the relationship function of the gradient from the negative samples. We plot the function
in Equation 18 in Figure A.1.2. The independent variable is similarity x and the dependent variable is
proportional to the negative sample gradient. With the increase of x, the gradient of negative samples
will increase. Moreover, as the temperature coefficient τ (tau) decreases, the gradient of negative
samples given by contrastive learning will also increase significantly.

Figure 3: Gradient function c(x) in Eq. 18 when τ = 0.02, τ = 0.1 and τ = 0.5. x is the similarity
between positive and negative instances. This demonstrates that the gradient increases with decreasing
temperature coefficient τ .

In our recommended scenario, hard negative samples zN−hard represents the users other than the
anchor user. If zN−hard is very close to the anchor point zi, the value of x of the hard negative
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samples approaches 1, which results in more indistinguishable user representations. The contrastive
loss gives a larger gradient, and as relative negative samples, the pairs will be pushed farther away
from each other. In this way, EGCM enhance the user representations with multi-behavior diversity.
Therefore, the experiments in Sec. 4.4 shows that as the temperature τ decreases which, the more
distinguishable the user representation is, which brings the better effect. However, when the gradient
is over large, gradient explosion will be observed.

A.2 ALLEVIATING THE DATA SPARSITY ISSUE.

Our above theoretical discussion analyzes the benefits of our multi-behavior contrastive learning
paradigm in capturing the multi-behavior commonality and diversity. To be specific, the mutual
information maximization between positive samples is helpful to preserve the common characteristics
among different types of behaviors. Additionally, contrastive learning with negative samples can push
the hard negative samples away to get distinguishable user embedding, so as to encode the behavior
diversity of different users and alleviate the over-smoothing problem of our graph neural model.

Therefore, contrastive learning can improve the quality of representation and alleviate the problem
caused by the scarcity of data. To this end, we selected users whose interaction number on the IJCAI
dataset in {<5, <15, <35, <60} for training and testing. In order to eliminate the influence of training
data and simulate a real sparse data scenario, we carry out the evaluation on our model under the
setting of w/o-JBL, and compare it with two best-performed baselines (HyperRec and KHGT) from
the lines of sequence-based models and multi-behavior recommender systems, respectively.

Table 4: Performance with different number of interactions in terms of HR@5@20 & NDCG@5@20.
<5 <15 <35 <60

@5 @20 @5 @20 @5 @20 @5 @20

HyperRec HR 0.0934 0.3052 0.1309 0.3465 0.1616 0.4017 0.3182 0.5909
NDCG 0.0728 0.1108 0.0804 0.1401 0.0930 0.1655 0.2073 0.2872

KHGT HR 0.1136 0.3371 0.1763 0.4174 0.2198 0.4702 0.4091 0.6364
NDCG 0.0753 0.1367 0.1161 0.1715 0.1463 0.2101 0.2374 0.3171

w/o-cl HR 0.1326 0.3674 0.1856 0.4153 0.2271 0.4920 0.4091 0.7727
NDCG 0.0824 0.1482 0.1238 0.1883 0.1514 0.2256 0.2911 0.3895

w/o-JBL HR 0.1806 0.4268 0.2168 0.4579 0.2547 0.5560 0.3636 0.7727
NDCG 0.1174 0.1865 0.1460 0.2138 0.1786 0.26210 0.2010 0.3150

As shown in Table 4, it can be observed that under different sparsity degrees of user interaction
data, w/o-JBL with contrastive learning task will get better results than w/o-CL. Moreover, the
performance gap between our contrastive learning method and other baselines become larger with the
higher sparsity degrees of interaction data, which again justfies the effectiveness of our EGCM in
addressing the data scarcity for recommender system.

A.3 HYPERPARAMETER SENSITIVITY ANALYSIS

To explore the sensitivity of our proposed EGCM framework, we perform experiments to evaluate
the influence of key hyperparameters, including short-term time granularity, # of graph propagation
layers L, the regularization strength of contrastive learning. Figure A.3 presents the evaluation results.

Short-Term Time Granularity. To construct the short-term multi-behavior graphs, we tune the
parameter of the time granularity from different time ranges due to the time span of different
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experimental datasets. In particular, the time granularity of Tmall, IJCAI, E-commerce dataset is
selected from {1,3,5,9} days, {1,3,6,12} months, {1,2,4,12} weeks, respectively. From the evaluation
results in Figure A.3, we can observe that shorter time period (with the higher time granularity) will
leads to the overfitting problem in modeling the short-term behavior-aware user preference.

Representation Hidden Dimensionality. To investigate the effects of hidden dimensionality in
our representation performance, the embedding size is chosen from the range of {8, 16, 32, 64} for
parameter sensitivity evaluation. It can be seen that the results on Tmall and IJCAI datasets improves
significantly with the increase of dimension size, due to the stronger representation power of larger
embedding size.

# of Graph Propagation Layers. To capture the short-term multi-behavior user interests, we design
the behavior-aware message passing scheme to refine user/item embeddings with the injection of
multi-typed behavior context. We select the number of graph propagation layers from the range of {1,
2, 3, 4} to explore the effect of model depth. We can observe that deeper graph models may bring
benefits to model the high-order collaborative effects on Tmall and E-commerce datasets. By stacking
more embedding propagation layers may involve noise in representation refinement on E-commerce
dataset.

A.4 MODEL COMPLEXITY ANALYSIS

The main time consumption in our EGCM framework are from several key components: i) Short-term
multi-behavior graph encoder: the computational cost of our graph neural architecture for item
representation is O(|B| × Λ × L × |Ebt,MTM | × d) for performing message passing across graph
layers. Then for user, it is O(|B| × Λ × |Ebt,M | × d). |Ebt,MTM |, |E

b
t,M | respectively represents the

number of non-zero elements in the incidence matrix Γ(Mb
t

T
) and Γ(Mb

t

T
Mb

t), under the behavior
type of b during the time slot t. Here, L denotes the number of graph propagation layers of item.
The operations of concatenation and linear transformations for layer aggregation takes O(|B| × Λ×
L× |Vb

i | × d). ii) Dynamic cross-relational memory network: The most computational cost for the
cross-relational memory component comes from the self-attention operation with the time complexity
of O(Λ× |Vb| × |B|2 × d) quadratic with the behavior number |B|. iii) Multi-behavior contrastive
learning: The cost of InfoNCE-based mutual information calculation is O(d) and O(batch × d)
for the numerator and denominator (in Eq.11 ), respectively. Thus, our multi-behavior contrastive
learning paradigm takes O(Λ × |B| × |Eb| × d) per epoch. Given the smaller values of L, |B|
and Λ, our EGCM model can achieve comparable time complexity as compared to state-of-the-art
GNN-based recommendation techniques.

A.5 ASYMMETRIC NORMALIZATION

To alleviate the large value effects of embeddings during the recursive propagation Wang et al.
(2020b), we applied normalization into the message passing on user-item heterogeneous bipartite
graph, which is different from the symmetrical graph Laplacian of eigenvectors Kipf & Welling
(2016). Specifically, the two diagonal degree matrices Db

t ∈ RN×M and Bb
t ∈ RM×N based on the

interaction matrix Mb
t are generated as follows:

Db
t,(n,n) =

|Vb
t,i|∑

n=1

Mb
t,(n); Bb

t,(m,m) =

|Vb
t,u|∑

m=1

(Mb
t,(m))

T (19)

Db
t is used for messaging from item to user, while Bb

t is the opposite. And Db
t,(n,n), B

b
t,(m,m) denotes

the elements of n-th, m-th row of these diagonal matrices. The specific normalization operation will
be introduced later in the message pass in the form of Γ(·).
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A.6 NOTATION AND FRAMEWORK ALGORITHM

Notation Description
Vu,Vi,B, E , user set, item set, behavior set, interactive edge set
u ∈ Vu, i ∈ Vi, b ∈ B, t a specific user/item/behavior/time slot
Λ, L, d, h number of time slot/layer, hidden dim, head num
Mb

t ,Db
t ,Bb

t incidence matrix/diagonal matrix of u/i during t under b
Eb,0
t,i ,Eb,(l)

t,i ,Eb
t,i,Eb

t,u embeddings of GNNs layer 0/l , short term u/i during t under b
Êt, Ẽt short/long term high dimensional multi-behavior embeddings
Et,u,Eu short/long term aggregated embeddings
σ(·),Γ(·), γ(·) PReLU/Laplacian normalized/cross-relational memory function
α, β, ζ, τ short/long contrastive strength, combined weight, temperature

Algorithm 1: The Learning Process of EGCM Framework
Input: Behavior-aware interaction sequence Su = {(i1, b1), (i2, b2), ..., (i|Su|, b|Su|)}.

Short-term multi-behavior graph Gbt = (Vb
t , Ebt ,Mb

t).
Output: Aggregated long term user/item representations Ei, Eu. The probability of the most

likely next item i|Su|+1.
Initialize: Xavier initialized behavior-specific short term item embeddings Eb,0

t,i . Parameters:

i)Short-term multi-behavior graph encoder {Wb,(l)
t,i ,Wb

t,u,Wb
ζ ,Wb

t,cat, ζ}. ii)Dynamic
cross-relational memory network {WQ

t ,WK
t }. iii)Memory cross behavior self-attention and

behavior fusion attention {WQ
t ,WK

t }, {Wf}.
for epoch← 0, 1, ... do

Update learning rate scheduler.
for step← 0, 1, ... do
// Short-Term Multi-Behavior Graph:
for t← 0, 1, ..., |Λ| do

Get short term embeddings: Eb
t,u,Eb

t,i←− Gbt , Eq.1, Eq.2, Eq.2
Prepare behavior aggregated embeddings for Lshort

cl : Et,u ←− Eq.6
end
// Dynamic Cross-Relational Memory:
for t← 1, ..., |Λ| do

Modeling time-evolving cross-type dependencies: Ẽ
b

t,u, Ẽ
b

t,i←− Eq.4, Eq.5

Aggregate Ẽ
b

t,u, Ẽ
b

t,i convey across t and b for Llong
cl , LBPR : Eu,Ei←− Eq.6

end
// Cross-Behavior Contrastive Task & Recommendation Task:
Get final multi-task objective L ←− Lb

cl ← Eq.7 + LBPR ← Eq.8
Gradient descent back propagation.

end
end
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A.7 DIMENSIONAL TRANSFORMATION OF THE MEMORY MODULE

Table 5: Dimensional Details of Eq. 4 for Self-attention of Multi-behavior Relation
Dimensional Transformation of the Memory Module

Parameters Dimensionality
Input (|B| × N × d)
Q,K,V Transformation (|B| × N × d) · (d × d) −→ (|B| × N × d)
Q Extension (|B| × N × d) −→ (|B| × 1 × N × d)
K Extension (|B| × N × d) −→ (1 × |B| × N × d)
V Extension (|B| × N × d) −→ (1 × |B| × N × d)
Self-attention (|B| × 1 × N × d) · (1 × |B| × N × d) −→ (|B| × |B| × N × d)
Reduce Sum (|B| × |B| × N × d) −→ (|B| × |B| × N × 1)
Softmax (|B| × |B|(softmax) × N × 1)
Attention Matrix*V (|B| × |B| × N × d) · (1 × |B| × N × d) −→ (|B| × |B| × N × d)
Output (|B| × |B|(reduce sum+squeeze) × N × d) −→ (|B| × N × d)

* ’N’ denotes the dimension of user or item.

A.8 BEHAVIORAL ABLATION EXPERIMENTS

H@10 N@10 H@10 N@10 H@10 N@10 H@10 N@10

Tmall w/o-View w/o-Favorite w/o-Cart Purchase
0.4625 0.2641 0.5469 0.3265 0.5338 0.3186 0.3696 0.2295

IJCAI_15 w/o-View w/o-Favorite w/o-Cart Purchase
0.3546 0.1973 0.4171 0.2341 0.4634 0.2693 0.3046 0.1773

E-commerce w/o-Review w/o-Browse Purchase -
0.7323 0.4456 0.7109 0.4412 0.6768 0.4108 - -

Tmall IJCAI E-commerce
HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

EHCF 0.011751 0.005270 0.024629 0.012748 0.135780 0.065764
CML 0.013989 0.006279 0.029593 0.014911 0.139536 0.067804

EGCM 0.015703 0.006932 0.035461 0.018640 0.151299 0.075318
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A.9 ADDITIONAL DETAILS OF EXPERIMENTS

A.9.1 THE EMBEDDING T-SNE VISUALIZATION EXPERIMENT

Figure 4: t-SNE Visualization

Visualizing behavior-specific embeddings in Fig. 4 aims to show the rationality of bringing the
contrastive task into the multi-behavior recommendation, so as to maximize mutual information
across behaviors. Technically, we utilize t-SNE initialized with PCA Dunteman (1989) to reduced the
behavior-specific embedding to two dimensions. And we conduct the experiment on datasets(Tmall,
IJCAI) contain four types of behaviors(page view/click, favorite, cart, purchase), and the behaviors
in Fig. 4 were represented by different colors. We can observe that the behaviors of EGCM are closer
in the reduced dimension space because EGCM integrates cross behavior information by maximizing
mutual information. In other words, for user u, embedding of other behaviors with the same index
become closer, while users with different indexes u ̸= u′ are pulled away.

A.9.2 THE SELF-ATTENTION VISUALIZATION EXPERIMENT
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We visualized the learned self-attention weight matrices Φ in Eq. 4 for multi-relational mem-
ory networks in Sec. 3.2 which retains the customized long-term behavior preference of
the user sequence between timeslots on Tmall dataset. The dataset has four behaviors
PageV iew, Favorite, Cart, Purchase, therefore, the self-attention learns the relationship between
these four behaviors. We sampled some users and then visualized their memory self-attention matri-
ces. Then, we select six cases from the sampled data and combine the real statistics of multi-behavior
data to analyze the significance of the learned weight matrices. First of all, it can be observed in left
part that most matrices have the darkest diagonal color, which is the characteristic of self attention
and also shows that the behavior itself has the greatest correlation with itself. Right part shows
that the weight of each behavior is related to the number of interactions of the behavior itself. For
example, for user 22186([3]) the super node with 111 interactions in page view behavior, the number
of interactions in other behaviors are {1, 5, 4} which are too small relatively. Thus it is difficult
to learn differentiated values in the other three rows relative to the first row of the weight matrix.
Analogously, some behaviors without interaction cannot learn effective weights. On the contrary, if a
type behavior has more interactions, the values of its corresponding row in the weight matrix will be
larger.
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A.9.3 THE CONTRASTIVE HYPER-PARAMETER EXPERIMENT

A.1.1 has been proved that the similarity between the difficult negative sample and the anchor point is
proportional to its gradient. Moreover, the strength of this relationship can be adjusted by temperature
coefficient. And the influence of temperature coefficient on gradient is shown in diagram. This
suggests that contrastive learning will push different users away in the representation space, and the
more similar representations will be pushed away. In this way, the representation inditinguishable
problem may be alleviated which due to the oversmoothing of GNNs or the sparse data. In figure,
we can see that, firstly, in the multi-task framework, the contrastive loss will have effect within a
reasonable range. Then, the smaller the temperature sparsity, that is, the greater the negative sample
gradient, the better the result will be. However, too small a temperature coefficient results in gradient
explosion, shown in purple part.

A.9.4 IMPLEMENTATION DETAILS

Our experiments are conducted on a machine equipped with a 24 GB Nvidia RTX 3090 GPU. We
use pytorch Paszke et al. (2019) to implement our model and initialize model parameters with Xavier
initializer Glorot & Bengio (2010), and adopt AdamW Loshchilov & Hutter (2017) optimizer. Instead
of using fixed learning rate, we adopt the Cyclical Learning Rate (CyclicLR) strategy Smith (2017)
with the boundary [1e−4, 1e−3], [1e−3, 2e−3], [1e−3, 5e−3] for the three datasets. The weights of L2

regularization are {1.45e−2, 1.4e−2, 1e−2 } for the datasets, respectively. To ensure fair comparison,
the embedding dimensionality of our model and all baselines are set as 16. The depth of our graph
neural layers in our multi-relational encoder is selected from 1 to 4. The value of the temperature
coefficient in contrastive learning is selected from {0.02, 0.035, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7}. The
impact of model hyperparameters is explored in Section A.3. The performance of most baselines
is based on their source code, and part of them comes from the public sequence recommendation
framework ReChorus Wang et al. (2020a).

A.9.5 BASELINES

To explore how EGCM boosts recommendation performance. We compare our EGCM with the
following state-of-the-art baselines from different research lines:

Firstly, we choose one classical model, three traditional sequential models and four self-attendation-
based models.

• HGN Ma et al. (2019): This method uses hierarchical gating network with an item-item product
module which can decide the item features passes to downstream layers to capture users’ long-term
and short-term preferences.

• Caser Tang & Wang (2018): Caser conducted top-N sequential recommendation with CNN. The
method models recent interactions as an "image" among time and latent dimensions.

• Chorus Wang et al. (2020a): It models time-aware item knowledge by mining the relationship
information changes over time, and injects the information into the representation of item.

• SASRec Kang & McAuley (2018): It uses self-attention instead of any recurrent or convolutional
operations to capture long-term data semantics. And in each time step, it adaptively looks for which
item is related to the user’s history.

• TiSASRec Li et al. (2020): It is a time interval aware self-attention method for next-item rec-
ommendation based on SASRec Kang & McAuley (2018) which uses the absolute position and
relative time interval of items in the sequence for modeling.
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• AttRec Zhang et al. (2018): It models users’ short-term and long-term preferences at the same
time, in which short-term preferences are learned through self attention, and uses metric learning
methodology which has produced good results.

• BERT4Rec Sun et al. (2019): This model based on deep bidirectional self-attention architecture
Devlin et al. (2018). In the process of training the recommendation model, the method introduce
Close task to mask and predict the left and right items, and this equivalent to data augmentation for
sequential data.

Then, GNN-based models illustrate the effectiveness of Graph Neural Network in sequential recom-
mendation.

• HyperRec Wang et al. (2020b): This is a next-item recommendation framework which considers
the dynamic semantics in the real situation. It uses hypergraph to model the correlation of short-term
items, while residual gating and the fusion layer can model user preferences more accurately.

• MA-GNN Ma et al. (2020):The model uses graph neural network to model the short-term informa-
tion of item, and uses memory mechanism to model the long-term dependent information. It also
uses bilinear function to learn the correlation between item features.

We further compare our EGCM with behavior state-of-the-art multi-behavior recommendation model
to explore the effectiveness of multiple behaviors. These models and our models take the purchase
behavior as target and other behaviors as auxiliary information.

• NMTR Gao et al. (2019): The method combines NCF He et al. (2017) and multi-task learning for
recommendation. And it modeling the cascading relationship among different behaviors exploit
multiple types of users.

• DIPN Guo et al. (2019): This is a attention-based multi-task framework for recommendation which
uses the data of browse behavior buy behavior to predict users’ purchase intention.

• MBGCN Jin et al. (2020b): It is a graph-based recommendation method that reconstructs the
relationship matrix of multiple behaviors into a unified matrix to fully model the preference intensity
of different behaviors through the changes and semantics of different behaviors.

• MBGMN Xia et al. (2021b): This work uses meta network to learn the heterogeneity and diversity
of interaction. It directly correlates a variety of user behaviors and integrates them into the
collaborative filtering framework.

21


	Appendix
	 Theoretical Discussion of EGCM Model
	 Cross-Behavior Mutual Information Maximization
	 User Interest Representation Discrimination

	 Alleviating the Data Sparsity Issue.
	Hyperparameter Sensitivity Analysis
	 Model Complexity Analysis
	Asymmetric normalization
	 Notation and Framework Algorithm
	 Dimensional Transformation of the Memory Module
	 Behavioral Ablation Experiments
	Additional Details of Experiments
	The Embedding t-SNE Visualization Experiment
	The Self-attention Visualization Experiment
	The Contrastive Hyper-parameter Experiment 
	Implementation Details 
	Baselines



