
All-In-One Drive: A Comprehensive Perception
Dataset with High-Density Long-Range Point Clouds

Supplementary Materials

Xinshuo Weng, Yunze Man, Jinhyung Park, Ye Yuan, Matthew O’Toole, Kris Kitani
Robotics Institute, Carnegie Mellon University

{xinshuow, yman, jinhyun1, yyuan2, motoole2, kkitani}@cs.cmu.edu

Abstract

In this supplementary material, we provide details including our data generation1

process, baseline implementation details, data visualization, and justification to our2

dataset design, which are not described in the main paper due to limited space.3

1 Date simulation procedure4

For each scene in our dataset, we choose one of eight cities from Carla assets and sample locations5

covering most parts of the city to generate agents. For each agent (vehicles, people), we set a random6

and faraway target destination to generate diverse trajectories. We randomly customize the behavior7

(e.g., maximum speed, how often to ignore red light, how often to cross the road) for each agent to8

increase the diversity of the data. Once the environment is set up, we randomly select a vehicle as our9

ego-vehicle and equip our full sensor suite to this vehicle for data recording. For agents who have10

approached their destinations, we add another faraway destination to them so that there is no dummy11

agent (except for parked cars) in our environment. We collected 100 such scenes in our dataset, each12

containing 1000 frames with full set of annotations.13

2 Comprehensive sensor suite14

2.1 High-density long-range point clouds15

As introduced in the main paper Sec. 3.1, our dataset provides three APD-LiDAR point clouds with a16

density of 100k, 600k and 1M points per frame, and one depth point cloud with 4M points per frame.17

Due to limited space in the main paper, we only visualized the 100k LiDAR and 4M depth point18

clouds. Here, we provide additional comparison between four point clouds in Fig. 1. It is clear to19

see the difference regarding the density of four point clouds. Also, our 100k LiDAR point cloud,20

which aims to mimic the specification of the real-world Velodyne-64 [2], has a smaller vertical FoV21

(26.9◦) than high-density long-range point clouds (180◦). Note that, for all our visualizations in the22

main paper and supplementary, we only show a center crop (up to 120m) of the point clouds, which23

actually have a range of up to 1000 meters as seen in the main paper Figure 1 (right). This is because24

showing the full range of the point clouds will lead to the objects too small to see in the figure.25

2.2 Depth point cloud generation process26

As mentioned in the main paper Sec. 3.1, we provide high-density long-range depth point clouds with27

4M points per frame, which are generated by projecting the depth images from five viewpoints to 3D28

space and then fusing the five point clouds together. To help readers understand the data generation29

process, we visualize it in Figure 2. Since each of our depth cameras has a sensing range of up to30

1000 meters in its direction, our full depth point cloud has a sensing range of 1000 meters in all31

directions. Note that, as the viewpoint of front left and front right cameras are close to each other (a32

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.

100k-points LiDAR 600k-points LiDAR 1M-points LiDAR 4M Depth point cloud
Figure 1: Comparison between our four point clouds with difference densities: three APD-LiDAR
point clouds with 100k, 600k and 1M points and one depth point cloud with 4M points per frame.

Back image

Back point cloud

Left image Front Left image Front Right image Right image

Left point cloud Front left point cloud Front right point cloud Right point cloud

Fused depth point cloud

Figure 2: Depth Point Cloud Generation Process. Given five depth cameras, we first project the
depth image received from the depth cameras to the 3D space to obtain the corresponding point
clouds. Then, with five point clouds each covering a viewpoint, we fuse them together to obtain our
high-density long-range depth point cloud with 360◦ horizontal coverage.

large overlapping area), we randomly sample about half the points within the overlapped area so that33

the point density in all directions is nearly the same.34

2.3 SPAD-LiDAR simulation35

Though we briefly describe our synthetic SPAD-LiDAR data in the main paper, here we provide36

details about the sensor simulation process. Our synthetic SPAD-LiDAR algorithm consists of37

two main components: the simulation of ambient signals (Sec 2.3.2) as well as the simulation of38

multi-echo (ME) point cloud and reflectance signals (Sec 2.3.3).39

2.3.1 Input coordinate transformation40

As shown in Algorithm 1, we take RGB, depth and surface normal images, denotes as Irgb, Id, In,41

as the input of the simulation process, where the RGB and depth signals are directly captured by42

our RGB and depth cameras, and the surface normal is directly converted from depth images – The43

process is accurate because of the perfectly synthesized depth values.44

In order to mimic the spinning mechanism of LiDAR sensor, we perform a polar-to-image coordinate45

transformation on all synthesized sensors. Specifically, we approximate the SPAD-LiDAR sensor46

as a point in the 3D space and define an array of antennas A[RV , RH] in the polar coordinate (i.e.47

elevation and azimuth). For all i ∈ [1, RV], j ∈ [1, RH],48

A(i, j) = (θi, γj), θi, γj ∈ [0, 2π) (1)

where θ and γ are vectors representing the LiDAR sensor detector arrangement, and are predefined49

according to the desired vertical and horizontal FoV and resolution, and RH denotes the number50

of vertically aligned LiDAR detectors on the sensor, and RV denotes the number of horizontally51

2

Algorithm 1 SPAD-LiDAR Simulation

Inputs: Irgb: RGB image
Id: Depth image
In: Surface normal image

Parameters: N: Number of time bins
SBR: Signal-Background-Ratio
RH,FH: Horizontal Resolution and FoV
RV,FV: Vertical Resolution and FoV
S: Neighborhood aggregation kernel size
K: Number of echo groups

Outputs: Iambient[RV , RH]: Ambient image
Ireflectance[RV , RH ,K]: Reflectance image
PK: SPAD-LiDAR Point Cloud Returns

1: Sample LiDAR sensor array A[RH , RV] in the polar coordinate according to FoV FH , FV
2: Project A[RH , RV] onto the 2D image space and get the positional map A2D[RH , RV]
3: Transform the input images Iim into polar coordinate Iim′ as Eq. 2 . Get ambient image

Iambient[RV , RH]

4: Calculate signal photons Nsignal for each pixel (h,w) from Eq. 4;
5: Calculate ambient photons Nambient for each pixel (h,w) from Eq. 5;
6: Calculate ambient photons Np[RV , RH] for each pixel (h,w) from Eq. 3;

7: Simulate multi-echo mechanism and generate N∗p[RH , RV , N] by neighborhood aggregation as
in Eq. 6

8: Get Top-K returns along the temporal axis with Eq. 7
9: Project the valid bins into 3D space and generate Top-K point cloud returns . Get multi-echo

point cloud PK

10: Simulate the reflectance by number of points insides its corresponding bins
11: Rearrange reflectance values of points into ‘LiDAR Image’ space . Get reflectance image

Ireflectance[RV , RH ,K]

aligned detection a detector performs during each single sweep. Then, we project the polar co-52

ordinate map A[RV , RH] onto the 2D image space, resulting in non-linearly arranged positional53

map A2D[RV , RH] on the 2D image plane. Then, we generate new images from the input im-54

ages by sampling on the original images with the 2D positional map A2D[RV , RH]. Note that the55

interpolation is used to handle non-integer positions. For any input image Iim ∈ {Irgb, Id, In},56

∀i ∈ [1, RV], j ∈ [1, RH],57

I ′im(i, j) = interp(Iim(x, y)), (x, y) = A2D(i, j) (2)

Then we get new images I ′rgb, I
′
d, I
′
n where pixels are arranged according to the arrangement of58

LiDAR detector orientations.59

2.3.2 Ambient illumination signals60

The ambient illumination signals are sunlight reflected by objects. Thus, from the imaging perspective,61

the information encoded in the ambient signals is very similar to that collected by RGB cameras.62

Since the LiDAR sensor usually captures light with infrared wavelength, we take R-channel from the63

RGB images and treat it as a simulation of the ambient signal received by the LiDAR sensor. The64

ambient signal is represented in the form of images Iambient,65

Iambient ∼ I ′r
where I ′r denotes the R-channel of image I ′ after coordinate transformation.66

2.3.3 Multi-echo point cloud and reflectance signals67

Generate raw 3D tensor data. Because the LiDAR sensor is essentially a time-of-flight measure-68

ment of photons, to simulate multi-signal LiDAR sensing measurements, we first simulate the photon69

3

RGB Image

Depth Image

Surface Normal

Coordinate
Transform

Input

RGB Image

Depth Image

Surface Normal

In Cartesian In Polar

Ambient

ME Point Cloud

ME Reflectance

ME Point Cloud
and Reflectance

Generation

R-Channel

Output

Figure 3: SPAD-LiDAR measurements simulation. Taking the inputs from other modalities in
the AIODrive Dataset, we first re-sample the images using projected polar positional map to mimic
the LiDAR spinning mechanism. Then infrared ambient illumination is approximated by taking
R channel of the RGB image. Multi-echo point cloud and reflectance signals are generated from
transformed RGB, depth and surface normal images.

measurements. Specifically, without considering the random false detection which happens occasion-70

ally in real LiDAR sensors, we formulate the number of photons Np received by a LiDAR detector71

in response to an illumination period of a signal light pulse by a temporal histogram:72

Np[n] ∼ P(Nsignal[n] +Nambient[n]), (3)

where n is the n-th time interval along the temporal axis. Function P(·) models a Poisson distribution,73

Nsignal[n] is the number of detected signal photons at the time interval n, and Nambient models the74

number of ambient photons. Based on the Eq. 3, the first step of our raw multi-echo LiDAR data75

generation is to generate a 3D tensor of photon counts Np[RV , RH , N] representing the number76

of photons detected by the sensor. Here (RV , RH) is the vertical and horizontal resolution of the77

LiDAR (height and width of the ‘LiDAR Image’) and N represents the number of time intervals.78

To model the number of signal photons Nsignal[n], we consider the surface reflectance, angle of79

incidence during reflection and radial attenuation. We model the relative photon number by assuming80

all LiDAR transmitters emit lasers with the same energy (same number of photons). Then, according81

to Lambert’s cosine law, the reflected energy is proportional to cos(θ) where θ is the incidence angle82

of the light with respect to the surface. This information is given by surface normal image I ′n. We use83

a near infrared signal light, i.e, the R channel of the RGB image I ′r, to approximate the reflectance of84

the surface. Also, the radial falloff (attenuation) of light energy is proportional to the square of travel85

distance. We can directly take advantage of the accurate depth image I ′d. Then, the number of signal86

photons is modeled as:87

Nsignal(h,w, n) ∼

{
Norm

(
SBR× I′r(h,w)·cos θ

I′d(h,w)2

)
If n = n∗

0 If n 6= n∗
, (4)

where the Norm operation means to normalize over the whole image, (i.e. divided by the average88

value in the entire image), SBR is the Signal-Background-Ratio used to control the relative strength89

between signal and background light, and n∗ is the time bin during which the signal light is reflected90

by the surface. To model the number of ambient photons Nambient[n], we simply takes the R-channel91

of the RGB images and normalize over the whole image,92

Nambient(h,w, n) ∼ Norm (Ir[h,w]) , ∀n ∈ [1, N] (5)

Then using Eq. 3 together with Eq. 4 and Eq. 5, we can simulate the 3D tensor of photon number93

Np[RV , RH , N]. Given the 3D tensor of photon numbers, the next step is to model the multi-echo94

mechanism. As explained in the main paper, multiple echoes happen because laser beams have a95

wider coverage of the 3D space instead of a perfect 2D line. In the 2D ‘LiDAR Image’ space, this can96

be explained as – neighbor pixels overlap with each other. We use a kernel function G(·) to simulate97

the spatial coverage, i.e., the number of photons in a given time bin will be a weighted sum of its98

spatial neighborhood bins (not temporal ones), with nearer neighbors contributing more:99

N∗p[h,w, n] =
∑∑

(h,w)∈N (h,w)

G(kh, kw) ·Np[h,w, n], (6)

where N is the neighborhood of a given position on the image plane, and G(kh, kw) is the weight100

function over the distance between a given 2D position (rh, rw) and its neighbor position (kh, kw).101

Specifically, we use a Gaussian function for G(·). By controlling the parameters of the kernel102

function, we can control the spatial coverage of the lasers.103

4

Figure 4: Depth Images. We provide visualization of the images captured by depth cameras.

Generate top-K point cloud returns. Because standard LiDAR-based perception systems [3, 4, 1]104

take point cloud data as input (not raw photon tensor data N∗p[RV , RH , N]), we take one step further105

to convert our raw multi-echo LiDAR data into point clouds so that they can be easily used in modern106

perception systems. Note that, with a large spatial coverage rate, each laser beam is able to cover107

a large 3D volume and is more likely to hit more than one target (object). This is represented as108

multiple strong peaks along the temporal histogram of a sensor beam. Specifically, when generating109

the top-K point cloud returns, we take the top-K maximum bins along the temporal axis for each110

sensor beam, i.e., we select the bin with the top-K number of photons that exceeds a threshold and111

obtain N∗p[RV , RH ,K] as follows:112

N∗p[RV , RH ,K] = T
(
S
(
N∗p[RV , RH , N]

)
[:, :, :K]

)
, (7)

where S(·) is a sort function that descendingly sorts the number of photon counts along the temporal113

axis N . Then we only take the top-K channels in the temporal axis (i.e., the top-k maximum bins).114

Also, T (·) is a threshold function that masks out bins with number of photons less than a threshold, i.e.,115

reject bins that receive noise instead of a light signal. Once we have obtained the N∗p[RH , RV ,K],116

we can then transform it to K point clouds as each valid bin (non-rejected) can be back-projected to a117

point in 3D space. As we use a threshold to mask out invalid points, the number of valid points will118

be fewer when K is higher, i.e., the 1st strongest point cloud has more points than the 2nd strongest119

point cloud and so on.120

After getting the multi-echo point cloud, we can simulate the reflectance of each point by normalizing121

the number of points inside the bins, because we assume that each LiDAR sensor transmitter emits122

same number of photons. The reflectance values of the multi-echo point cloud can be rearranged into123

the ‘LiDAR Image’ space Ireflectance[RV , RH ,K] .124

We summarize our multi-echo SPAD-LiDAR simulation process in Algorithm 1 and in Figure 3. In125

terms of the implementation details, we use our all five camera viewpoints and create a 360◦ FoV of126

the multi-echo LiDAR point cloud. We use 10240 numbers of time bins to voxelize 1000 meters of127

depth range in each view. When we sample the LiDAR sensor array in the polar coordinate, each128

view has a 35◦ vertical FoV and 140◦ horizontal FoV. For example, for frontal view, we sample129

in [−17◦, 18◦] vertical FoV with 0.2◦ of resolution, and [−60◦, 60◦] horizontal FoV with 0.1◦ of130

resolution. To simulate a relatively large spatial coverage (fill factor), we define a [5, 5] patch in131

image coordinate centered around the projected position as its neighborhood.132

2.4 Radar133

Similar to the LiDAR data, our Radar data is also simulated via ray-casting. We use the same FoV134

and sensing range as the high-density long-range LiDAR. The primary difference lies in that the135

returns of each Radar point contains the velocity of the point in addition to the location information.136

Such point velocity information can be useful to perception systems and, if used properly, can help137

prevent collision. To increase realism of the Radar data, we employ the same mechanisms applied to138

LiDAR points: (1) we randomly drop a small portion of Radar points based on their distance values,139

i.e., the further the point is, the higher probability it has to be dropped; (2) we randomly perturb a140

small portion of points along the direction of the ray, creating noisy distance measurements.141

2.5 Depth camera142

As briefly mentioned in the main paper Sec. 3.1, our sensor suite also contains depth cameras. Here143

we provide visualization of the depth images. As shown in Figure 4, we encode the depth value in a144

grayscale image where a larger pixel value (more white) indicates a larger distance.145

5

Figure 5: 3D bounding box annotation on depth point clouds. We show two numbers in the
visualization for each agent: (1) ID number (2) number of points inside the box.

3 Diverse annotations146

3.1 3D bounding box annotation147

In the main paper Sec. 3.2, we have shown visualization of the 2D-3D bounding box annotation148

in the image. Here, we provide additional visualization of the 3D bounding box annotation in the149

point cloud in Figure 5. We draw boxes on depth point clouds in the figure but the same 3D box150

annotation can be drawn on other point clouds as well. As shown in the figure, each bounding box151

has a unique ID number, which we can be used for 3D object detection, 3D multi-object tracking and152

trajectory forecasting. Note that our bounding box annotation includes many hard-to-detect objects153

(e.g., heavily occluded or faraway) which have very few (e.g., 10) points inside the box. Our raw154

annotation even includes objects that are fully occluded by building with 0 LiDAR point. As fully155

occluded objects are nearly impossible to detect from a single frame, we use a similar strategy as156

KITTI by ignoring objects with less than 5 points during 3D object detection evaluation. In other157

words, missing detecting these objects will not be counted as a false negative while correctly detecting158

these objects will not be counted as a false positive.159

3.2 Fine-grained object class160

In addition to high-level object class labels such as car, pedestrian, cyclist as defined in existing161

datasets, we also provide low-level vehicle model class labels such as Audi A2, Toyota Prius, Tesla162

Model 3 and Mercedes Benz Coupe. This annotation can be useful to train models for fine-grained163

vehicle model classification.164

3.3 Map165

As we use the pre-built Carla city to generate data, the map is known and created in advance. We can166

map each agent to a location in the map as we have the GPS data for each agent. As a result, our167

dataset can be used to develop methods for localization, visual odometry, and map-guided trajectory168

forecasting. For visualization purpose, we have included the map thumbnails in Fig. 6.169

4 High environmental variations170

4.1 Adverse weather and lighting conditions171

Adverse weather and lighting can affect the accuracy of the perception systems. Therefore, it is172

important to include data under different weather and lighting conditions. In the main paper Sec. 3.3,173

we briefly mention that our dataset provides data collected with different weathers and lighting. Here,174

we provide visualization and additional details about how we generate data with different conditions.175

As shown in Figure 7, we provide data collected under different weathers such as sunny, cloudy,176

foggy and rainy. Also, we can simulate the sun rising and falling process in Carla so that we collect177

data in morning, noon, afternoon, dusk and at night. Among our collected 100 scenes, we have 70178

6

Figure 6: Map thumbnails. We visualize the map of eight cities where our data is generated.

Sunny Cloudy Foggy

Rainy Morning Noon

Afternoon Dusk Night
Figure 7: Diverse weather and lighting conditions in our collected dataset.

scenes with fixed weather and lighting in typical conditions (cloudy, sunny, morning, noon, afternoon,179

dusk). For the rest of 30 scenes, we collect data under more challenging situations, i.e., dynamic180

weather and lighting conditions with rainy, foggy and night included. For example, we control the181

sun rising from the east and falling in the west, and weather changing from cloudy to rainy.182

4.2 Background variations183

As stated in the main paper Table 1, our dataset is collected in 8 cities, which covers both urban and184

suburban areas. As shown in the Figure 5 and 7, our dataset provides data with various backgrounds185

such as skyscrapers in the downtown and 2-story houses in suburbs, 8-lanes highway and 2-lane186

suburban road. We believe the diversity of backgrounds in our data is useful for learning robust187

perception systems that can work in different scene backgrounds.188

4.3 Agent behavior customization189

As mentioned in the main paper Sec. 3.3, our dataset provides rare driving situations such as190

accidents, vehicles that run over the light and speed over the limit. The reason we can achieve191

these rare scenarios is due to the flexible control of every agent provided by the Carla simulator.192

Specifically, we customize the behaviors of agents for vehicles and people in a very different way.193

For every vehicle agent, we define a speed range with respect to the speed limit. For example, we can194

set a vehicle with a minimum of 50% and a maximum of 80% speed with respect to the speed limit195

of the road, resulting a conservative driver that often drives slowly with a speed less than the speed196

limit. Also, we can set a vehicle with a maximum of 130% speed with respect to the speed limit,197

7

which will result in an aggressive driver that over-speeds sometimes. In addition to speed control,198

for every vehicle agent, we also set a different probability of ignoring the traffic light, and ignoring199

other agents. For example, we can set a vehicle that 100% ignores the traffic light and 50% ignores200

other agents, which results in a dangerous driver that always runs over the red light and might cause201

accidents by hitting a pedestrian crossing the road. Additionally, we set for each vehicle agent how202

frequent to change the lane and how far each vehicle is preferred to be away from other agents (i.e.,203

safe distance) in order to avoid collision.204

In addition to controlling vehicles, we also customize the behaviors of pedestrian agents in our dataset.205

For example, we set different intended speeds for each pedestrian. As a result, our dataset has data206

with people having a diverse distribution of speed, including pedestrian walking, jogging and running.207

Also, we set each pedestrian a faraway target destination in the city and also how frequent each208

pedestrian can cross the road when approaching the destination. With 100% probability of crossing209

the road, the pedestrians can move towards the destination with a faster route while more probable to210

cause accidents (e.g., hit by a car). To collect data with different difficulty levels, we generate more211

aggressive agents in 30 out of 100 scenes with more rare driving cases, and leaving the rest of 70212

scenes with most agents behaving normally and conservatively similar to public real-world datasets213

such as KITTI and nuScenes. We believe that the 30 scenes in our dataset with more aggressive214

and unpredictable behaviors can serve as a hard evaluation set for tasks requiring predicting agent215

behaviors such as trajectory forecasting.216

5 Justification to the dataset size217

As we use the simulator for data generation, we can generate unlimited number of frames in theory218

and dwarf real datasets. However, dealing with a large-scale dataset is non-trivial. After optimizing219

our code to increase the speed, our current code for generating and post-processing the dataset with220

100k frames still requires a few weeks of time. Also, storage is another constraint. Our current221

dataset, including all sensor data and annotations, requires about 3Tb of storage. With more frames222

to be generated, the required storage will be bigger which can cause inconvenience for users. To ease223

the use, we only generate 100k frames for now. Also, we suggest users only downloading the sensor224

data and annotation they need for their models and corresponding tasks.225

6 Experiments226

6.1 Data split227

We split our dataset into train, validation and test splits, each with 40, 30, 30 scenes of the total228

100 scenes. The split is based on the environmental variations including diversity of background,229

weather/lighting and agent behaviors. The goal is to make sure that data in each split still has diverse230

environmental variations. We will release the sensor data for all three splits while only release the231

ground truth for train and validation splits so that the testing split can be reserved for fair comparison232

using our evaluation server.233

6.2 Object detection evaluation protocol234

Difficulty level. We use three difficulty levels (easy, moderate and hard) following KITTI. For 2D235

detection, we define the difficulty level based on the ground truth 2D box height of 40/25/15 pixels236

and 2D occlusion/truncation percentage of 30%/50%/70%. If a ground truth object satisfies any237

of requirement to be in a more difficult level, then we define it as in that more difficult level. For238

example, if a ground truth object has a occlusion level of 80%, though its box height is 20 pixels, we239

define this object to be in the hard level instead of the moderate level. Similarly, for 3D detection,240

we define the difficulty level based on the distance of 40/80/120 meters. For both 2D and 3D object241

detection, we define an ignored object set which includes objects with less than 5 points inside their242

3D boxes. Objects in this ignored set are not required to be detected by detectors as these objects are243

nearly invisible in all sensors such as camera and LiDAR.244

Matching criteria. When deciding if a detected object is a true positive, i.e., corresponding to a245

ground truth object, we use a 2D IoU (Intersection of Union) threshold of 0.7 for car and 0.5 for246

pedestrian and cyclist in 2D object detection evaluation. For 3D detection evaluation, we use a 3D247

IoU threshold of 0.7 for car, and 0.5 for pedestrian and cyclist.248

8

6.3 Implementation details for 3D detection249

As mentioned in the main paper Sec. 4.2, we have increased the input point cloud range from 0-70m250

in KITTI to 120m in 360◦ degrees (i.e., a circle with a diameter of 240 meters) for 3D detectors to251

enable perception at a larger range, nearly quadrupling the detection range in KITTI. We choose252

to increase the detection range to 120 meters (not even larger e.g., 1000 meters) because current253

state-of-the-art methods are not memory efficient. As a result, further enlarging the detection range254

can easily reach GPU memory limit, e.g., detection up to 1000 meters requires GPU memory larger255

than 1Tb to process the point clouds for voxel-based methods without sacrificing the voxelization256

resolution too much. Future work in memory-efficient 3D detection is needed to fully leverage257

long-range high-density point clouds to perform perception at a larger range.258

In addition to 120 meters of horizontal detection range, we use a detection range of [−5, 2] meters in259

the height direction, which covers nearly all agents even including those on a slope with a negative260

height, e.g., -4m. For all baselines, we use anchors with width, length and height of (1.6, 3.9, 1.6)m,261

(0.8, 0.8, 1.7)m and (0.6, 1.8, 1.7)m for cars, pedestrians and cyclists, respectively. Also, for voxel-262

based methods (SECOND and PointPillars), we slightly decrease the voxelization resolution to reduce263

memory requirement as otherwise 120 meters of input point clouds cannot fit into GPU memory.264

Specifically, we use a voxel size of 0.1m× 0.15m× 0.1m (in length, height, width directions) for265

training on cars, and 0.125m× 0.3m× 0.125m for training on pedestrians and cyclists.266

For experiments in the main paper Table 5, all 3D detection baselines are trained from scratch using267

only data from the AIODrive train split. We train every baseline for 7 epochs for a fair comparison268

using 4× NVIDIA GeForce RTX 2080. For experiments in the main paper Table 6 using SPAD-269

LiDAR data (the last row), we use the top-2 strongest point cloud returns as input to PointRCNN270

instead of the raw 3D tensor. As PointRCNN cannot explicitly leverage the relationship between271

different SPAD-LiDAR point cloud returns (or echos), we simply concatenate the top-2 point clouds272

together to form a single point cloud as input to PointRCNN.273

7 Data hosting and maintenance274

As directed by our data download links (http://www.aiodrive.org/download.html), all of our275

data are hosted on Dropbox with shareable links so that everyone on the internet can download. As276

our dataset is about 3 Tb, we use the Dropbox professional plan. With affordable price ($200 per277

year with unlimited download) on Dropbox, it should be easy for us to keep data download link alive278

for at least a few years until the dataset is no longer useful to the community.279

8 Dataset license280

Our AIODrive dataset and associated code are released under Creative Commons Attribution-281

ShareAlike 4.0 International Public License. So everyone is free to use for both commercial and282

research purpose.283

References284

[1] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. PointPillars:285

Fast Encoders for Object Detection from Point Clouds. CVPR, 2019.286

[2] Velodyne Lidar. High Definition Real-Time 3D Lidar. https://velodynelidar.com/products/287

hdl-64e/.288

[3] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. From Points to Parts: 3D289

Object Detection from Point Cloud with Part-Aware and Part-Aggregation Network. CVPR, 2020.290

[4] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely Embedded Convolutional Detection. Sensors, 2018.291

9

http://www.aiodrive.org/download.html
https://velodynelidar.com/products/hdl-64e/
https://velodynelidar.com/products/hdl-64e/
https://velodynelidar.com/products/hdl-64e/

	Date simulation procedure
	Comprehensive sensor suite
	High-density long-range point clouds
	Depth point cloud generation process
	SPAD-LiDAR simulation
	Input coordinate transformation
	Ambient illumination signals
	Multi-echo point cloud and reflectance signals

	Radar
	Depth camera

	Diverse annotations
	3D bounding box annotation
	Fine-grained object class
	Map

	High environmental variations
	Adverse weather and lighting conditions
	Background variations
	Agent behavior customization

	Justification to the dataset size
	Experiments
	Data split
	Object detection evaluation protocol
	Implementation details for 3D detection

	Data hosting and maintenance
	Dataset license

