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Multiple Kernel Clustering with Shifted Laplacian on Grassmann
Manifold
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ABSTRACT
Multiple kernel clustering (MKC) has garnered considerable atten-

tion, as their efficacy in handling nonlinear data in high-dimensional

space. However, current MKC methods have three primary issues:

(1) Solely focuse on clustering information while neglecting energy

information and potential noise interference within the kernel; (2)

The inherent manifold structure in the high-dimensional space is

complex, and they lack the insufficient exploration of topologi-

cal structure; (3) Most encounter cubic computational complexity,

posing a formidable resource consumption challenge. To tackle

the above issues, we propose a novel MKC method with shifted

Laplacian on Grassmann manifold (sLGm). Firstly, sLGm constructs

𝑟 -rank shifted Laplacian and subsequently reconstructs it, retain-

ing the clustering-related and energy-related information while

reducing the influence of noise. Additionally, sLGm introduces

a Grassmann manifold for partition fusion, which can preserve

topological information in the high-dimensional space. Notably, an

optimal consensus partition can be concurrently learnt from above

two procedures, thereby yielding the clustering assignments, and

the computational complexity of the whole procedure drops to the

quadratic. Conclusively, a comprehensive suite of experiments is

executed to roundly prove the effectiveness of sLGm.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
Multiple kernel clustering, Shifted Laplacian, Grassmann manifold

1 INTRODUCTION
Clustering stands as a cornerstone in the realm of unsupervised

learning, playing a vital role across various applications [25]. Its pri-

mary objective lies in partitioning similar data into the same cluster,

thereby minimizing intra-cluster sample differences while maxi-

mizing inter-cluster differences [8]. In practical scenarios, the data

landscape involves diverse sources, resulting in various clustering

methods including graph learning based [23], kernel learning based

[15] and subspace learning based [29] etc. Among them, the ker-

nel learning based methods have obtained considerable attention

owing to their efficacy in handing nonlinear data, which improves

its separability by mapping nonlinear data into the reproducing
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Hilbert kernel space [13, 26]. Therein, multiple kernel-based clus-

tering (MKC) can circumvent the choice of kernel function and

the adjustment of kernel parameters, seamlessly integrating the

information from each kernel. Typically, it involves constructing

the kernel pool comprising base kernels, capturing the underlying

structure from these kernels.

Broadly speaking, MKC methods can be roughly classified into

two groups: spectral graph-based (SG) and kernel 𝑘-means-based

(KKM). For the SG methods, the primary focus lies in learning a

superb affinity graph within the kernel space, and thus use spectral

clustering (SC) for obtaining the clustering assignments [4, 17]. For

the KKM methods, they are customary to integrate base kernel into

an optimal one, subsequently employing kernel 𝑘-means on this

optimal kernel for acquiring the clustering assignments [10, 22].

Nevertheless, when confronted with a kernel matrix of 𝑛 × 𝑛, these

two groups typically encounter cubic computational complexity,

presenting a formidable challenge, especially in the context of large-

scale datasets.

To deal with medium and large tasks, the MKC methods based

on late fusion paradigm have been proposed. Such methods fuse

the information of individual partitions to obtain the underlying

shared kernel partition, significantly reducing the computational

burden [19, 28]. For example, [21] employs orthogonal transforma-

tions to maximize the weighted base partition of individual kernels

with a consensus partition. Building upon this foundation, [27]

and [20] introduce local and global kernel maximization alignment

respectively to delve into the structure embedded within the kernel.

[7] proposes to combine the min-max scheme with the late fusion

paradigm to simplify the objective function. Nevertheless, when

obtaining the base kernel partition, these methods fail to simulta-

neously preserve energy and clustering information. In addition,

in high-dimensional space, where the intrinsic manifold structure

has the characteristics of bending and folding, they overlook the

distance and topological information, resulting in suboptimal clus-

tering performance.

To tackle the aforementioned problems, we propose a novel MKC

method with shifted Laplacian on Grassmannmanifold (sLGm). The

illustration of sLGm is plotted in Fig. 1, we firstly construct the

shifted Laplacian of individual kernel to simultaneously preserve

energy-related and clustering-related information. Critically, to

mitigate noise interference, the 𝑟 -rank base kernel partition matrix

of 𝑟 -rank shifted Laplacian is constructed to derive the consen-

sus underlying structure, and subsequently perform 𝑟 -rank shifted

Laplacian reconstruction to obtain the consensus partition. Consid-

ering the topological information preservation between individual

𝑟 -rank partition and consensus partition, the Grassmann manifold

is introduced to facilitate the acquisition of the optimal consensus

partition. Finally, the consensus partition matrix is put into 𝑘-means

for the assignments of clustering labels. Overall, the contributions

of sLGm are as follows:

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Illustration of sLGm. Firstly, each K𝑝 can be treated as an affinity graph, and construct the 𝑟 -rank shifted Laplacian
L𝑝𝑟 and correspondingly yields the 𝑟 -rank base kernel partition U𝑝 , and then feed it into the two sub-frameworks. These two
sub-frameworks are integrated to jointly learn an optimal F, thereby acquiring the clustering assignments.

• sLGm fuses the individual 𝑟 -rank base kernel partitions of the

𝑟 -rank shifted Laplacian to perform reconstruction, which

can minimize the noise interference while maximally pre-

serving the clustering information and the reconstructed

energy information.

• sLGm proposes to utilize the squared projection distance

on the Grassmann manifold, to fuse the individual 𝑟 -rank

base kernel partitions and the consensus kernel partition,

such that topological and heterogeneous information can be

acquired simultaneously.

• sLGm integrates 𝑟 -rank shifted Laplacian reconstruction

and partition fusion on Grassmann manifold into a unified

framework, where these two sub-frameworks jointly learn

the optimal consensus partition for clustering, reducing the

memory and computational complexity to O(𝑛) and O(𝑛2)
with the 𝑛 × 𝑛 kernel matrix.

2 RELATEDWORK
2.1 Spectral Clustering with Laplacian

Reconstruction
The concept of spectral clustering (SC) originates from graph the-

ory, which can effectively capture the intrinsic structure of data via

spectral decomposition or eigenvectors of Laplacian matrix. Specif-

ically, for a data matrix X ∈ R𝑛×𝑑 with 𝑛 samples and 𝑑 features,

its 𝑘-nearest affinity matrix is expressed by Z ∈ R𝑛×𝑛 , whose edge
between sample-pair can be defined by Gassuian kernel:

𝑧𝑖 𝑗 =

 exp

(
− ∥x𝑖−x𝑗 ∥2

2

2𝜎2

)
if x𝑖 and x𝑗 are linked

0 otherwise

(1)

where 𝜎 is the width parameter, which controls how fast the sim-

ilarity decays. And the diagonal elements of the degree matrix D
of Z ∈ R𝑛×𝑛 are defined as D𝑖𝑖 =

∑𝑛
𝑗=1 Z𝑖 𝑗 , thereby the Laplacian

matrix L = D − Z can be obtained. Furthermore, the corresponding

normalized Laplacian matrix LM [16] can be defined as

LM = D− 1

2 (D − Z)D− 1

2 = I𝑛 − D− 1

2 ZD− 1

2 (2)

Denoting H ∈ R𝑛×𝑐 as the indicator matrix with 𝑐 clusters, the

objective function of the normalized SC [14] is expressed as

min

H
Tr(H⊤LMH) s.t. H⊤H = I𝑐 (3)

The optimal H is constructed by taking the 𝑐 smallest eigenvectors

of LM, and the clustering assignments are obtained by discretiz-

ing H with 𝑘-means. To capture complementary information from

multiple views, [9, 24] perform Laplacian reconstruction to lin-

early integrate the base Laplacians, such that obtaining the optimal

Laplacian. Such conceptual framework is formalized as follows:

min

H⊤H=I𝑐 ,𝜷
Tr(H⊤L𝜷MH)

s.t. L𝜷M =

𝑣∑︁
𝑖=1

𝛽𝑖
𝑑

L𝑖M, ∥𝜷 ∥1 = 1, 𝜷 ≥ 0

(4)

where L𝑖M is the 𝑖-th view Laplacian matrix, 𝛽𝑖 is the weight of the

𝑖-th Laplacian.

2.2 Late Fusion Clustering
In MKC tasks, direct execution of complex operations on the 𝑛 × 𝑛

kernel matrix will lead to substantial computational and storage

overhead, making it impractical for real-world applications when 𝑛

is sufficiently large. Therefore, maintaining a light computational

burden is an urgent demand for MKC tasks. Accordingly, Wang et al.
[21] propose the late fusion clustering paradigm, which can reduce

the computational and memory burden straightway. Specifically,

they initially employ kernel 𝑘-means to obtain clustering partitions

H𝑖
for base kernels, and then use the rotation matrix W𝑖

to linearly

combine H𝑖
to maximize alignment with the consensus cluster

partition H★
. Concurrently, a regularization term is incorporated

to ensure that consensus partition and the average partition E are
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constrained within a comparable range. This late fusion clustering

paradigm can be expressed as follows:

max

H★⊤H★=I,{W𝑖 }𝑚
𝑖=1

,𝜼
Tr(H★⊤C) + 𝜁Tr(H★⊤E),

s.t. W𝑖⊤W𝑖 = I,𝜼⊤𝜼 = 1, 𝜂𝑖 ≥ 0,C =

𝑚∑︁
𝑖=1

𝜂𝑖H𝑖W𝑖
(5)

where 𝜁 is a trade-off parameter.

2.3 Shifted Laplacian
As specified in Eq. (3), the clustering information is encoded within

the smallest eigenvectors of the Laplacian matrix LM. However, as

illustrated in [3], when conducting Laplacian reconstruction such

as Eq. (4), their best low-rank approximation is reconstructed by

partially largest eigenpairs. In other words, the eigenvectors associ-

ated with the largest Laplacian eigenvalues are sufficient for achiev-

ing Laplacian reconstruction, indicating that the energy-related

information is predominantly retained in these largest eigenvec-

tors. This uncovers a crucial contradiction between reconstructing

the Laplacian matrix and preserving clustering information. To

solve this contradiction, [6] shift the normalized Laplacian, which

is specifically expressed as follows:

L = 2I − LM = I + D−1/2SD−1/2
(6)

where L is denoted as shifted Laplacian (sL for short), which has

several vital properties [6]: its smallest eigenvalues correspond to

the largest eigenvalues of LM, and both of which fall in the interval

[0, 2]; it is a symmetric positive semidefinite matrix like LM.

Leveraging these properties, it can be inferred that the opti-

mal solution to Eq. (3) can be derived from 𝑐 largest eigenvectors

of L. Therefore, L can be effectively employed to facilitate Lapla-

cian reconstruction, effectually encode clustering information and

energy-related information.

3 PROPOSED METHOD
3.1 𝑟 -rank Shifted Laplacian Reconstruction
In MKC, considering the kernel {K1,K2, . . . ,K𝑚} with 𝑐 distinct

clusters from𝑚 kernels. Notably, each K𝑝 ∈ R𝑛×𝑛 is treated as an

affinity matrix, allowing for the exploration of abundant graph-

based information embedded in the kernel matrix [18]. Peculiarly,

we introduce𝑘 as a regulator for the number of neighbors associated

with each vertex, aiming at eliminating redundant edges. Therefore,

the sL L𝑝 of kernel K𝑝
can be computed using Eq. (6).

As illustrated in Sec. 2.3, it is clear that not all eigenvalues make

significant contributions to the process of Laplacian reconstruction.

Simultaneously, the spectral graph theorem reveals that the key

clustering information is predominantly contained within the 𝑟

rank largest eigenvalues of L𝑝 . In contrast, the remaining smallest

eigenvalues carry a disproportionately higher amount of noise-

related information rather than relevant clustering data, resulting

in a low signal-to-noise ratio (SNR). To tackle this issue, L𝑝 is eigen-

decomposed into 𝑟 -rank part and cluster-irrelevant part:

L𝑝 = U𝚲(U)⊤

=
[

U𝑟 U𝑟
] [ 𝚲

𝑟 0
0 𝚲

𝑟

] [
U𝑟 U𝑟

]⊤
= U𝑟

𝚲
𝑟 (U𝑟 )⊤ + U𝑟

𝚲
𝑟 · (U𝑟 )⊤ = L𝑝𝑟 + L𝑝𝑟

(7)

where 𝚲 is the diagonal matrix formed by the eigenvalues of L𝑝 ,
i.e., Λ = diag(𝜆1, · · · , 𝜆𝑛), and 0 ≤ 𝜆𝑛 ≤ . . . ≤ 𝜆1 ≤ 2, U is formed

by the corresponding eigenvectors. 𝚲
𝑟
and U𝑟

are matrices formed

by 𝑟 largest eigenvalues and eigenvectors corresponding to 𝚲 and

U, and 𝚲
𝑟
and U𝑟

are matrices formed by their remaining (𝑛 − 𝑟 )
elements. In particular, 𝑟 is set to 𝑐 ≤ 𝑟 ≪ 𝑛 to facilitate obtaining

additional cluster-related information at the initial stage.

Consequently, for each K𝑝
, the corresponding 𝑟 -rank shifted

Laplacian L𝑝𝑟 (𝑟 -sL for short) can be obtained. Mathematically, the

corresponding 𝑟 -rank base kernel partition U𝑝
can be acquired by

performing eigen-decomposition on L𝑝𝑟 , which can be explicitly

expressed as

max

U𝑝
Tr(U𝑝⊤L𝑝𝑟 U𝑝 ) s.t. U𝑝⊤U𝑝 = I𝑐 ,U𝑝 ∈ R𝑛×𝑐 (8)

The optimal solution U𝑝
can be acquired by extracting the 𝑐 largest

eigenvectors of L𝑝𝑟 . Inspired by [21], we introduce the rotation

matrix W𝑝 ∈ R𝑐×𝑐 , which can align the base kernel partition U𝑝

with the consensus underlying clustering structure U. Usually, it
can be described as follows:

U =

𝑚∑︁
𝑝=1

𝛼𝑝U𝑝W𝑝
s.t. 𝛼𝑝 ≥ 0,𝜶⊤𝜶 = 1,W𝑝⊤W𝑝 = I𝑐 (9)

Since Eq. (8) can be approximately transformed into min ∥L𝑝𝑟 −
U𝑝U𝑝⊤∥2

F
, it is further deduced that L𝑝𝑟 = U𝑝U𝑝⊤

. Therefore,

the combined L𝑟 can be reconstructed using UU⊤
, and the sub-

framework of 𝑟 -rank shifted Laplacian reconstruction can be ob-

tained via the SC framework regarding L𝑟 :

max

F⊤F=I𝑐 ,(W𝑝 )⊤W𝑝=I𝑐
Tr(F⊤UU⊤F)

s.t. U =

𝑚∑︁
𝑝=1

𝛼𝑝U𝑝W𝑝 ,𝛼𝑝 ≥ 0,𝜶⊤𝜶 = 1

(10)

where F represents the consensus partition and its optimal solution

can be derived through the eigen-decomposition of L𝑟 (i.e., UU⊤
).

Noteworthily, the above process can be viewed as a late fusion

paradigm, but the difference is that we use 𝑟 -sL to form U𝑝
and

U. As 𝑟 -sL is capable of preserving both clustering and energy

information while maintaining a high SNR, reconstructing it yields

a notably strong performance.

3.2 Partition Fusion on Grassmann Manifold
The relationship between the base kernel partition U𝑝

and the con-

sensus kernel partition F can be established using Eq. (10). However,

relying solely on Eq. (10) is insufficient, as it fails to account for the

information of distance and heterogeneity in the high-dimensional

space. Specifically, the intrinsic manifold structure in such space

exhibits complexity with featuring folding and distortion charac-

teristics, while Eq. (10) cannot adequately preserve the topological



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

structure and the spatial information across multiple kernels. To

solve these issues, we introduce the squared projection distance on

the Grassmann manifold, as specified in Definition 1 [2].

Definition 1. A Grassmann manifold S(𝑥, 𝑛) is defined as a
𝑥-dimensional subspace in an 𝑛-dimensional space ℜ𝑛 , where each
specific subspace can be mapped to a specific point on the mani-
fold S. Mathematically, each point on a manifold S(𝑥, 𝑛) is broad-
ened to be represented by an orthogonal matrix G, whose columns
can be extended to a 𝑥-dimensional subspace of the corresponding
𝑛-dimensional space, denoted 𝑠𝑝𝑎𝑛(G). Suppose two subspaces as
𝑠𝑝𝑎𝑛(G1), 𝑠𝑝𝑎𝑛(G2), and their angle is defined as 𝜃𝑖 , which can rep-
resent the geometric proximity of these subspaces, then the squared
projection distance between G1 and G2 can be defined as

dist
2

proj
(G1,G2) =

𝑥∑︁
𝑖=1

sin
2 𝜃𝑖 = 𝑥 −

𝑥∑︁
𝑖=1

cos
2 𝜃𝑖

= 𝑥 − Tr(G1G⊤
1

G2G⊤
2
)

(11)

As stated in Definition 1, it is evident that the projection distance

on Grassmann manifold can effectively reduce the subspace dis-

crepancy. Accordingly, we bring F and U𝑝
into Eq. (11) to minimize

the kernel dissimilarity and facilitate information fusion:

dist
2

proj
(F,U𝑝 ) = 𝑐 − Tr(FF⊤U𝑝U𝑝⊤) (12)

To integrate kernel information from U𝑝
and F, while assigning an

appropriate weight 𝛾𝑝 to different U𝑝
for acquiring the optimal F,

Eq. (12) can be rewritten as

max

𝜸 ,F

𝑚∑︁
𝑝=1

𝛾𝑝Tr(FF⊤U𝑝U𝑝⊤)

s.t. 𝛾𝑝 ≥ 0,𝜸⊤𝜸 = 1, F⊤F = I𝑐

(13)

In this way, Eq. (13) not only considers the heterogeneous infor-

mation originating frommultiple kernels, but also retains the spatial

information and topological information, thereby accomplishing

partition fusion. Consequently, by combining two sub-frameworks

of 𝑟 -rank shifted Laplacian reconstruction and partition fusion on

Grassmann manifold, we derive the following objective function:

max

𝜸 ,𝜶 ,F,W𝑝
Tr(F⊤UU⊤F) + 𝜆

𝑚∑︁
𝑝=1

𝛾𝑝Tr(FF⊤U𝑝U𝑝⊤)

s.t. U =

𝑚∑︁
𝑝=1

𝛼𝑝U𝑝W𝑝 , 𝛾𝑝 , 𝛼𝑝 ≥ 0,𝜸⊤𝜸 = 1,

𝜶⊤𝜶 = 1, F⊤F = I𝑐 , (W𝑝 )⊤W𝑝 = I𝑐

(14)

where 𝜆 is a balance parameter. As depicted in Eq. (14), it primarily

encompasses two sub-frameworks, these two complementary sub-

frameworks mutually reinforce one another and collaboratively

learn an optimal consensus partition F, consequently yielding im-

proved clustering performance.

4 OPTIMIZATION
4.1 The Optimal Solution
⊲ For 𝜸 and 𝜶 : When fixing other variables, Eq. (14) w.r.t. 𝜸 is

expressed as

max

𝜸

𝑚∑︁
𝑝=1

𝛾𝑝X𝑝 s.t. 𝛾𝑝 ≥ 0,𝜸⊤𝜸 = 1 (15)

where X𝑝 = 𝜆Tr(FF⊤U𝑝U𝑝⊤), and the solution of 𝜸 is

𝛾𝑝 =
X𝑝√︃∑𝑚
𝑝=1 X2

𝑝

(16)

Likewise, when fixing other variables, the solution of 𝜶 is

𝛼𝑝 =
J𝑝√︃∑𝑚
𝑝=1 J2𝑝

(17)

where J𝑝 = Tr(F⊤U𝑝W𝑝 ).
⊲ For F: Fix 𝜸 , 𝜶 and W𝑝

, Eq. (14) w.r.t. F can be expressed as

max

F⊤F=I𝑐
Tr(F⊤

𝑚∑︁
𝑝=1

𝛼𝑝U𝑝W𝑝 (
𝑚∑︁
𝑝=1

𝛼𝑝U𝑝W𝑝 )⊤F)

+𝜆
𝑚∑︁
𝑝=1

𝛾𝑝Tr(FF⊤U𝑝U𝑝⊤)
(18)

which can be further rewritten as

max

F⊤F=I𝑐
Tr(F⊤HF)

(19)

where H =
∑𝑚
𝑝=1 𝛼𝑝U𝑝W𝑝 (∑𝑚

𝑝=1 𝛼𝑝U𝑝W𝑝 )⊤ + 𝜆
∑𝑚
𝑝=1 𝛾𝑝U𝑝U𝑝⊤

,

and its optimal solution can be acquired via the largest 𝑐 eigenvec-

tors of H.

⊲ For W𝑝 : When fixing other variables, the optimization w.r.t.
W𝑝

can be expressed via

max

(W𝑝 )⊤W𝑝=I𝑐
Tr(F⊤ (

𝑚∑︁
𝑝=1

𝛼𝑝U𝑝W𝑝 ) (
𝑚∑︁
𝑝=1

𝛼𝑝U𝑝W𝑝 )⊤F) (20)

which can be simplified as

max

(W𝑝 )⊤W𝑝=I𝑐

𝑚∑︁
𝑝=1

Tr((W𝑝 )⊤R𝑝W𝑝 ) (21)

where R𝑝 = 𝛼2𝑝 (U𝑝 )⊤FF⊤U𝑝
, and the optimization w.r.t. W𝑝

can

be obtained via the largest 𝑐 eigenvectors of R𝑝
.

4.2 Complexity Analysis and Convergence
Analysis

As laid out in Algorithm 1, the complexity of sLGm consists of four

subproblems, i.e.,𝜸 , 𝜶 , F and W𝑝 . For updating𝜸 and 𝜶 , their com-

putational complexity are O(4𝑐2𝑚𝑛); For updating F and W𝑝 , their

computational complexity are O(𝑐𝑛2) and O(𝑐3𝑚), respectively.
Since 𝑐,𝑚 ≪ 𝑛, its computational complexity is approximated as

O(𝑛2). Accordingly, its memory complexity is O(𝑛).
In Algorithm 1, four subproblems need to be solved, all of which

have optimal solutions, and it is evident that the objective of Algo-

rithm 1 increases monotonically while optimizing one variable, and

the remaining variables remain unchanged. In addition, according
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Algorithm 1 The algorithm of sLGm

Input:
Base kernel pools {K1,K2, . . . ,K𝑚}; parameters 𝜆; clusters num-

ber 𝑐; rank number 𝑟 ; neighbors number 𝑘 ;

Output:
The final clustering assignments;

for 𝑝 = 1 to𝑚 do
Construct 𝑘-nearest graph of K𝑝

;

Calculate its degree matrix D𝑝
and the normalized sL L𝑝

using Eq. (6);

Eigen-decompose L𝑝 using Eq. (7) to acquire the 𝑟 -sL L𝑝𝑟 ;
Calculate the base kernel partition U𝑝

using Eq. (8);

end for
while not converge do
Update 𝜸 and 𝜶 using Eq. (16) and Eq. (17), respectively;

Update consensus partition F using Eq. (19);

Update rotation matrix W𝑝
using Eq. (21);

end while
Discretize F by 𝑘-means to acquire 𝑐 clusters.

to Lemma 1 [27], the upper bound of the proposed algorithm can

be obtained.

Lemma 1. For ∀𝑖, 𝑗, Tr[(𝛽𝑖A𝑖B𝑖 )⊤ (𝛽 𝑗A𝑗B𝑗 )] ≤ Tr[(A𝑖B𝑖 )⊤
(A𝑗B𝑗 )] ≤ 1

2
(Tr[(A𝑖B𝑖 )⊤ (A𝑖B𝑖 )]+Tr[(A𝑗B𝑗 )⊤ (A𝑗B𝑗 )]), ifA⊤

𝑖
A𝑖 =

I𝑐 and B⊤
𝑖

B𝑖 = I𝑐 , we have Tr[(A𝑖B𝑖 )⊤ (A𝑖B𝑖 )] = Tr(B⊤
𝑖

A⊤
𝑖

A𝑖B𝑖 ) =
Tr(I𝑐 ) = 𝑐 = Tr[

(
A𝑗B𝑗

)⊤ (A𝑗B𝑗 )].

According to Lemma 1, the first term of Eq. (14) can be trans-

formed into Tr(F⊤UU⊤F) ≤ 1

2
(Tr(FF⊤FF⊤) + Tr(UU⊤UU⊤)) =

1

2
(Tr(I𝑐 ) + Tr[∑𝑚

𝑝,𝑞,𝑖, 𝑗=1

(
𝛼𝑝U𝑝W𝑝

)⊤ (𝛼𝑞U𝑞W𝑞) (𝛼𝑖U𝑖W𝑖 )⊤

(𝛼 𝑗U𝑗W𝑗 )]) ≤ 𝑐
2
(𝑚4 + 1). In the same way, the second term is less

than or equal to
𝜆𝑐
2
(𝑚2 + 1). As a whole, the proposed algorithm is

less than or equal to
𝑐
2
((𝑚4 + 1) + 𝜆(𝑚4 + 1)). Therefore, Algorithm

1 has an upper bound and monotonically increasing, which can

obtain a local maximum solution with convergence.

5 EXPERIMENT
5.1 Datasets
The experiments use eight datasets, encompassing various types.

Specifically, they are BBCSports, Flower17, Handwritten, Caltech101,

UCIdigits, Mfeat, YALE and SensVehicle. Preemptively, all kernel

matrices associated with these datasets have been pre-computed

and are available for download from a publicly accessible website.

A brief description of all datasets is listed in Table. 1.

5.2 Experimental Settings
sLGm is compared with ten state-of-the-art methods, to summarize,

they can be roughly divided into the following categories: SKC

method, including B-SKKM; MVC methods, including LMVSC [5]

and OMSC [1]; and MKC methods, including AMKKM, MR-MKKM

[12], LFA [21], ONMSC-LF [9], SMKKM [11], LF-PGR [19] and LF-

LKA [27]. For above all methods, their codes are downloaded from

the provided website, and all parameters are adjusted according

to their description. In particular, for all MVC methods, the kernel

Table 1: Brief description of several datasets.

Dataset Sample Kenel Cluster Type
BBCSports 544 2 5 Text

Flower17 1360 3 17 Image

Handwritten 2000 6 10 Graph

Caltech101 1530 25 101 Image

UCIdigits 2000 3 10 Graph

Mfeat 2000 12 10 Graph

YALE 165 5 15 Image

SensVehicle 1500 2 3 Graph

Table 2: Complexity of the comparisons.

Method Computational complexity
B-SKKM O(𝑚𝑛2 )
AMKKM O(𝑚𝑛3 )

MR-MKKM O(𝑚𝑛2 )
LFA O(𝑛𝑐3 +𝑚𝑐3 )

LMVSC O(𝑛𝑚3𝑣 +𝑚3𝑣3 + 𝑛𝑐2 + 2𝑚𝑣𝑛 +𝑚𝑛𝑙 )
OMSC O(𝑛 (𝑙 + 𝑐 ) )

ONMSC-LF O(𝑣𝑛3 + 𝑛𝑐2 )
SMKKM O(𝑛3 +𝑚𝑛2 )
LF-PGR O(𝑚𝑐𝑛2 + 𝑐𝑛2 )
LF-LKA O(𝑛𝑐2 +𝑚𝑐3 )
sLGm O(4𝑚𝑛𝑐2 + 𝑐3𝑚 + 𝑐𝑛2 )

matrix is treated as ordinary data for the algorithm input. In ad-

dition, to mitigate the impact of the randomness in 𝑘-means, we

record the average results from 30 independent trials. To ensure

a fair comparison, all methods are tested on the same device, and

ACC, NMI and Purity are utilized as evaluation metrics.

In addition, for our method, there are three parameters to be

adjusted, i.e., 𝜆, 𝑟 and 𝑘 . For 𝜆, set its value to [1e-5, 1e-4, ..., 100]

to adjust dynamically. For 𝑟 and 𝑘 , for convenience, two additional

parameters 𝑙𝑟𝑎𝑛𝑘 and 𝑘𝑏𝑢𝑟 are introduced to adjust them, where

𝑙𝑟𝑎𝑛𝑘 = 𝑟 ÷ 𝑐 and 𝑘𝑏𝑢𝑟 = 𝑘 × 𝑐 ÷ 𝑛, with ranges of [1, 2, ..., 5] and

[0.05, 0.1, ..., 1.5], respectively.

5.3 Experimental Results and Analysis
Table 3 presents the results of all methods across the eight datasets,

from which the following observations can be acquired:

• Generally, sLGm consistently outperforms other methods

on majority of datasets, notably surpassing the latest HF-

MKKM, LF-PGR and LF-LKA. These findings suggest that

sLGm is a viable method for dealing with nonlinear data.

• Compared with SKC, MKC methods are expected to yield

superior clustering results. However, AMKKM, MR-MKKM

and HF-MKKM methods exhibit suboptimal performance

compared to B-SKKM on certain datasets. This indicates that

the MKC methods need to choose a judicious and compre-

hensive learning strategy to exploit the information from

base kernels. Notably, sLGm choose a preferable strategy

to adeptly integrate information from base kernels, thereby

attaining commendable clustering results.
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Table 3: Experimental results (%), where the optimal and suboptimal results are marked in red and blue, respectively.

Datasets Metrics B-SKKM AMKKM MR-MKKM LFA LMVSC OMSC ONMSC-LF SMKKM LF-PGR LF-LKA Ours

BBCSports

ACC 76.65 66.18 66.18 77.45 66.84 74.93 83.82 67.40 80.51 86.58 96.32
NMI 59.38 53.92 53.93 55.63 50.21 66.05 73.92 48.90 64.78 71.63 88.15
Purity 79.59 77.20 77.21 76.27 85.47 91.73 84.01 73.07 81.25 86.58 96.32

Flower17

ACC 42.05 51.02 58.82 61.16 62.28 63.88 65.74 59.38 62.42 63.97 67.75
NMI 45.14 50.18 57.05 60.79 61.71 61.24 65.16 57.56 63.48 58.36 65.80
Purity 44.63 51.98 60.51 62.32 62.72 63.30 66.99 60.55 62.42 64.19 69.54

Handwritten

ACC 86.41 78.03 93.07 94.15 93.76 94.05 96.85 93.26 92.25 97.65 97.70
NMI 76.92 71.69 87.22 89.08 92.12 93.01 93.02 87.06 85.86 94.56 94.70
Purity 86.55 77.50 93.10 94.05 93.20 94.05 96.85 93.26 92.25 97.65 97.70

Caltech101

ACC 33.13 35.55 37.91 38.39 24.18 39.78 40.92 36.20 35.21 38.56 40.53
NMI 59.06 59.90 61.47 61.65 52.65 51.24 63.96 60.68 60.02 62.42 63.60
Purity 35.09 37.12 39.74 40.28 28.31 41.22 43.01 38.20 38.37 41.24 43.05

UCIdigits

ACC 75.40 88.75 90.40 88.60 75.45 92.80 97.15 90.47 82.90 95.50 97.55
NMI 68.38 80.59 83.22 88.25 69.87 87.74 93.75 83.57 78.47 90.21 94.22
Purity 76.10 88.75 90.40 88.90 78.25 93.40 97.15 90.47 82.90 95.50 97.55

Mfeat

ACC 86.00 95.20 92.55 95.15 96.70 95.85 97.00 94.05 93.75 97.85 98.25
NMI 75.78 89.83 85.89 95.00 92.74 93.51 93.44 88.31 87.98 94.94 95.83
Purity 86.00 95.20 92.55 95.05 96.70 95.85 97.00 94.05 93.75 97.85 98.25

YALE

ACC 47.12 38.97 60.00 62.42 53.94 64.88 63.46 55.67 62.42 63.03 66.09
NMI 58.42 57.72 58.63 63.06 58.47 61.23 63.16 58.60 63.48 62.76 64.32
Purity 57.58 53.94 60.00 62.46 63.64 64.30 64.85 56.00 62.42 63.64 66.73

SensVehicle

ACC 63.60 64.63 65.97 67.01 62.67 66.27 71.00 54.13 64.47 66.07 71.00
NMI 18.57 21.15 21.75 22.64 20.20 22.13 28.49 11.28 20.64 23.28 30.63
Purity 63.60 63.52 65.97 65.89 62.67 66.27 71.00 54.13 64.47 66.07 71.00

s Gm

Figure 2: Relative logarithmic time consumption comparison of eleven algorithms on eight datasets.

• Compared with the MVCmethods LMVSC and OMSC, sLGm

achieves the best clustering performance, which is because

they treat the kernel matrix as plaint data, can not fully

explore the graph information, and have limitations for non-

linear data processing.

• Compared with several MKC methods using late fusion, i.e.,
LFA, ONMSC-LF, LF-PGR and LF-LKA, sLGm demonstrates

superior performance. This can be attributed to two aspects,

one is 𝑟 -rank base kernel partition, enabling the preserva-

tion of both clustering and reconstruction information while

mitigating the impact of noise. Another is the Grassmann

manifold, which enhances the ability to capture topological

information. These two aspects contribute to the optimal

consensus partition, which lead to an overall improvement

in clustering performance.

5.4 Evaluation of Running Time and
Parameters Sensitivity

Running time: The complexity of all comparisons are listed in

Table 2, where𝑚,𝑐, 𝑣, 𝑙, 𝑛 represent the number of features, clusters,

views, anchors and samples, respectively. Fig. 2 plots the compari-

son of time consumption on all algorithms. For convenience, the

logarithm of time is taken as the ordinate, where the larger the value
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is, the more time will be consumed. Based on this, it is evident that

our algorithm exhibits relatively reduced time consumption com-

pared to others, particularly in contrast to LF-PGR, which shares a

comparable complexity. This discrepancy arises due to the fact that

our algorithm encompasses less subproblems and their solution is

simple. Furthermore, sLGm strategically performs sL with 𝑟 -rank

rather than full rank, resulting in a concomitant reduction in time

consumption. This finding can provide preliminary evidence that

sLGm is promising to handle large-scale data.

Parameters sensitivity: As previously stated, the algorithm

involves three parameters: i.e., 𝜆, 𝑙𝑟𝑎𝑛𝑘 and 𝑘𝑏𝑢𝑟 . To evaluate the

sensitivity of these parameters, one variable is held constant over

an extensive range while the others are systematically adjusted,

as depicted in Fig. 3. These visualizations reveal that the cluster-

ing performance of all parameters is stable within a broad range,

reflecting the insensitivity of sLGm to parameter variations.
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Figure 3: Parameters sensitivity.

5.5 Evaluation of the Effectiveness of 𝑟 -sL
As the aforementioned experimental results presented, sLGm per-

forms superior because the constructed sL can preserve cluster-

related information, while the 𝑟 -sL can remove noise-related in-

formation simultaneously. To verify the validity of sL and 𝑟 -sL,

we plot comparisons in terms of ACC on BBCSports and YALE,

which is shown in Fig. 4. Note here that, to verify 𝑟 -sL validity, the

value of 𝑟 is adjusted, where 𝑟 = 𝑛 means that 𝑟 -sL is disabled. In

addition, to visually show the clustering distribution results, the

t-SNE visualization on the BBCSports dataset is plotted on Fig. 5.

From Fig. 4 and Fig. 5, we can observe that: (1) ACC of using 𝑟 -sL

is significantly better than that of not using it; (2) ACC is relatively

stable in a large range; (3) sLGm with 𝑟 -sL has distinct clusters. The

reason is that 𝑟 -sL consists of largest eigenvalues that contain more

cluster-related information, while small eigenvalues may contain

more noise information hidden in the kernel matrix.

5.6 Evaluation of Ablation and Convergence
Ablation evaluation: To further verify the effectiveness of sLGm,

ablation experiments are carried out on BBCSports, Flower17, YALE

and SensVehicle by setting 𝜆 = 0 of Eq. (14). The corresponding

results are listed in Table 4. The results distinctly indicate that

when 𝜆 = 0, signifying the exclusion of partition fusion on Grass-

mann manifold, its clustering performance experiences an obvious

reduction. This observation underscores the effectiveness of the

r

(a) BBCSports

r

(b) YALE

Figure 4: ACC and NMI in terms of sLGm, nouse of 𝑟 -sL and
nouse of sL for sLGm w.r.t. 𝜆.
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(b) Nouse of 𝑟 -sL for sLGm

Figure 5: Visualization of clustering distribution with t-SNE
on the BBCSports dataset.

utilization of the squared projection distance on the Grassmann

manifold, as it effectively explores both topological and heteroge-

neous information in the high-dimensional complex space.

Table 4: Ablation experiments on part datasets.

Datasets BBCSports Flower17 YALE SensVehicle

ACC

sLGm 96.32 67.75 66.09 71.00
sLGm𝜆=0 80.70 65.48 64.58 70.53

NMI

sLGm 88.15 65..80 64.32 30.63
sLGm𝜆=0 80.70 65.09 62.8 28.86

Purity

sLGm 96.32 69.54 66.73 71.00
sLGm𝜆=0 84.19 68.13 65.18 70.53

Convergence evaluation: The convergence of the proposed
algorithm has been analyzed in Sec. 4.2, and in order to verify the

convergence experimentally, we draw a curve graph of the objective

function value and clustering performance across iterations on

UCIdigits and SensVehicle, as depicted in Fig. 6. It is observed that

the objective function can converge to the stable value within five

iterations. In addition, as the objective function converges, the

corresponding clustering performance also stabilizes, indicating

the effectiveness of the learnt consensus partition F.

6 CONCLUSION
In this paper, we propose a novel multiple kernel clustering method

using shifted Laplacian on Grassmann manifold, i.e., sLGm. Specif-

ically, we take Laplacian as the breakthrough, construct 𝑟 -rank
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Figure 6: Objective value and clustering performance w.r.t.
iterations.

shifted Laplacian and the corresponding 𝑟 -rank base kernel par-

tition to achieve reconstruction, which can retain the clustering

information and energy information while remove the noise in-

terference. In addition, the squared projection distance is used on

the Grassmann manifold to further explore the topology structure.

These two sub-frameworks jointly learn an optimal consensus par-

tition to obtain the final clustering assignments. Compared with

ten state-of-the-art clustering methods, and carried out a series of

experiments on the benchmark datasets to comprehensively prove

the effectiveness of sLGm.
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