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Abstract

Federated learning (FL) is a distributed paradigm that coordinates massive local
clients to collaboratively train a global model via stage-wise local training processes
on the heterogeneous dataset. Previous works have implicitly studied that FL suffers
from the “client-drift” problem, which is caused by the inconsistent optimum across
local clients. However, till now it still lacks solid theoretical analysis to explain the
impact of this local inconsistency. To alleviate the negative impact of the “client
drift” and explore its substance in FL, in this paper, we first design an efficient FL
algorithm FedInit, which allows employing the personalized relaxed initialization
state at the beginning of each local training stage. Specifically, FedInit initializes
the local state by moving away from the current global state towards the reverse
direction of the latest local state. This relaxed initialization helps to revise the
local divergence and enhance the local consistency level. Moreover, to further
understand how inconsistency disrupts performance in FL, we introduce the excess
risk analysis and study the divergence term to investigate the test error of the
proposed FedInit method. Our studies show that optimization error is not sensitive
to this local inconsistency, while it mainly affects the generalization error bound
in FedInit. Extensive experiments are conducted to validate this conclusion. Our
proposed FedInit could achieve state-of-the-art (SOTA) results compared to several
advanced benchmarks without any additional costs. Meanwhile, stage-wise relaxed
initialization could also be incorporated into the current advanced algorithms to
achieve higher performance in the FL paradigm.

1 Introduction

Since McMahan et al. [26] developed federated learning, it becomes a promising paradigm to
effectively make full use of the computational ability of massive edge devices. Kairouz et al. [17]
further classify the modes based on the specific tasks and different environmental setups. Different
from centralized training, FL utilizes a central server to coordinate the clients to perform several local
training stages and aggregate local models as one global model. However, due to the heterogeneous
dataset, it still suffers from significant performance degradation in practical scenarios.

Several previous studies explore the essence of performance limitations in FL and summarize it
as the “client-drift” problem [1, 19, 22, 38, 44, 46, 48]. From the perspective of the global target,
Karimireddy et al. [19] claim that the aggregated local optimum is far away from the global optimum
due to the heterogeneity of the local dataset, which introduces the “client-drift” in FL. However,
under limited local training steps, local clients can not genuinely approach the local optimum. To
describe this negative impact more accurately, Acar et al. [1] and Wang et al. [44] point out that each
locally optimized objective should be regularized to be aligned with the global objective. Moreover,
beyond the guarantees of local consistent objective, Xu et al. [46] indicate that the performance
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degradation could be further eliminated in FL if it guarantees the local consistent updates at each
communication round, which is more similar to the centralized scenarios. These arguments intuitively
provide forward-looking guidance for improving the performance in FL. However, in the existing
analysis, there is still no solid theoretical support to understand the impact of the consistency term,
which also severely hinders the further development of the FL paradigm.

To alleviate the negative impact of the “client-drift” problem and strengthen consistency in the
FL paradigm, in this paper, we take into account adopting the personalized relaxed initialization
at the beginning of each communication round, dubbed FedInit method. Specifically, FedInit
initializes the selected local state by moving away from the current global state towards the reverse
direction of the current latest local state. Personalized relaxed initialization helps each local model
to revise its divergence and gather together with each other during the local training process. This
flexible approach is surprisingly effective in FL and only adopts a constant coefficient to control
the divergence level of the initialization. It could also be easily incorporated as a plug-in into other
advanced benchmarks to further improve their performance.

Moreover, to explicitly understand how local inconsistency disrupts performance, we introduce the
excess risk analysis to investigate the test error of FedInit under the smooth non-convex objective,
which includes an optimization error bound and a generalization error bound. Our theoretical studies
indicate that the optimization error is insensitive to local inconsistency, while it mainly affects the
generalization performance. Under PŁ-condition, consistency performs as the dominant term in
the excess risk. Extensive empirical studies are conducted to validate the efficiency of the FedInit
method. On the CIFAR-10/100 dataset, it could achieve SOTA results compared to several advanced
benchmarks without additional costs. It also helps to enhance the consistency level in FL.

In summary, the main contributions of this work are stated as follows:

• We propose an efficient and novel FL method, dubbed FedInit, which adopts the personalized
relaxed initialization state on the selected local clients at each communication round. Relaxed
initialization is dedicated to enhancing local consistency during training, and it is also a
practical plug-in that could easily to incorporated into other methods.

• One important contribution is that we introduce the excess risk analysis in the proposed
FedInit method to understand the intrinsic impact of local consistency. Our theoretical
studies prove that the optimization error is insensitive to consistency, while it mainly affects
the test error and generalization error bound.

• Extensive numerical studies are conducted on the real-world dataset to validate the efficiency
of the FedInit method, which outperforms several SOTA benchmarks without additional
training costs. Meanwhile, as an efficient plug-in, relaxed initialization (FedInit) could also
help the other benchmarks in our paper to achieve higher performance with effortlessness.

2 Related Work

Consistency in FL. FL employs an enormous number of edge devices to jointly train a single model
among the isolated heterogeneous dataset [17, 26]. As a standard benchmark, FedAvg [2, 26, 48]
allows the local stochastic gradient descent (local SGD) [10, 23, 45] based updates and uniformly
selected partial clients’ participation to alleviate the communication bottleneck. The stage-wise
local training processes lead to significant divergence for each client [5, 25, 43, 44]. To improve the
efficiency of the FL paradigm, a series of methods are proposed. Karimireddy et al. [19] indicate
that inconsistent local optimums cause the severe “client drift” problem and propose the SCAFFOLD
method which adopts the variance reduction [6, 16] technique to mitigate it. Li et al. [22] penalize the
prox-term on the local objective to force the local update towards both the local optimum and the last
global state. Zhang et al. [49] utilize the primal-dual method to improve consistency via solving local
objectives under the equality constraint. Specifically, a series of works further adopt the alternating
direction method of multipliers (ADMM) to optimize the global objective [1, 9, 41, 52], which could
also enhance the consistency term. Beyond these, a series of momentum-based methods are proposed
to strengthen local consistency. Wang et al. [42] study a global momentum update method to stabilize
the global model. Further, Gao et al. [8] use a local drift correction via a momentum-based term to
revise the local gradient, efficiently reducing inconsistency. Ozfatura et al. [28], Xu et al. [46], Sun
et al. [39] propose a similar client-level momentum to force the local update towards the last global
direction. A variant of client-level momentum that adopts the inertial momentum to further improve
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the local consistency level [24, 40]. At present, improving the consistency in FL remains a very
important and promising research direction. Though these studies involve the heuristic discussion on
consistency, in this paper we focus on the personalized relaxed initialization.

Generalization in FL. A lot of works have studied the properties of generalization in FL. Based
on the margin loss [3, 7, 27], Reisizadeh et al. [31] develop a robust FL paradigm to alleviate the
distribution shifts across the heterogeneous clients. Shi et al. [32] study the efficient and stable model
technique of model ensembling. Yagli et al. [47] prove the information-theoretic bounds on the
generalization error and privacy leakage in the general FL paradigm. Qu et al. [29] propose to adopt
the sharpness aware minimization (SAM) optimizer on the local client to improve the flatness of the
loss landscape. Caldarola et al. [4], Sun et al. [37, 38], Shi et al. [33, 34] propose several variants
based on SAM that could achieve higher performance. However, these works only focus on the
generalization efficiency in FL, while in this paper we prove that its generalization error bound is
dominated by consistency.

3 Methodology

3.1 Preliminaries

Under the cross-device FL setups, there are a very large number of local clients to collaboratively
train a global model. Due to privacy protection and unreliable network bandwidth, only a fraction of
devices are open-accessed at any one time [17, 29]. Therefore, we define each client stores a private
dataset Si = {zj} where zj is drawn from an unknown unique distribution Di. The whole local
clients constitute a set C = {i} where i is the index of each local client and |C| = C. Actually, in the
training process, we expect to approach the optimum of the population risk F :

w⋆
D ∈ argmin

w

{
F (w) ≜

1

C

∑
i∈C

Fi(w)

}
, (1)

where Fi(w) = Ezj∼Di
Fi(w, zj) is the local population risk. While in practice, we usually consider

the empirical risk minimization of the non-convex finite-sum problem in FL as:

w⋆ ∈ argmin
w

{
f(w) ≜

1

C

∑
i∈C

fi(w)

}
, (2)

where fi(w) =
1
Si

∑
zj∈Si

fi(w; zj) is the local empirical risk. In Section 4.1, we will analyze the
difference between these two results. Furthermore, we introduce the excess risk analysis to upper
bound the test error and further understand how consistency works in the FL paradigm.

3.2 Personalized Relaxed Initialization

Algorithm 1: FedInit Algorithm
Input: model w, local model wi,T ,K,β.
Output: model wT .

1 Initialize states: initialize w−1 = w−1
i,0 = w0.

2 for t = 0, 1, ..., T − 1 do
3 randomly select active clients set N from C
4 for i ∈ N in parallel do
5 send the wt to the active clients
6 set the wt + β(wt − wt−1

i,K ) as wt
i,0

7 for k = 0, 1, ...,K − 1 do
8 compute gradient gti,k at wt

i,k

9 wt
i,k+1 = wt

i,k − ηgti,k
10 end
11 send the wt

i = wt
i,K to the server

12 end
13 wt+1 = 1

N

∑
i∈N wt

i

14 end

In this part, we introduce the relaxed initialization
in FedInit method. FedAvg proposes the local-
SGD-based implementation in the FL paradigm
with a partial participation selection. It allows
uniformly selecting a subset of clients N to par-
ticipate in the current training. In each round, it
initializes the local model as the last global model.
Therefore, after each round, the local models are
always far away from each other. The local offset
wt−1

i,K − wt is the main culprit leading to incon-
sistency. Moreover, for different clients, their im-
pacts vary with local heterogeneity. To alleviate
this divergence, we propose the FedInit method
which adopts the personalized relaxed initializa-
tion at the beginning of each round. Concretely, on
the selected active clients, it begins the local train-
ing from a new personalized state, which moves
away from the last global model towards the re-
verse direction from the latest local state (Line.6 in
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Algorithm 1). A coefficient β is adopted to control the level of personality. This offset β(wt − wt−1
i,K )

in the relaxed initialization (RI) provides a correction that could help local models gather together
after the local training process. Furthermore, this relaxed initialization is irrelevant to the local
optimizer, which means, it could be easily incorporated into other methods. Additionally, FedInit
does not require extra auxiliary information to communicate. It is a practical technique in FL.

4 Theoretical Analysis

In this section, we first introduce the excess risk in FL which could provide a comprehensive analysis
on the joint performance of both optimization and generalization. In the second part, we introduce
the main assumptions adopted in our proofs and discuss them in different situations. Then we state
the main theorems on the analysis of the excess risk of our proposed FedInit method.

4.1 Excess Risk Error in FL

Since Karimireddy et al. [19] pointed out that client-drift problem may seriously damage the per-
formance in the FL paradigm, many previous works [15, 18, 19, 30, 36, 44, 46, 48] have learned its
inefficiency in the FL paradigm. However, most of the analyses focus on the studies from the onefold
perspective of optimization convergence but ignore investigating its impact on generality. To further
provide a comprehensive understanding of how client-drift affects the performance in FL, we adopt
the well-known excess risk in the analysis of our proposed FedInit method.

We denote wT as the model generated by FedInit method after T communication rounds. Compared
with f(wT ), we mainly focus on the efficiency of F (wT ) which corresponds to its generalization
performance. Therefore, we analyze the E[F (wT )] from the excess risk EE as:

EE = E[F (wT )]− E[f(w∗)] = E[F (wT )− f(wT )]︸ ︷︷ ︸
EG: generalization error

+E[f(wT )− f(w∗)]︸ ︷︷ ︸
EO : optimization error

. (3)

Generally, the E[f(w∗)] is expected to be very small and even to zero if the model could well-fit the
dataset. Thus EE could be considered as the joint efficiency of the generated model wT . Thereinto,
EG means the different performance of wT between the training dataset and the test dataset, and EO
means the similarity between wT and optimization optimum w⋆ on the training dataset.

4.2 Assumptions

In this part, we introduce some assumptions adopted in our analysis. We will discuss their properties
and distinguish the proofs they are used in.
Assumption 1 For ∀w1, w2 ∈ Rd, the non-convex local function fi satisfies L-smooth if:

∥∇fi(w1)−∇fi(w2)∥ ≤ L∥w1 − w2∥. (4)

Assumption 2 For ∀w ∈ Rd, the stochastic gradient is bounded by its expectation and variance as:

E
[
gti,k
]
= ∇fi(w

t
i,k), E∥gti,k −∇fi(w

t
i,k)∥2 ≤ σ2

l . (5)

Assumption 3 For ∀w ∈ Rd, the heterogeneous similarity is bounded on the gradient norm as:

E∥∇fi(w)∥2 ≤ G2 +B2E∥∇f(w)∥2. (6)

Assumption 4 For ∀w1, w2 ∈ Rd, the global function f satisfies LG-Lipschitz if:

∥f(w1)− f(w2)∥ ≤ LG∥w1 − w2∥. (7)

Assumption 5 For ∀w ∈ Rd, let w⋆ ∈ argminw f(w), the function f satisfies PŁ-condition if:

2µ (f(w)− f(w⋆)) ≤ ∥∇f(w)∥2. (8)

Discussions. Assumptions 1∼3 are three general assumptions to analyze the non-convex objective in
FL, which is widely used in the previous works [15, 18, 19, 30, 36, 44, 46, 48]. Assumption 4 is used
to bound the uniform stability for the non-convex objective, which is used in [11, 51]. Different from
the analysis in the margin-based generalization bound [27, 29, 31, 38] that focus on understanding how
the designed objective affects the final generalization performance, our work focuses on understanding
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how the generalization performance changes in the training process. We consider the entire training
process and adopt uniform stability to measure the global generality in FL. For the general non-convex
objective, one often uses the gradient norm E∥∇f(w)∥2 instead of bounding the loss difference
E
[
f(wT )− f(w⋆)

]
to measure the optimization convergence. To construct and analyze the excess

risk, and further understand how the consistency affects the FL paradigm, we follow [51] to use
Assumption 5 to bound the loss distance. Through this, we can establish a theoretical framework to
jointly analyze the trade-off on the optimization and generalization in the FL paradigm.

4.3 Main Theorems

4.3.1 Optimization Error EO

Theorem 1 Under Assumptions 1∼3, let participation ratio is N/C where 1 < N < C, let the
learning rate satisfy η ≤ min

{
N

2CKL ,
1

NKL

}
where K ≥ 2, let the relaxation coefficient β ≤

√
2

12 ,
and after training T rounds, the global model wt generated by FedInit satisfies:

1

T

T−1∑
t=0

E∥f(wt)∥2 ≤
2
(
f(w0)− f(w⋆)

)
ληKT

+
κ2ηL

λN
σ2
l +

3κ1ηKL

λN
G2, (9)

where λ ∈ (0, 1), κ1 = 1300β2

1−72β2 + 17, and κ2 = 1020β2

1−72β2 + 13 are three constants. Further, by

selecting the proper learning rate η = O(
√

N
KT ) and let D = f(w0)− f(w⋆) as the initialization

bias, the global model wt satisfies:

1

T

T−1∑
t=0

E∥f(wt)∥2 ≤ O

(
D + L

(
σ2
l +KG2

)
√
NKT

)
. (10)

Theorem 1 provides the convergence rate of the FedInit method without the PŁ-condition, which
could achieve the O(1/

√
NKT ) with the linear speedup of N×. The dominant term of the training

convergence rate is the heterogeneous bias G, which is K× larger than the initialization bias D and
stochastic bias σl. According to the formulation (10), by ignoring the initialization bias, the best
local interval K = O(σ2

l /G
2). This selection also implies that when G increases, which means the

local heterogeneity increases, the local interval K is required to decrease appropriately to maintain
the same efficiency. More importantly, though FedInit adopts a weighted bias on the initialization
state at the beginning of each communication round, the divergence term E∥wt−1

i,K − wt∥2 does not
affect the convergence bound whether β is 0 or not. This indicates that the FL paradigm allows a di-
vergence of local clients from the optimization perspective. Proof details are stated in Appendix A.2.3.

Theorem 2 Under Assumptions 1∼3 and 5, let participation ratio is N/C where 1 < N < C, let

the learning rate satisfy η ≤ min
{

N
2CKL ,

1
NKL ,

1
λµK

}
where K ≥ 2, let the relaxation coefficient

β ≤
√
2

12 , and after training T rounds, the global model wt generated by FedInit satisfies:

E[f(wT )− f(w⋆)] ≤ e−λµηKTE[f(w0)− f(w⋆)] +
3κ1ηKL

2Nλµ
G2 +

κ2ηL

2Nλµ
σ2
l , (11)

where λ, κ1, κ2 is defined in Theorem 1. Further, by selecting the proper learning rate η =

O( log(λµNKT )
λµKT ) and let D = f(w0)− f(w⋆) as the initialization bias, the global model wt satisfies:

E[f(wT )− f(w⋆)] = Õ
(
D + L(σ2

l +KG2)

NKT

)
. (12)

To bound the EO term, we adopt Assumption 5 and prove that FedInit method could achieve the
O(1/NKT ) rate where we omit the O(log(NKT )) term. It maintains the properties stated in the
Theorem 1. Detailed proofs of the convergence bound are stated in Appendix A.2.4.

4.3.2 Generalization Error EG

Uniform Stability. One powerful analysis of the generalization error is the uniform stability [11, 21,
50]. It says, for a general proposed method, its generalization error is always lower than the bound
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of uniform stability. We assume that there is a new set C̃ where C and C̃ differ in at most one data
sample on the i⋆-th client. Then we denote the wT and w̃T as the generated model after training T
rounds on these two sets, respectively. Thus, we have the following lemma:
Lemma 1 (Uniform Stability. [11]) For the two models wT and w̃T generated as introduced above,
a general method satisfies ϵ-uniformly stability if:

sup
zj∼{Di}

E[f(wT ; zj)− f(w̃T ; zj)] ≤ ϵ. (13)

Moreover, if a general method satisfies ϵ-uniformly stability, then its generalization error satisfies
EG ≤ supzj∼{Di} E[f(w

T ; zj)− f(w̃T ; zj)] ≤ ϵ [50].

Theorem 3 Under Assumptions 1, 2, 4, and 5, let all conditions above be satisfied, let learning rate
η = O( 1

KT ) =
c
T where c = µ0

K is a constant, and let |Si| = S as the number of the data samples,
by randomly selecting the sample z, we can bound the uniform stability of our proposed FedInit as:

E∥f(wT+1; z)− f(w̃T+1; z)∥

≤ 1

S − 1

[
2(L2

G + SLGσl)(UTK)cL

L

] 1
1+cL

+ (1 + β)
1

βcL

[
ULTK

2(L2
G + SLGσl)

] cL
1+cL

T∑
t=1

√
∆t

T
,

(14)

where U is a constant and ∆t = 1
C

∑
i∈C E∥w

t−1
i,K − wt∥2 is the divergence term at round t.

For the generalization error, Theorem 3 indicates that EG term contains two main parts. The first
part comes from the stochastic gradients as the vanilla centralized training process [11], which is
of the order O((TK)

cL
1+cL /S). The constant c is of the order O(1/K) as c = µ0

K , thus we have
cL

1+cL = µ0L
K+µ0L

. If we assume the µ0L is generally small, we always expect to adopt a larger
K in the FL paradigm to reduce generalization error. For instance, if we select K → ∞, then
O((TK)

cL
1+cL /S) → O(T

cL
1+cL /S) which is a very strong upper bound of the generalization error.

However, the selection of local interval K must be restricted from the optimization conditions and
we will discuss the details in Section 4.3.4. In addition, the second part in Theorem 3 comes from
the divergence term, which is a unique factor in the FL paradigm. As we mentioned above, the
divergence term measures the authentic client-drift in the training process. The divergence term is
not affected by the number of samples S and it is only related to the proposed method and the local
heterogeneity of the dataset. Proof details are stated in Appendix A.3.

4.3.3 Divergence Term

In the former two parts, we provide the complete theorem to measure optimization error EO and
generalization error EG. And we notice that, in the FL paradigm, the divergence term mainly affects
the generalization ability of the model instead of the optimization convergence. In this part, we
focus on the analysis of the divergence term of our proposed FedInit method. Due to the relaxed
initialization at the beginning of each communication round, according to the Algorithm 1, we have
wt

i,K = wt + β(wt − wt−1
i,K )− η

∑K−1
k=0 gti,k. Thus, we have the following recursive relationship:

wt+1 − wt
i,K︸ ︷︷ ︸

local divergence at t + 1

= β (wt−1
i,K − wt)︸ ︷︷ ︸

local divergence at t

+(wt+1 − wt)︸ ︷︷ ︸
global update

+

K−1∑
k=0

ηgti,k︸ ︷︷ ︸
local updates

. (15)

According to the formulation (15), we can bound the divergence ∆t via the following two theorems.
Theorem 4 Under Assumptions 1∼3, we can bound the divergence term as follows. Let the learning
rate satisfy η ≤ min

{
N

2CKL ,
1

NKL ,
√
N√

CKL

}
where K ≥ 2, and after training T rounds, let

0 < β <
√
6

24 , the divergence term {∆t} generated by FedInit satisfies:

1

T

T−1∑
t=0

∆t = O

(
N(σ2

l +KG2)

T
+

√
NKB2

[
D + L(σ2

l +KG2)
]

T
3
2

)
. (16)

Theorem 4 points out the convergence order of the divergence ∆t generated by FedInit during the
training process. This bound matches the conclusion in Theorem 1 with the same learning rate. The
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dominant term achieves the O(NK/T ) rate on the heterogeneity bias G. It could be seen that the
number of selected clients N will inhibit its convergence and the local consistency linearly increases
with N . Different from the selection in Theorem 1, local interval K is expected as small enough to
maintain the high consistency. Also, the initialization bias D is no longer dominant in consistency.
We omit the constant weight 1

1−96β2 in this upper bound. Proof details are stated in Appendix A.2.5.

Theorem 5 Under Assumptions 1∼3 and 5, we can bound the divergence term as follows. Let the
learning rate satisfy η ≤ min

{
N

2CKL ,
1

NKL ,
1

λµK

}
where K ≥ 2, and after training T rounds, let

0 < β <
√
6

24 , the divergence term ∆T generated by FedInit satisfies:

∆T = Õ
(
D +G2

T 2
+

Nσ2
l +KG2

NKT 2
+

1

NKT 3

)
. (17)

Theorem 5 indicates the convergence of the divergence ∆ under the PŁ-condition which matches the
conclusion in Theorem 2 with the same learning rate selection. Assumption 5 establishes a relationship
between the gradient norm and the loss difference on the non-convex function f . Different from the
Theorem 4, the initialization bias D and the heterogeneous bias G are the dominant terms. Under
Assumption 5, the FedInit supports a larger local interval K in the training process. This conclusion
also matches the selection of K in Theorem 2. When the model converges, FedInit guarantees the
local models towards the global optimum under at least O(1/T 2) rate. Similarly, we omit the constant
weight 1

1−96β2 and we will discuss the β in Section 4.3.4. Proof details are stated in Appendix A.2.6.

4.3.4 Excess Risk

In this part, we analyze the excess risk EE of FedInit method. According to the theorems above,

Theorem 6 Under Assumption 1∼5, let the participation ratio is N/C where 1 < N < C, let
the learning rate satisfies η ≤ min{ N

2CKL ,
1

NKL ,
1

λµK , } where K ≥ 2, let the relaxed coefficient

0 ≤ β <
√
6

24 , and let |Si| = S. By selecting the learning rate η = O( log(λµNKT )
λµKT ) ≤ c

t , after
training T communication rounds, the excess risk of the FedInit method achieves:

EE ≤ Õ
(
D + L(σ2

l +KG2)

NKT

)
︸ ︷︷ ︸

optimization bias

+O
(
1

S

[
σl(TK)cL

] 1
1+cL

)
︸ ︷︷ ︸

stability bias

+ Õ

(√
D +G2K

cL
1+cL

T
1

1+cL

)
︸ ︷︷ ︸

divergence bias

. (18)

According to the Theorems 2, 3, and 5, we combine their dominant terms to upper bound the excess
risk of FedInit method. The first term comes from the optimization error, the second term comes from
the stability bias, and the third term comes from the divergence bias. From the perspective of excess
risk, the main restriction in the FL paradigm is the divergence term with the bound of Õ( 1

T
1

1+cL
).

The second term of excess risk matches the conclusion in SGD [11, 51] which relies on the number
S. Our analysis of the excess risk reveals two important corollaries in FL:

• From the perspective of optimization, the FL paradigm is insensitive to local consistency in
the training process (Theorems 1&2).

• From the perspective of generalization, the local consistency level significantly affects the
performance in the FL paradigm (Theorem 6).

Then we discuss the best selection of the local interval K and relaxed coefficient β.

Selection of K. In the first term, to minimize the optimization error, the local interval K is required to
be large enough. In the second term, since cL

1+cL ≤ 1, the upper bound expects a small local interval
K. In the third term, since 1

1+cL = K
K+µ0L

< 1, it expects a large K to guarantee the order of T to
approach O(1/T ), where the divergence bias could maintain a high-level consistency. Therefore,
there is a specific optimal constant selection for K > 1 to minimize the excess risk.

Selection of β. As the dominant term, the coefficient of the divergence bias also plays a key role in
the error bound. In Theorem 5, the constant weight we omit for the divergence term ∆T is 1

1−96β2 .

Thus the coefficient of
√
∆T is 1√

1−96β2
. Combined with Theorem 3, we have the coefficient for the

7



Table 1: Test accuracy (%) on the CIFAR-10/100 dataset. We test two participation ratios on each
dataset. Under each setup, we test two Dirichlet splittings, and each result test for 3 times. This table
reports results on ResNet-18-GN (upper part) and VGG-11 (lower part) respectively.

Method

CIFAR-10 CIFAR-100

10%-100 clients 5%-200 clients 10%-100 clients 5%-200 clients

Dir-0.6 Dir-0.1 Dir-0.6 Dir-0.1 Dir-0.6 Dir-0.1 Dir-0.6 Dir-0.1

FedAvg 78.77±.11 72.53±.17 74.81±.18 70.65±.21 46.35±.15 42.62±.22 44.70±.22 40.41±.33

FedAdam 76.52±.14 70.44±.22 73.28±.18 68.87±.26 48.35±.17 40.77±.31 44.33±.26 38.04±.25

FedSAM 79.23±.22 72.89±.23 75.45±.19 71.23±.26 47.51±.26 43.43±.12 45.98±.27 40.22±.27

SCAFFOLD 81.37±.17 75.06±.16 78.17±.28 74.24±.22 51.98±.23 44.41±.15 50.70±.29 41.83±.29

FedDyn 82.43±.16 75.08±.19 79.96±.13 74.15±.34 50.82±.19 42.50±.28 47.32±.21 41.74±.21

FedCM 81.67±.17 73.93±.26 79.49±.17 73.12±.18 51.56±.20 43.03±.26 50.93±.19 42.33±.19

FedInit 83.11±.29 75.95±.19 80.58±.20 74.92±.17 52.21±.09 44.22±.21 51.16±.18 43.77±.36

FedAvg 85.28±.12 78.02±.22 81.23±.14 74.89±.25 53.46±.25 50.53±.20 47.55±.13 45.05±.33

FedAdam 86.44±.13 77.55±.28 81.05±.23 74.04±.17 55.56±.29 53.41±.18 51.33±.25 47.26±.21

FedSAM 86.37±.22 79.10±.07 81.76±.26 75.22±.13 54.85±.31 51.88±.27 48.65±.21 46.58±.28

SCAFFOLD 87.73±.17 81.98±.19 84.81±.15 79.04±.16 59.45±.17 56.67±.24 53.73±.32 50.08±.19

FedDyn 87.35±.19 82.70±.24 84.84±.19 80.01±.22 56.13±.18 53.97±.11 51.74±.18 48.16±.17

FedCM 86.80±.33 79.85±.29 83.23±.31 76.42±.36 53.88±.22 50.73±.35 47.83±.19 46.33±.25

FedInit 88.47±.22 83.51±.13 85.36±.19 79.73±.14 58.84±.11 57.22±.21 54.12±.08 50.27±.29

divergence term in formulation (18) is (1+β)
1

βcL√
1−96β2

. Therefore, to minimize this term, there is a specific

optimal constant selection for 0 < β <
√
6

24 . We validate their selections in Section 5.2.

5 Experiments

In this part, we introduce our empirical studies. Due to the page limitations, the details of the dataset,
hyperparameters selection, implementation, and some extra ablation studies are stated in Appendix B.

Benchmarks. Our selected benchmarks in this paper are stated as follows. FedAvg [26] proposes
the general FL paradigm. FedAdam [30] studies the efficiency of adaptive optimizer in FL. SCAF-
FOLD [19], FedDyn [1], and FedCM [46] learn the “client-drift" problem and adopt the variance
reduction technique, ADMM, and client-level momentum respectively in FL to alleviate its negative
impact. FedSAM [29] uses the local SAM objective instead of the vanilla empirical risk objective to
search for a smooth loss landscape, which focuses on the generalization performance.

Setups. Here we briefly introduce the setups in our experiments. We test our proposed FedInit on
the CIFAR-10 /100 dataset [20]. To generate local heterogeneity, we follow Hsu et al. [14] to split
the local clients through the Dirichlet sampling via a coefficient Dr to control the heterogeneous
level and follow Sun et al. [38] to adopt the sampling with replacement to enhance the heterogeneity
level. We test on the ResNet-18-GN [12, 13] and VGG-11 [35] to validate its efficiency. Actually,
when the heterogeneity is strong, the performance of personalized initialization will be better. To
better demonstrate the performance of our proposed method, we add additional noises to the dataset.
Specifically, we first introduce the client-based biases. Among clients, we assume that the data
samples are obtained differently. Because the local dataset is private and its construction is unknown,
i.e., they are collected from different machines or cameras. Therefore, we change the strength of
the RGB channels with a random Gaussian noise for different clients. The second noise is the
category-based biases. We assume that samples for each category also contain heterogeneity. In our
experiments, we add different brightness perturbations to the samples in each category by a random
Gaussian noise. Based on these two noises, the heterogeneity of the local dataset is significantly
enlarged. In this more realistic dataset, we can clearly observe the performance of each algorithm.

For each benchmark in our experiments, we adopt two coefficients Dr = 0.1 and 0.6 for each dataset
to generate different heterogeneity. We generally select the local learning rate η = 0.1 and global
learning rate η = 1 on all setups except for FedAdam we use 0.1. The learning rate decay is set as
multiplying 0.998 per round except for FedDyn we use 0.999. We train 500 rounds on CIFAR-10
and 800 rounds on CIFAR-100 to achieve stable test accuracy. The participation ratios are selected as
10% and 5% respectively of total 100 and 200 clients. More details are stated in Appendix B.1.
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5.1 Experiment results

In this part, we mainly introduce the experiment results compared with the other benchmarks.

Table 2: We incorporate the relaxed initialization (RI) into the
benchmarks to test improvements on ResNet-18-GN on CIFAR-10
with the same hyperparameters and specific relaxed coefficient β.

Method

10%-100 clients 5%-200 clients

Dir-0.6 Dir-0.1 Dir-0.6 Dir-0.1

- +RI - +RI - +RI - +RI

FedAvg 78.77 83.11 72.53 75.95 74.81 80.58 70.65 74.92
FedAdam 76.52 78.33 70.44 72.55 73.28 78.33 68.87 71.34
FedSAM 79.23 83.36 72.89 76.34 75.45 80.66 71.23 75.08
SCAFFOLD 81.37 83.27 75.06 77.30 78.17 81.02 74.24 76.22
FedDyn 82.43 81.91 75.08 75.11 79.96 79.88 74.15 74.34
FedCM 81.67 81.77 73.93 73.71 79.49 79.72 73.12 72.98

In Table 1, our proposed FedInit
method performs well than the other
benchmarks with good stability across
different experimental setups. On the
results of ResNet-18-GN on CIFAR-
10, it achieves about 3.42% improve-
ment than the vanilla FedAvg on
the high heterogeneous splitting with
Dr = 0.1. When the participation
ratio decreases to 5%, the accuracy
drops only about 0.1% while FedAvg
drops almost 1.88%. Similar results
on CIFAR-100, when the ratio de-
creases, FedInit still achieves 43.77% while the second best method SCAFFOLD drops about 3.21%.
This indicates the proposed FedInit holds good stability on the varies of the participation. In addition,
in Table 2, we incorporate the relaxed initialization (RI) into the other benchmarks to test its benefit.
“-" means the vanilla benchmarks, and “+RI" means adopting the relaxed initialization. It shows that
the relaxed initialization holds the promising potential to further enhance the performance. Actually,
FedInit could be considered as (RI + FedAvg), whose improvement achieves about over 3% on each
setup. Table 1 shows the poor performance of the vanilla FedAvg. Nevertheless, when adopting the
RI, FedInit remains above most benchmarks on several setups. When the RI is incorporated into other
benchmarks, it helps them to achieve higher performance without additional communication costs.

5.2 Ablation

In this part, we mainly introduce the ablation results of different hyperparameters.
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Figure 1: THyperparameters sensitivity studies of lo-
cal intervals K and relaxed coefficient β of the FedInit
method on CIFAR-10. To fairly compare their efficiency,
we fix the total communication rounds T = 500.

Hyperparameters Sensitivity. The excess risk
and test error of FedInit indicate there exists best
selections for local interval K and relaxed co-
efficient β, respectively. In this part, we test a
series of selections to validate our conclusions.
To be aligned with previous studies, we denote
K as training epochs. In Figure 1 (a), we can
see that the selection range of the beta is very
small while it has great potential to improve per-
formance. When it is larger than the threshold,
the training process will diverge quickly. As lo-
cal interval K increases, test accuracy rises first
and then decreases. Our analysis provides a clear explanation of the phenomenon. The optimization
error decreases as K increases when it is small. When K exceeds the threshold, the divergence term
in generalization cannot be ignored. Therefore, the test accuracy will be significantly affected.

Table 3: We test different selections of the relaxed coefficient β
of the FedInit method on CIFAR-10 10%-100 Dir-0.1 splitting to
validate the relationship between test error and consistency after
500 rounds. We fix other hyperparameters as the same selection
above for a fair comparison.

β -0.2 -0.1 0 0.01 0.02 0.05 0.1 0.15

Accuracy (%) 64.70 67.47 72.53 72.82 73.45 74.65 75.95 44.47
∆T 0.873 0.815 0.855 0.875 0.850 0.823 0.760 ∞

Consistency. In this part, we test the
relationship between the test accuracy
and divergence term ∆T under differ-
ent β selections. As introduced in Al-
gorithm 1 Line.6, negative β means to
adopt the relaxed initialization which
is close to the latest local model. Fe-
dInit degrades to FedAvg when β = 0.
Table 3 validates that RI is required to
be far away from the local model (a positive β). When β is small, the correction is limited. The local
divergence term is difficult to be diminished efficiently. While it becomes too large, the local training
begins from a bad initialization, which can not receive enough guidance of global information from
the global models. Furthermore, as shown in Table 3, if the initialization is too far from the local
model, the quality of the initialization state will not be effectively guaranteed.
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5.3 Discussions of Relaxed Initialization

In this part, we mainly discuss the improvements of the proposed relaxed initialization.

In vanilla classical FedAvg and the most advanced methods, at the beginning of each communication
round, we are always caught in a misunderstanding of the high consistency. Because the target of FL
is a globally consistent solution, it is always an involuntary aggregation in the algorithm to ensure
consistency. We prove that this does contribute to the efficiency of the optimization process, but it is
not the best selection for generalization. To better improve the generalization, we prove that a relaxed
initialization state will contribute more. We compare their difference in Figure 5.3.

global model w(t)

global model w(t+1)

local optimum 1

local optimum 2

      global optimum

local relaxed Init. 1

local relaxed Init. 2

FedAvg FedInit

Figure 2: Schematics of the classical FedAvg and our proposed FedInit.

As shown in the above figure, we can clearly see why FedInit contributes more to the consistency.
When we move a little in the opposite direction of the last local optimization state, we will move
further away from local optimal solutions in the current communication round. The working mode of
RI is similar to the idea of "lookahead". Differently, (1) "lookahead" only works at the end of each
stage; (2) "lookahead" only works for the global models on the global server. However, RI helps each
local client to backtrack a small distance at the beginning of each stage. Therefore, after the local
training in the next stage, the trained local models will get closer to each other than before.

6 Conclusion

In this work, we propose an efficient and novel FL method, dubbed FedInit, which adopts the stage-
wise personalized relaxed initialization to enhance the local consistency level. Furthermore, to clearly
understand the essential impact of consistency in FL, we introduce the excess risk analysis in FL
and study the divergence term. Our proofs indicate that consistency dominates the test error and
generalization error bound while optimization error is insensitive to it. Extensive experiments are
conducted to validate the efficiency of relaxed initialization. As a practical and light plug-in, it could
also be easily incorporated into other FL paradigms to improve their performance.

Limitations & Broader Impact. In this work, we analyze the excess risk for the FedInit method
to understand how consistency works in FL. Actually, the relaxed initialization may also work for
the personalized FL (pFL) paradigm. It is a future study to explore its properties in the pFL and
decentralized FL, which may inspire us to design novel efficient algorithms in the FL community.
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[5] Zachary Charles and Jakub Konečnỳ. Convergence and accuracy trade-offs in federated learning and
meta-learning. In International Conference on Artificial Intelligence and Statistics, pages 2575–2583.
PMLR, 2021.

[6] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method with
support for non-strongly convex composite objectives. Advances in neural information processing systems,
27, 2014.

[7] Farzan Farnia, Jesse M Zhang, and David Tse. Generalizable adversarial training via spectral normalization.
arXiv preprint arXiv:1811.07457, 2018.

[8] Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu. Feddc: Federated learning
with non-iid data via local drift decoupling and correction. arXiv preprint arXiv:2203.11751, 2022.

[9] Yonghai Gong, Yichuan Li, and Nikolaos M Freris. Fedadmm: A robust federated deep learning framework
with adaptivity to system heterogeneity. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE), pages 2575–2587. IEEE, 2022.

[10] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local sgd: Unified theory and new efficient methods.
In International Conference on Artificial Intelligence and Statistics, pages 3556–3564. PMLR, 2021.

[11] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In International conference on machine learning, pages 1225–1234. PMLR, 2016.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[13] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-iid data quagmire of
decentralized machine learning. In International Conference on Machine Learning, pages 4387–4398.
PMLR, 2020.

[14] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribu-
tion for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[15] Tiansheng Huang, Li Shen, Yan Sun, Weiwei Lin, and Dacheng Tao. Fusion of global and local knowledge
for personalized federated learning. arXiv preprint arXiv:2302.11051, 2023.

[16] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
Advances in neural information processing systems, 26, 2013.

[17] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[18] Belhal Karimi, Ping Li, and Xiaoyun Li. Layer-wise and dimension-wise locally adaptive federated
learning. arXiv preprint arXiv:2110.00532, 2021.

[19] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In Inter-
national Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

11



[21] Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent. In
International Conference on Machine Learning, pages 2815–2824. PMLR, 2018.

[22] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450, 2020.

[23] Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches, use local
sgd. arXiv preprint arXiv:1808.07217, 2018.

[24] Yixing Liu, Yan Sun, Zhengtao Ding, Li Shen, Bo Liu, and Dacheng Tao. Enhance local consistency in
federated learning: A multi-step inertial momentum approach. arXiv preprint arXiv:2302.05726, 2023.

[25] Grigory Malinovskiy, Dmitry Kovalev, Elnur Gasanov, Laurent Condat, and Peter Richtarik. From local
sgd to local fixed-point methods for federated learning. In International Conference on Machine Learning,
pages 6692–6701. PMLR, 2020.

[26] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017.

[27] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to spectrally-
normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564, 2017.

[28] Emre Ozfatura, Kerem Ozfatura, and Deniz Gündüz. Fedadc: Accelerated federated learning with drift
control. In 2021 IEEE International Symposium on Information Theory (ISIT), pages 467–472. IEEE,
2021.

[29] Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning via
sharpness aware minimization. In International Conference on Machine Learning, pages 18250–18280.
PMLR, 2022.

[30] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
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A Proofs

In this section, we introduce our proofs of the main theorems in the main context. In the first part, we introduce
some assumptions used in our proofs and point out their functions used for which part. In the second part, we
prove the convergence rate and optimization error under the general assumptions. In the third part, we prove the
uniform stability to measure the generalization error and analyze how each term affects the accuracy.

We suppose there are C clients participating in the training process and each has a local heterogeneous dataset.
In each round t, we randomly select N clients to send the global model and they will train K iterations to get N
local models. The local models will be aggregated on the global server as the next global model. After T rounds,
our method generates a global model as the final state. We denote the total client set as C and the selected client
set as N .

A.1 Assumptions

In this part, we state assumptions in our proofs and discuss them. We will introduce each assumption and develop
their corollaries.

Assumption 6 For ∀w1, w2 ∈ Rd, the non-convex local function fi satisfies L-smooth if:

∥∇fi(w1)−∇fi(w2)∥ ≤ L∥w1 − w2∥, (19)

where L is a universal constant.

Assumption 7 For ∀w ∈ Rd, the stochastic gradient is bounded by its expectation and variance as:

E
[
gti,k
]
= ∇fi(w

t
i,k),

E∥gti,k −∇fi(w
t
i,k)∥2 ≤ σ2

l ,
(20)

where σl > 0 is a universal constant.

Assumption 8 For ∀w ∈ Rd, the heterogeneous similarity is bounded on the gradient norm as:

1

C

∑
i∈C

∥∇fi(w)∥2 ≤ G2 +B2∥∇f(w)∥2, (21)

where G ≥ 0 and B ≥ 1 are two universal constants.

Assumption 9 For ∀w1, w2 ∈ Rd, the global function f satisfies LG-Lipschitz if:

∥f(w1)− f(w2)∥ ≤ LG∥w1 − w2∥, (22)

where LG is a universal constant.

Assumption 10 For ∀w ∈ Rd, let w⋆ ∈ argminw f(w), the global function satisfies PŁ-condition if:

2µ (f(w)− f(w⋆)) ≤ ∥∇f(w)∥2, (23)

where µ is a universal positive constant.

Discussion. Assumption 6∼8 are three general assumptions to analyze the non-convex objective in FL, which
is widely used in the previous works [15, 18, 19, 30, 36, 44, 46, 48]. Assumption 9 is used to bound the uniform
stability for the non-convex objective, which is used in [11, 51]. Different from the analysis in the margin-based
generalization bound [27, 29, 31, 38] that focus on understanding how the designed objective affects the final
generalization performance, our work focuses on understanding how the generalization performance changes
in the training process. We consider the entire training process and adopt uniform stability to measure the
global generality in FL and theoretically study the importance of consistency to FL. For the general non-convex
objective, one often uses the gradient norm E∥∇f(w)∥2 instead of the loss difference E [f(w⋆)− f(w)] to
measure the training error. To construct and analyze the excess risk to further understand how the consistency
affects the FL paradigm, we follow [51] to use Assumption 10 to bound the loss distance. Through this, we can
establish a theoretical framework to jointly analyze the trade-off on the optimization and generalization in the
FL paradigm.

A.2 Proofs for the Optimization Error

In this part, we prove the training error for our proposed method. We assume the objective function f(w) =
1
C

∑
i∈C fi(w) is L-smooth w.r.t w. Then we could upper bound the training error in the FL. Some useful

notations in the proof are introduced in the Table 4.

Then we introduce some important lemmas used in the proof.
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Table 4: Some abbreviations of the used terms in the proof of bounded training error.

Notation Formulation Description

wt
i,k - parameters at k-th iteration in round t on client i
wt - global parameters in round t

V t
1

1
C

∑
i∈C

∑K−1
k=0 E∥wt

i,k − wt∥2 averaged norm of the local updates in round t
V t
2 E∥wt+1 − wt∥2 norm of the global updates in round t

∆t 1
C

∑
i∈C E∥w

t−1
i,K − wt∥2 inconsistency/divergence term in round t

D f(w0)− f(w⋆) bias between the initialization state and optimal

A.2.1 Important Lemmas

Lemma 2 (Bounded local updates) We first bound the local training updates in the local training. Under the
Assumptions stated, the averaged norm of the local updates of total C clients could be bounded as:

V t
1 ≤ 4Kβ2∆t + 3K2η2 (σ2

l + 4KG2)+ 12K3η2B2E∥∇f(wt)∥2. (24)

Proof V1 measures the norm of the local offset during the local training stage. It could be bounded by two
major steps. Firstly, we bound the separated term on the single client i at iteration k as:

Et∥wt − wt
i,k∥2

= Et∥wt − wt
i,k−1 + η

(
gti,k−1 −∇fi(w

t
i,k−1) +∇fi(w

t
i,k−1)−∇fi(w

t) +∇fi(w
t)
)
∥2

≤
(
1 +

1

2K − 1

)
Et∥wt − wt

i,k−1 + η
(
gti,k−1 −∇fi(w

t
i,k−1)

)
∥2

+ 2Kη2Et∥∇fi(w
t
i,k−1)−∇fi(w

t) +∇fi(w
t)∥2

≤
(
1 +

1

2K − 1

)
Et∥wt − wt

i,k−1∥2 + η2Et∥gti,k−1 −∇fi(w
t
i,k−1)∥2

+ 4Kη2Et∥∇fi(w
t
i,k−1)−∇fi(w

t)∥2 + 4Kη2∥∇fi(w
t)∥2

≤
(
1 +

1

2K − 1
+ 4η2KL2

)
Et∥wt − wt

i,k−1∥2 + η2σ2
l + 4Kη2∥∇fi(w

t)∥2

≤
(
1 +

1

K − 1

)
Et∥wt − wt

i,k−1∥2 + η2σ2
l + 4Kη2∥∇fi(w

t)∥2,

where the learning rate is required η ≤
√

2
4(K−1)L

for K ≥ 2.

Computing the average of the separated term on client i, we have:
1

C

∑
i∈C

Et∥wt − wt
i,k∥2

≤
(
1 +

1

K − 1

)
1

C

∑
i∈C

Et∥wt − wt
i,k−1∥2 + η2σ2

l + 4Kη2 1

C

∑
i∈C

∥∇fi(w
t)∥2

≤
(
1 +

1

K − 1

)
1

C

∑
i∈C

Et∥wt − wt
i,k−1∥2 + η2σ2

l + 4Kη2G2 + 4Kη2B2∥∇f(wt)∥2.

Unrolling the aggregated term on iteration k ≤ K. When local interval K ≥ 2,
(
1 + 1

K−1

)k
≤(

1 + 1
K−1

)K
≤ 4. Then we have:

1

C

∑
i∈C

Et∥wt − wt
i,k∥2

≤
k−1∑
τ=0

(
1 +

1

K − 1

)τ (
η2σ2

l + 4Kη2G2 + 4Kη2B2∥∇f(wt)∥2
)

+

(
1 +

1

K − 1

)k
1

C

∑
i∈C

∥wt − wt
i,0∥2

≤ 3(K − 1)
(
η2σ2

l + 4Kη2G2 + 4Kη2B2∥∇f(wt)∥2
)
+ 4β2 1

C

∑
i∈C

Et∥wt − wt−1
i,K ∥2
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≤ 3Kη2 (σ2
l + 4KG2)+ 12K2η2B2∥∇f(wt)∥2 + 4β2∆t.

Summing the iteration on k = 0, 1, · · · ,K − 1,

1

C

∑
i∈C

K−1∑
k=0

Et∥wt − wt
i,k∥2 ≤ 4Kβ2∆t + 3K2η2σ2

l + 12K3η2G2 + 12K3η2B2∥∇f(wt)∥2.

This completes the proof.

Lemma 3 (Bounded global updates) The norm of the global update could be bounded by uniformly sampling.
Under assumptions stated above, let η ≤ 1

KL
, the norm of the global update of selected N clients could be

bounded as:

V t
2 ≤ 15β2

N
∆t +

10η2K

N
σ2
l +

39η2K2

N
G2

+
39η2K2B2

N
E∥∇f(wt)∥2 + η2

CN
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2.

(25)

Proof V2 measures the variance of the global offset after each communication round. We define an indicator
function Ievent = 1 if the event happens. Then, to bound it, we firstly split the expectation term:

E∥wt+1 − wt∥2

= E∥ 1

N

∑
i∈N

wt
i,K − wt∥2

=
1

N2
E∥
∑
i∈N

(wt
i,K − wt)∥2

=
1

N2
E∥
∑
i∈C

(wt
i,K − wt)Ii∈N ∥2

=
1

N2
E∥
∑
i∈C

Ii∈N

[
K−1∑
k=0

ηgti,k + β(wt − wt−1
i,K )

]
∥2

=
η2

NC

∑
i∈C

K−1∑
k=0

E∥gti,k −∇fi(w
t
i,k)∥2 +

1

N2
E∥
∑
i∈C

Ii∈N

[
K−1∑
k=0

η∇fi(w
t
i,k) + β(wt − wt−1

i,K )

]
∥2

≤ η2Kσ2
l

N
+

1

N2
E∥
∑
i∈C

Ii∈N

[
K−1∑
k=0

η∇fi(w
t
i,k) + β(wt − wt−1

i,K )

]
∥2.

To bound the second term, we can adopt the following equation. For the vector xi ∈ Rd, we have:

E∥
∑
i∈C

Ii∈Nxi∥2 = E⟨
∑
i∈C

Ii∈Nxi,
∑
j∈C

Ij∈Nxj⟩

=
∑

(i̸=j)∈C

E⟨Ii∈Nxi, Ij∈Nxj⟩+
∑

(i=j)∈C

E⟨Ii∈Nxi, Ij∈Nxj⟩

=
∑

(i̸=j)∈C

E⟨Ii∈Nxi, Ij∈Nxj⟩+
∑

(i=j)∈C

E⟨Ii∈Nxi, Ij∈Nxj⟩

=
N(N − 1)

C(C − 1)

∑
(i̸=j)∈C

E⟨xi, xj⟩+
N

C

∑
(i=j)∈C

E⟨xi, xj⟩

=
N(N − 1)

C(C − 1)

∑
i,j∈C

E⟨xi, xj⟩+
N(C −N)

C(C − 1)

∑
(i=j)∈C

E⟨xi, xj⟩

=
N(N − 1)

C(C − 1)
E∥
∑
i∈C

xi∥2 +
N(C −N)

C(C − 1)

∑
i∈C

E∥xi∥2.

We firstly bound the first term in the above equation. Taking xi =
∑K−1

k=0 η∇fi(w
t
i,k) + β(wt − wt−1

i,K ) into
E∥
∑

i∈C xi∥2, we have:

E∥
∑
i∈C

[
K−1∑
k=0

η∇fi(w
t
i,k) + β(wt − wt−1

i,K )

]
∥2 = η2E∥

∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2.
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Then we bound the second term in above equation. Taking xi =
∑K−1

k=0 η∇fi(w
t
i,k) + β(wt − wt−1

i,K ) into∑
i∈C E∥xi∥2, we have:

∑
i∈C

E∥
K−1∑
k=0

η∇fi(w
t
i,k) + β(wt − wt−1

i,K )∥2

=
∑
i∈C

E∥
K−1∑
k=0

[
η∇fi(w

t
i,k) +

β

K
(wt − wt−1

i,K )

]
∥2

≤ K
∑
i∈C

K−1∑
k=0

E∥η∇fi(w
t
i,k) +

β

K
(wt − wt−1

i,K )∥2

= K
∑
i∈C

K−1∑
k=0

E∥η∇fi(w
t
i,k)− η∇fi(w

t) + η∇fi(w
t) +

β

K
(wt − wt−1

i,K )∥2

≤ 3η2KL2
∑
i∈C

K−1∑
k=0

E∥wt
i,k − wt∥2︸ ︷︷ ︸

CV t
1

+3η2K2
∑
i∈C

E∥∇fi(w
t)∥2 + 3β2

∑
i∈C

E∥(wt − wt−1
i,K )∥2︸ ︷︷ ︸

C∆t

≤ 3Cη2KL2V t
1 + 3Cβ2∆t + 3Cη2K2G2 + 3Cη2K2B2E∥∇f(wt)∥2.

We bound all the components in V t
2 term. Let 1 ≤ N < C, to generate the final bound, summarizing the

inequalities all above and adopting the bounded V t
1 in Lemma 2, then we have:

V t
2 ≤ η2Kσ2

l

N
+

1

N2
E∥
∑
i∈C

Ii∈N

[
K−1∑
k=0

η∇fi(w
t
i,k) + β(wt − wt−1

i,K )

]
∥2

≤ η2Kσ2
l

N
+

3(C −N)

N(C − 1)
(η2KL2V t

1 + β2∆t + η2K2G2 + η2K2B2E∥∇f(wt)∥2)

+
(N − 1)

CN(C − 1)
η2E∥

∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2

≤ η2Kσ2
l

N
+

3

N

(
β2∆t + η2K2G2 + η2K2B2E∥∇f(wt)∥2

)
+

η2

CN
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2

+
3

N

(
4η2K2L2β2∆t + 3K3η4L2 (σ2

l + 4KG2)+ 12K4η4L2B2E∥∇f(wt)∥2
)

=
3β2

N

(
1 + 4η2K2L2)∆t +

η2K

N

(
1 + 9K2η2L2)σ2

l +
3η2K2

N

(
1 + 12η2K2L2)G2

+
3η2K2B2

N

(
1 + 12η2K2L2)E∥∇f(wt)∥2 + η2

CN
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2.

To minimize the coefficients of each term, we can select a constant order for the term η2K2L2. For convenience,
we directly select the η2K2L2 ≤ 1 which requires the learning rate η ≤ 1

KL
. This completes the proof.

Lemma 4 (Bounded divergence term) The divergence term ∆t could be upper bounded by the local update
rules. According to the relaxed initialization in our method, under assumptions stated above, let the learning
rate satisfy η ≤ 1

KL
and the relaxed coefficient satisfy β ≤

√
2

12
, the divergence term ∆t could be bounded as

the recursion of:

∆t ≤ ∆t −∆t+1

1− 72β2
+

51η2K

1− 72β2
σ2
l +

195η2K2

1− 72β2
G2 +

195η2K2B2

1− 72β2
E∥∇f(wt)∥2

+
3η2

CN(1− 72β2)
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2.

(26)

Proof The divergence term measures the inconsistency level in the FL framework. According to the local
updates, we have the following recursive formula:

wt+1 − wt
i,K︸ ︷︷ ︸

local bias in round t + 1

= β (wt−1
i,K − wt)︸ ︷︷ ︸

local bias in round t

+(wt+1 − wt) +

K−1∑
k=0

ηgti,k.
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By taking the squared norm and expectation on both sides, we have:

E∥wt+1 − wt
i,K∥2 = E∥β(wt−1

i,K − wt) + wt+1 − wt +

K−1∑
k=0

ηgti,k∥2

≤ 3β2E∥wt−1
i,K − wt∥2 + 3E∥wt+1 − wt∥2︸ ︷︷ ︸

V t
2

+3E∥
K−1∑
k=0

ηgti,k∥2.

The second term in the above inequality is V2 we have bounded in lemma 3. Then we bound the stochastic
gradients term. We have:

E∥
K−1∑
k=0

ηgti,k∥2 = η2E∥
K−1∑
k=0

gti,k∥2

= η2E∥
K−1∑
k=0

(
gti,k −∇fi(w

t
i,k)
)
∥2 + η2E∥

K−1∑
k=0

∇fi(w
t
i,k)∥2

≤ η2Kσ2
l + η2K

K−1∑
k=0

E∥∇fi(w
t
i,k)−∇fi(w

t) +∇fi(w
t)∥2

≤ η2Kσ2
l + 2η2K

K−1∑
k=0

E∥∇fi(w
t
i,k)−∇fi(w

t)∥2 + 2η2K

K−1∑
k=0

E∥∇fi(w
t)∥2

≤ η2Kσ2
l + 2η2KL2

K−1∑
k=0

E∥wt
i,k − wt∥2 + 2η2K2E∥∇fi(w

t)∥2.

Taking the average on client i, we have:

1

C

∑
i∈C

E∥
K−1∑
k=0

ηgti,k∥2 ≤ η2Kσ2
l +

2η2KL2

C

∑
i∈C

K−1∑
k=0

E∥wt
i,k − wt∥2 + 2η2K2

C

∑
i∈C

E∥∇fi(w
t)∥2

≤ η2Kσ2
l + 2η2KL2V t

1 + 2η2K2G2 + 2η2K2B2E∥∇f(wt)∥2.

Recalling the condition of η ≤ 1
KL

and combining this and the squared norm inequality, we have:

∆t+1 =
1

C

∑
i∈C

E∥wt+1 − wt
i,K∥2

≤ 3β2∆t + 3V t
2 +

3

C

∑
i∈C

E∥
K−1∑
k=0

ηgti,k∥2

≤ 3β2

(
1 +

15

N
+ 8η2K2L2

)
∆t + 6η2K2B2

(
1 +

39

2N
+ 12η2K2L2

)
E∥∇f(wt)∥2

+ 3η2K

(
1 +

10

N
+ 6η2K2L2

)
σ2
l + 6η2K2

(
1 +

39

2N
+ 12η2K2L2

)
G2

+
3η2

CN
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2

≤ 72β2∆t + 51η2Kσ2
l + 195η2K2G2 + 195η2K2B2E∥∇f(wt)∥2

+
3η2

CN
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2.

Let 72β2 < 1 where β ≤
√
2

12
, thus we add (1− 72β2)∆t on both sides and get the recursive formulation:

(1− 72β2)∆t ≤ (∆t −∆t+1) + 51η2Kσ2
l + 195η2K2G2 + 195η2K2B2E∥∇f(wt)∥2

+
3η2

CN
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2.

Then we multiply the 1
1−72β2 on both sides, which completes the proof.
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A.2.2 Expanding the Smoothness Inequality for the Non-convex Objective

For the non-convex and L-smooth function f , we firstly expand the smoothness inequality at round t as:

E[f(wt+1)− f(wt)]

≤ E⟨∇f(wt), wt+1 − wt⟩+ L

2
E∥wt+1 − wt∥2︸ ︷︷ ︸

V t
2

= E⟨∇f(wt),
1

N

∑
i∈N

wt
i,K − wt⟩+ LV t

2

2

= E⟨∇f(wt),
1

C

∑
i∈C

[
(wt

i,K − wt
i,0) + β(wt − wt−1

i,K )
]
⟩+ LV t

2

2

= −ηE⟨∇f(wt),
1

C

∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)−

1

C

∑
i∈C

K−1∑
k=0

∇fi(w
t) +K∇f(wt)⟩+ LV t

2

2

= −ηKE∥f(wt)∥2 + E⟨
√

ηK∇f(wt),

√
η

K

1

C

∑
i∈C

K−1∑
k=0

(
∇fi(w

t)−∇fi(w
t
i,k)
)
⟩+ LV t

2

2

≤ −ηKE∥f(wt)∥2 + ηK

2
E∥f(wt)∥2 + η

2C

∑
i∈C

K−1∑
k=0

E∥∇fi(w
t)−∇fi(w

t
i,k)∥2

− η

2C2K
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2 +

LV t
2

2

≤ −ηK

2
E∥f(wt)∥2 + ηL2

2

1

C

∑
i∈C

K−1∑
k=0

E∥wt − wt
i,k∥2︸ ︷︷ ︸

V t
1

− η

2C2K
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2 +

LV t
2

2

≤ −ηK

2
E∥f(wt)∥2 + ηL2V t

1

2
− η

2C2K
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2 +

LV t
2

2
.

According to Lemma 2 and lemma 3 to bound the V t
1 and V t

2 , we can get the following recursive formula:

E[f(wt+1)− f(wt)]

≤ −ηK

2
E∥f(wt)∥2 +

(
η2L

2CN
− η

2C2K

)
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2

+
ηL2

2

[
4Kβ2∆t + 3K2η2 (σ2

l + 4KG2)+ 12K3η2B2E∥∇f(wt)∥2
]

+
3β2L

2N

(
1 + 4η2K2L2)∆t +

η2KL

2N

(
1 + 9K2η2L2)σ2

l +
3η2K2L

2N

(
1 + 12η2K2L2)G2

+
3η2K2B2L

2N

(
1 + 12η2K2L2)E∥∇f(wt)∥2

≤
(

η2L

2CN
− η

2C2K

)
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2 +

3β2L

2N

[
4N

3
ηKL+

(
1 + 4η2K2L2)]∆t

+
η2KL

2N

[
3NηKL+

(
1 + 9η2K2L2)]σ2

l +
3η2K2L

2N

[
4NηKL+

(
1 + 12η2K2L2)]G2

− ηK

2

[
1− 3ηKLB2

N

(
1 + 12η2K2L2)− 12η2K2L2B2

]
E∥f(wt)∥2.

Here we make a comprehensive discussion on the selection of η to simplify the above formula. In fact, in
lemma 2, there is a constraint on the learning rate as η ≤

√
2

4(K−1)L
for K ≥ 2. In lemma 3 and lemma 4, there

is a constraint on the learning rate as η ≤ 1
KL

. To further minimize the coefficient, we select the NηKL to be
constant order. For convenience, we directly select the η ≤ 1

NKL
. Thus, we have:

E[f(wt+1)− f(wt)]

≤ 3β2L

2N

(
4

3
NηKL+ 5

)
∆t +

η2KL

2N
(3NηKL+ 10)σ2

l +
3η2K2L

2N
(4NηKL+ 13)G2
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− ηK

2

(
1− 39ηKLB2

N
− 12η2K2L2B2

)
E∥f(wt)∥2

+

(
η2L

2CN
− η

2C2K

)
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2

<
10β2L(∆t −∆t+1)

(1− 72β2)N
+

3η2K2L

2N

(
1300β2

1− 72β2
+ 17

)
G2 +

η2KL

2N

(
1020β2

1− 72β2
+ 13

)
σ2
l

+

[
30β2η2L

CN2(1− 72β2)
+

η2L

2CN
− η

2C2K

]
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2

− ηK

2

[
1− 39ηKLB2

N
− 3900β2ηKLB2

(1− 72β2)N
− 12η2K2L2B2

]
E∥f(wt)∥2.

Firstly, to remove the gradient term, we follow the [19, 48] and let 30β2η2L
CN2(1−72β2)

+ η2L
2CN

− η
2C2K

≤ 0,
then learning rate η ≤ N

2CKL
. Then, according to the [48], there is a positive constant λ ∈ (0, 1) to satisfy

1− 39ηKLB2

N
− 3900β2ηKLB2

(1−72β2)N
−12η2K2L2B2 > λ > 0. We denote κ1 = 1300β2

1−72β2 +17 and κ2 = 1020β2

1−72β2 +13

as two constants in the formula. Therefore, we have:
ληK

2
E∥f(wt)∥2

≤ E[f(wt)− f(wt+1)] +
10β2L

(1− 72β2)N
(∆t −∆t+1) +

3κ1η
2K2L

2N
G2 +

κ2η
2KL

2N
σ2
l .

A.2.3 Proof of Theorem 1

Theorem 7 Under Assumption 6∼8, let participation ratio is N/C where 1 < N < C, let the learning rate
satisfy η ≤ min

{
N

2CKL
, 1
NKL

}
where K ≥ 2, let the relaxation coefficient β ≤

√
2

12
, and after training T

rounds, the global model wt generated by FedInit satisfies:

1

T

T−1∑
t=0

E∥f(wt)∥2 ≤
2
(
f(w0)− f(w⋆)

)
ληK

+
κ2ηL

λN
σ2
l +

3κ1ηKL

λN
G2. (27)

where λ ∈ (0, 1), κ1 = 1300β2

1−72β2 + 17, and κ2 = 1020β2

1−72β2 + 13 are three constants.

Further, by selecting the proper learning rate η = O(
√

N
KT

) and let D = f(w0)− f(w⋆) as the initialization

bias, the global model wt satisfies:

1

T

T−1∑
t=0

E∥f(wt)∥2 = O

(
D + L

(
σ2
l + 3KG2

)
√
NKT

)
. (28)

Proof According to the expansion of the smoothness inequality, we have:
ληK

2
E∥f(wt)∥2

≤ E[f(wt)− f(wt+1)] +
10β2L

(1− 72β2)N
(∆t −∆t+1) +

3κ1η
2K2L

2N
G2 +

κ2η
2KL

2N
σ2
l .

Taking the accumulation from 0 to T − 1, we have:

1

T

T−1∑
t=0

E∥f(wt)∥2

≤ 2E[f(w0)− f(wT )]

ληKT
+

20β2L

(1− 72β2)ληKNT
(∆0 −∆T ) +

κ2ηL

λN
σ2
l +

3κ1ηKL

λN
G2

≤
2
(
f(w0)− f(w⋆)

)
ληKT

+
κ2ηL

λN
σ2
l +

3κ1ηKL

λN
G2.

We select the learning rate η = O(
√

N
KT

) and let D = f(w0)− f(w⋆) as the initialization bias, then we have:

1

T

T−1∑
t=0

E∥f(wt)∥2 = O

(
D + L

(
σ2
l + 3KG2

)
√
NKT

)
.

This completes the proof.
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A.2.4 Proof of Theorem 2

Theorem 8 Under Assumption 6∼8 and 10, let participation ratio is N/C where 1 < N < C, let the learning

rate satisfy η ≤ min
{

N
2CKL

, 1
NKL

, 1
λµK

}
where K ≥ 2, let the relaxation coefficient β ≤

√
2

12
, and after

training T rounds, the global model wt generated by FedInit satisfies:

E[f(wT )− f(w⋆)] ≤ e−λµηKTE[f(w0)− f(w⋆)] +
3κ1ηKL

2Nλµ
G2 +

κ2ηL

2Nλµ
σ2
l . (29)

Further, by selecting the proper learning rate η = O
(

log(λµNKT )
λµKT

)
and let D = f(w0) − f(w⋆) as the

initialization bias, the global model wt satisfies:

E[f(wT )− f(w⋆)] = O
(
D + L(σ2

l +KG2)

NKT

)
. (30)

Proof According to the expansion of the smoothness inequality, we have:

ληK

2
E∥f(wt)∥2

≤ E[f(wt)− f(wt+1)] +
10β2L

(1− 72β2)N
(∆t −∆t+1) +

3κ1η
2K2L

2N
G2 +

κ2η
2KL

2N
σ2
l .

According to Assumption 10, we have 2µ(f(w)− f(w⋆)) ≤ ∥∇f(w)∥2, we have:

λµηKE[f(wt)− f(w⋆)] ≤ ληK

2
E∥f(wt)∥2

≤ E[f(wt)− f(wt+1)] +
10β2L

(1− 72β2)N
(∆t −∆t+1) +

3κ1η
2K2L

2N
G2 +

κ2η
2KL

2N
σ2
l .

Combining the terms aligned with wt and wt+1, we have:

E[f(wt+1)− f(w⋆)]

≤ (1− λµηK)E[f(wt)− f(w⋆)] +
10β2L

(1− 72β2)N
(∆t −∆t+1) +

3κ1η
2K2L

2N
G2 +

κ2η
2KL

2N
σ2
l .

Taking the recursion from t = 0 to T − 1 and let learning rate η ≤ 1
λµK

, we have:

E[f(wT )− f(w⋆)]

≤ (1− λµηK)TE[f(w0)− f(w⋆)] +

T−1∑
t=0

(1− λµηK)T−1−t 10β2L

(1− 72β2)N
(∆t −∆t+1)

+

(
3κ1η

2K2L

2N
G2 +

κ2η
2KL

2N
σ2
l

) T−1∑
t=0

(1− λµηK)T−1−t

≤ (1− λµηK)TE[f(w0)− f(w⋆)] +
10β2L

(1− 72β2)N
(∆0 −∆T )

+

(
3κ1η

2K2L

2N
G2 +

κ2η
2KL

2N
σ2
l

)
1− (1− λµηK)T

λµηK

≤ (1− λµηK)TE[f(w0)− f(w⋆)] +
3κ1ηKL

2Nλµ
G2 +

κ2ηL

2Nλµ
σ2
l

≤ e−λµηKTE[f(w0)− f(w⋆)] +
3κ1ηKL

2Nλµ
G2 +

κ2ηL

2Nλµ
σ2
l .

We select the learning rate η = O
(

log(λµNKT )
λµKT

)
and let D = f(w0)− f(w⋆) as the initialization bias, then

we have:

E[f(wT )− f(w⋆)] = O
(
D + L(σ2

l +KG2)

NKT

)
.

This completes the proof.

A.2.5 Proof of Theorem 4

Theorem 9 Under Assumption 6∼8, we can bound the divergence term as follows. Let the learning rate satisfy
η ≤ min

{
N

2CKL
, 1
NKL

,
√
N√

CKL

}
where K ≥ 2, and after training T rounds, let 0 < β <

√
6

24
, the divergence
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term ∆t generated by FedInit satisfies:

1

T

T−1∑
t=0

∆t = O

(
N(σ2

l +KG2)

T
+

√
NKB2

[
D + L(σ2

l +KG2)
]

T
3
2

)
. (31)

Proof According to Lemma 4, we have:

∆t+1 ≤ 72β2∆t + 51η2Kσ2
l + 195η2K2G2 + 195η2K2B2E∥∇f(wt)∥2

+
3η2

CN
E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2.

Here we further bound the gradient term, we have:

E∥
∑
i∈C

K−1∑
k=0

∇fi(w
t
i,k)∥2 = E∥

∑
i∈C

K−1∑
k=0

(
∇fi(w

t
i,k)−∇fi(w

t) +∇fi(w
t)
)
∥2

= E∥
∑
i∈C

K−1∑
k=0

(
∇fi(w

t
i,k)−∇fi(w

t) +∇f(wt)
)
∥2

≤ CK
∑
i∈C

K−1∑
k=0

E∥∇fi(w
t
i,k)−∇fi(w

t) +∇f(wt)∥2

≤ 2CK
∑
i∈C

K−1∑
k=0

E∥∇fi(w
t
i,k)−∇fi(w

t)∥2 + 2C2K2E∥∇f(wt)∥2

≤ 2C2KL2V t
1 + 2C2K2E∥∇f(wt)∥2.

Combining this into the recursive formulation, and let the learning rate satisfy η ≤
√
N√

CKL
, we have:

∆t+1 ≤ β2

(
72 +

24Cη2K2L2

N

)
∆t + η2K2B2

(
195 +

72Cη2K2L2

N

)
E∥∇f(wt)∥2

+ η2K

(
51 +

18Cη2K2L2

N

)
σ2
l + η2K2

(
195 +

72Cη2K2L2

N

)
G2

≤ 96β2∆t + 267η2K2B2E∥∇f(wt)∥2 + 69η2Kσ2
l + 267η2K2G2.

Let 96β2 < 1 as the decayed coefficient where β <
√
6

24
, similar as Lemma 4, we have:

∆t ≤ ∆t −∆t+1

1− 96β2
+

267η2K2B2

1− 96β2
E∥∇f(wt)∥2 + 69η2K

1− 96β2
σ2
l +

267η2K2

1− 96β2
G2.

by taking the accumulation from t = 0 to T − 1,

1

T

T−1∑
t=0

∆t ≤ ∆0 −∆T

1− 96β2
+

69η2K

1− 96β2
σ2
l +

267η2K2

1− 96β2
G2 +

267η2K2B2

1− 96β2

1

T

T−1∑
t=0

∥∇f(wt)∥2

≤ 267η2K2B2

1− 96β2

(
2
(
f(w0)− f(w⋆)

)
ληKT

+
κ2ηL

λN
σ2
l +

3κ1ηKL

λN
G2

)

+
69η2K

1− 96β2
σ2
l +

267η2K2

1− 96β2
G2

≤
534ηKB2

(
f(w0)− f(w⋆)

)
(1− 96β2)λT

+
267η3K2B2κ2L

(1− 96β2)λN
σ2
l +

801η3K3B2κ1L

(1− 96β2)λN
G2

+
69η2K

1− 96β2
σ2
l +

267η2K2

1− 96β2
G2.

The same, the learning rate is selected as η = O(
√

N
KT

) and let D = f(w0)− f(w⋆) as the initialization bias

and let 96β2 < 1, thus we have:

1

T

T−1∑
t=0

∆t = O

(
N(σ2

l +KG2)

T
+

√
NKB2

[
D + L(σ2

l +KG2)
]

T
3
2

)
.

This completes this proof.
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A.2.6 Proof of Theorem 5

Theorem 10 Under Assumption 6∼8 and 10, we can bound the divergence term as follows. Let the learning
rate satisfy η ≤ min

{
N

2CKL
, 1
NKL

, 1
λµK

}
where K ≥ 2, and after training T rounds, let 0 < β <

√
6

24
, the

divergence term ∆T generated by FedInit satisfies:

∆T = O
(
D +G2

T 2
+

Nσ2
l +KG2

NKT 2

)
+O

(
1

NKT 3

)
. (32)

Proof According to the Theorem 8, we have:

∆t+1 ≤ 96β2∆t + 267η2K2B2E∥∇f(wt)∥2 + 69η2Kσ2
l + 267η2K2G2.

Taking the recursive formulation from t = 0 to T − 1, we have:

∆T ≤ (96β2)T∆0 +

T−1∑
t=0

(96β2)t
(
267η2K2B2E∥∇f(wt)∥2 + 69η2Kσ2

l + 267η2K2G2)
≤ 69η2Kσ2

l

1− 96β2
+

267η2K2G2

1− 96β2
+ 267η2K2B2

T−1∑
t=0

(96β2)T−1−tE∥∇f(wt)∥2

≤ 69η2Kσ2
l

1− 96β2
+

267η2K2G2

1− 96β2
+

267η2K2B2

1− 96β2

(
κ2ηL

λN
σ2
l +

3κ1ηKL

λN
G2

)
+

534ηKB2

λ

T−1∑
t=0

(96β2)T−1−tE
[
f(wt)− f(wt+1)

]
+

10β2L

(1− 72β2)N
(∆0 −∆T )

≤ 69η2Kσ2
l

1− 96β2
+

267η2K2G2

1− 96β2
+

267B2L

(1− 96β2)λ

(
κ2η

3K2

N
σ2
l +

3κ1η
3K3

N
G2

)
+

534ηKB2

λ

T−1∑
t=0

(96β2)T−1−tE
[
f(wt)− f(w⋆)

]
.

According to the Theorem 11, we have:

E[f(wt)− f(w⋆)] ≤ e−λµηKtE[f(w0)− f(w⋆)] +
3κ1ηKL

2Nλµ
G2 +

κ2ηL

2Nλµ
σ2
l .

Let 96β2 ≤ e−λµηK , thus we have:

534ηKB2

λ

T−1∑
t=0

(96β2)T−1−tE
[
f(wt)− f(w⋆)

]
≤ 267B2L

(1− 96β2)λ2µ

(
κ2η

2K

N
σ2
l +

3κ1η
2K2

N
G2

)
+

534ηKB2

λ
E[f(w0)− f(w⋆)]

T−1∑
t=0

(96β2)T−1−te−λµηKt

≤ 267B2L

(1− 96β2)λ2µ

(
κ2η

2K

N
σ2
l +

3κ1η
2K2

N
G2

)
+

534ηKB2

λ
E[f(w0)− f(w⋆)]e−λµηKT

T−1∑
t=0

e−2λµηKt.

Thus selecting the same learning rate η = O
(

log(λµNKT )
λµKT

)
and let D = f(w0)− f(w⋆) as the initialization

bias, we have:

∆T = O
(
D +G2

T 2
+

Nσ2
l +KG2

NKT 2
+

1

NKT 3

)
.

This completes the proof.
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A.3 Proofs for the Generalization Error

In this part, we prove the generalization error for our proposed method. We assume the objective function
f is L-smooth and LG-Lipschitz as defined in [11, 51]. We follow the uniform stability to upper bound the
generalization error in the FL.

We suppose there are C clients participating in the training process as a set C = {i}Ci=1. Each client has a local
dataset Si = {zj}Sj=1 with total S data sampled from a specific unknown distribution Di. Now we define a
re-sampled dataset S̃i which only differs from the dataset Si on the j⋆-th data. We replace the Si⋆ with S̃i⋆ and
keep other C − 1 local dataset, which composes a new set C̃. From the perspective of total data, C only differs
from the C̃ at j⋆-th data on the i⋆-th client. Then, based on these two sets, our method could generate two output
models, wt and w̃t respectively, after t training rounds. We first introduce some notations used in the proof of
the generalization error.

Table 5: Some abbreviations of the used terms in the proof of bounded training error.

Notation Formulation Description

w - parameters trained with set C
w̃ - parameters trained with set C̃
∆t 1

C

∑
i∈C E∥w

t−1
i,K − wt∥2 inconsistency/divergence term in round t

Then we introduce some important lemmas in our proofs.

A.3.1 Important Lemmas

Lemma 5 (Lemma 3.11 in [11]) We follow the definition in [11, 51] to upper bound the uniform stability term
after each communication round in FL paradigm. Different from their vanilla calculations, FL considers the
finite-sum function on heterogeneous clients. Let non-negative objective f is L-smooth and LG-Lipschitz. After
training T rounds on C and C̃, our method generates two models wT+1 and w̃T+1 respectively. For each data z
and every t0 ∈ {1, 2, 3, · · · , S}, we have:

E∥f(wT+1; z)− f(w̃T+1; z)∥ ≤ Ut0
S

+
LG

C

∑
i∈C

E
[
∥wT

i,K − w̃T
i,K∥ | ξ

]
. (33)

Proof Let ξ = 1 denote the event ∥wt0 − w̃t0∥ = 0 and U = supw,z f(w; z), we have:

E∥f(wT+1; z)− f(w̃T+1; z)∥

= P ({ξ}) E
[
∥f(wT+1; z)− f(w̃T+1; z)∥ | ξ

]
+ P ({ξc}) E

[
∥f(wT+1; z)− f(w̃T+1; z)∥ | ξc

]
≤ E

[
∥f(wT+1; z)− f(w̃T+1; z)∥ | ξ

]
+ P ({ξc}) sup

w,z
f(w; z)

≤ LGE
[
∥wT+1 − w̃T+1∥ | ξ

]
+ UP ({ξc})

= LGE

[
∥ 1

C

∑
i∈C

(wT
i,K − w̃T

i,K)∥ | ξ

]
+ UP ({ξc})

≤ LG

C

∑
i∈C

E
[
∥wT

i,K − w̃T
i,K∥ | ξ

]
+ UP ({ξc}).

Before the j⋆-th data on i⋆-th client is sampled, the iterative states are identical on both C and C̃. Let j̃ is the
index of the first different sampling, if j̃ > t0, then ξ = 1 hold for t0. Therefore, we have:

P ({ξc}) = P ({ξ = 0}) ≤ P (j̃ ≤ t0) ≤
t0
S
,

where j̃ is uniformly selected. This completes the proof.

Lemma 6 (Lemma 1.1 in [51]) Different from their calculations, we prove the similar inequalities on f in
the stochastic optimization. Let non-negative objective f is L-smooth w.r.t w. The local updates satisfy
wt

i,k+1 = wt
i,k − ηgti,k on C and w̃t

i,k+1 = w̃t
i,k − ηg̃ti,k on C̃. If at k-th iteration on each round, we sample the

same data in C and C̃, then we have:

E∥wt
i,k+1 − w̃t

i,k+1∥ ≤ (1 + ηL)E∥wt
i,k − w̃t

i,k∥+ 2ησl. (34)
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Proof In each round t, by the triangle inequality and omitting the same data z, we have:

E∥wt
i,k+1 − w̃t

i,k+1∥
= E∥wt

i,k − ηgti,k − w̃t
i,k − ηg̃ti,k∥

≤ E∥wt
i,k − w̃t

i,k∥+ ηE∥gti,k − g̃ti,k∥
= E∥wt

i,k − w̃t
i,k∥+ ηE∥

(
gti,k −∇fi(w

t
i,k)
)
−
(
g̃ti,k −∇fi(w̃

t
i,k)
)
+
(
∇fi(w

t
i,k)−∇fi(w̃

t
i,k)
)
∥

≤ E∥wt
i,k − w̃t

i,k∥+ ηE∥gti,k −∇fi(w
t
i,k)∥+ ηE∥g̃ti,k −∇fi(w̃

t
i,k)∥+ ηE∥∇fi(w

t
i,k)−∇fi(w̃

t
i,k)∥

≤ (1 + ηL)E∥wt
i,k − w̃t

i,k∥+ 2ησl.

The final inequality adopts assumptions of E∥gti,k − ∇fi(w
t
i,k)∥ ≤

√
E∥gti,k −∇fi(wt

i,k)∥2 ≤ σl. This
completes the proof.

Lemma 7 (Lemma 1.2 in [51]) Different from their calculations, we prove the similar inequalities on f in the
stochastic optimization. Let non-negative objective f is L-smooth and LG-Lipschitz w.r.t w. The local updates
satisfy wt

i,k+1 = wt
i,k − ηgti,k on C and w̃t

i,k+1 = w̃t
i,k − ηg̃ti,k on C̃. If at k-th iteration on each round, we

sample the different data in C and C̃, then we have:

E∥wt
i,k+1 − w̃t

i,k+1∥ ≤ E∥wt
i,k − w̃t

i,k∥+ 2η(σl + LG). (35)

Proof In each round t, let by the triangle inequality and denoting the different data as z and z̃, we have:

E∥wt
i,k+1 − w̃t

i,k+1∥
= E∥wt

i,k − ηgti,k − w̃t
i,k − ηg̃ti,k∥

≤ E∥wt
i,k − w̃t

i,k∥+ ηE∥gti,k − g̃ti,k∥
= E∥wt

i,k − w̃t
i,k∥+ ηE∥gti,k −∇fi(w

t
i,k; z)− g̃ti,k −∇fi(w̃

t
i,k; z̃) +∇fi(w

t
i,k; z)−∇fi(w̃

t
i,k; z̃)∥

≤ E∥wt
i,k − w̃t

i,k∥+ 2ησl + ηE∥∇fi(w
t
i,k; z)−∇fi(w̃

t
i,k; z̃)∥

≤ E∥wt
i,k − w̃t

i,k∥+ 2η(σl + LG).

The final inequality adopts the LG-Lipschitz. This completes the proof.

A.3.2 Bounded Uniform Stability

According to Lemma 5, we firstly bound the recursive stability on k in one round. If the sampled data is the
same, we can adopt Lemma 6. Otherwise, we adopt Lemma 7. Thus we can bound the second term in Lemma 5
as:

E
[
∥wt

i,k+1 − w̃t
i,k+1∥ | ξ

]
= P (z) E

[
∥wt

i,k+1 − w̃t
i,k+1∥ | ξ, z

]
+ P (z̃) E

[
∥wt

i,k+1 − w̃t
i,k+1∥ | ξ, z̃

]
≤
(
1− 1

S

)
(1 + ηL)E

[
∥wt

i,k − w̃t
i,k∥ | ξ

]
+ 2ησl +

1

S
E
[
∥wt

i,k − w̃t
i,k∥ | ξ

]
+

2ηLG

S

=

(
1 +

(
1− 1

S

)
ηL

)
E
[
∥wt

i,k − w̃t
i,k∥ | ξ

]
+

2ηLG

S
+ 2ησl

≤ e(1−
1
S )ηLE

[
∥wt

i,k − w̃t
i,k∥ | ξ

]
+

2ηLG

S
+ 2ησl.

At the beginning of each round t, FL paradigm will aggregate the last state of each client wt−1
i,K , according to our

method, wt
i,0 = wt + β(wt − wt−1

i,K ), thus the relationship between them is:

1

C

∑
i∈C

E∥wt
i,0 − wt−1

i,K ∥ = (1 + β)
1

C

∑
i∈C

E∥wt − wt−1
i,K ∥ ≤ (1 + β)

1

C

∑
i∈C

√
E∥wt − wt−1

i,K ∥2

≤ (1 + β)

√
1

C

∑
i∈C

E∥wt − wt−1
i,K ∥2 ≤ (1 + β)

√
∆t.

It could be seen that if we consider the wt
i,0 − wt−1

i,K as a general update step, it is independent to the dataset.
Hence, we assume a virtual update between wt−1

i,K and wt
i,0 which could be bounded by the divergence term ∆t.

Then we bound the recursive term on t.

We know that before t⋆K + k⋆ = t0, no different data is sampled, which is, wt
i,k+1 = w̃t

i,k+1 for ∀ tK + k ≤
t⋆K + k⋆. After t0 +1, they become different. Thus, when t⋆K + k⋆ > t0, let learning rate ηt to be a constant
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within each round t and η = c
t
, then we have:

1

C

∑
i∈C

E
[
∥wT

i,K − w̃T
i,K∥ | ξ

]
≤
(
2LG

S
+ 2σl

) TK∑
t=t⋆K+k⋆

ηt exp

((
1− 1

S

)
L

TK∑
τ=t

ητ

)

+ (1 + β)
1

βcL

T∑
t=t⋆+1

exp

((
1− 1

S

)
L

TK∑
τ=t

ητ

)
√
∆t.

We adopt the same learning rate η = c
t

where c = µ0
K

is a positive constant, then

1

C

∑
i∈C

E
[
∥wT

i,K − w̃T
i,K∥ | ξ

]

≤ 2c

(
LG

S
+ σl

) TK∑
t=t⋆K+k⋆

1

t
exp

((
1− 1

S

)
cL

TK∑
τ=t

1

τ

)

+ (1 + β)
1

βcL

T∑
t=t⋆+1

exp

((
1− 1

S

)
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A.3.3 Proof of Theorem 3

Theorem 11 Under the Assumptions 6, 7, 9, and 10, let all conditions above satisfied, we can bound the uniform
stability of our proposed FedInit as:
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Proof According to Lemma 5, we have:
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This completes this proof.

B Experiments

In this section, we mainly provide the detailed experimental setups in our paper, including the introduction of
the benchmarks, dataset, hyperparameters selections, and adding some more experiments.

B.1 Setups

Dataset. We follow the previous works and select the CIFAR-10/100 [20] dataset in our experiments. In the
CIFAR-10 dataset, there is a total of 50,000 training images and 10,000 test images which contain 10 categories.
Each data sample is a color image with a size of 32×32. In the CIFAR-100 dataset, there is also a total of
50,000 training images and 10,000 test images. It contains 100 categories of the same size as CIFAR-10. For
their limited resolutions, we only use general data augmentations. On each local heterogeneous dataset, we use
general normalization on the images with specific mean and variance. For the training process, we randomly
crop a 32×32 patch from the vanilla images with a zero padding of 4. For the test process, we use the raw
images.

Heterogeneity. We follow Hsu et al. [14] to introduce the label imbalance as the heterogeneous dataset.
According to the Dirichlet distribution, we first generate a specific vector with respect to a constant Dr to control
its variance level. Usually, heterogeneity becomes stronger when Dr decreases. Then according to the vector,
we sample the images from the training dataset. Here we enable the sampling with replacement to generate the
local dataset, which means the local clients may have the same data sample if they are assigned to the same
category. This is more related to the real scenario. At the same time, it also will lose some data samples, we
assume this case is due to the offline devices. This is a common case because the FL has an unreliable network
connection across the devices.

Benchmarks. In this paper, we use FedAvg [26], FedAdam [30], FedSAM [29], SCAFFOLD [19], FedDyn [1],
and FedCM [46] as the benchmarks. FedAvg propose the general FL paradigm based on the local SGD method.
It allows partial participation training via uniformly selecting a subset of local clients. A series of developments
followed it to improve its performance. FedAdam studies the efficient adaptive optimizer on the global server
update, which extends the scope of the FL paradigm. SCAFFOLD indicates that FL suffers from the client-drift
problem which is due to the inconsistency of local optimum. Beyond this, it uses the variance reduction technique
to further reduce the divergence across the local clients. To further alleviate, FedDyn studies the primal-dual
method via adopting the ADMM to solve the problem. The consistency condition works as a constraint during
the optimization. It proves that when the global model converges, the local objectives will be aligned with
the global one. FedCM proposes an efficient momentum-based method, dubbed client-level momentum. It
communicates the global update as a correction to correct each local update to force the local client updates in a
similar direction. It maintains very high consistency via a biased correction. Therefore, it relies on an accurate
global direction estimation. FedSAM considers the generalization performance. Generally, we adopt empirical
risk minimization (ERM) to perform the optimization process. While the sharpness-aware-minmization (SAM)
studies that it could search for a flat loss landscape. Flatness guarantees a higher generalization performance.
Though our focus is not the generalization, we theoretically prove that even in the FedAvg method divergence
term affects the generalization error bound more than the optimization error bound. From this perspective,
generalization-efficiency methods may also be connected with consistency guarantees. These are all the SOTA
benchmarks in the FL community that concern more on enhancing consistency.

Hyperparameters selection. Here we detail our hyperparameter selection in our experiments. For each
splitting, we fix the total communication rounds T , local interval K, and mini-batchsize for all the benchmarks
and our proposed FedInit. The other selections are stated as follows.

⋆ means different selections according to the specific setups.

We fix the most hyperparameters of testing the whole benchmarks for a fair comparison. The other algorithm-
specific hyperparameters are subjected to specific circumstances. The ResNet-18-GN and VGG-11 adopt the
same set of selections. Then we show algorithm-specific hyperparameters:

Special hyperparameter selections. In the FedAdam method, we test that it is very sensitive to the global
learning rate. Though we report the best selection is 0.1, it still requires some finetuning based on the dataset
and experimental setups. In the FedSAM method, we test it is very sensitive to the perturbation learning rate.
Usually, it should be selected as 0.1 in most cases. However, in some poor-sampling cases, i.e. low participation
ratio, it should be selected as 0.01. In the FedDyn, we test it is very sensitive to the regularization coefficient.
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Table 6: General hyperparameters introductions.

Dataset CIFAR-10 best selection

communication round T 500 -
local interval K 5 -

minibatch 50 -
weight decay 1e−3 -

local learning rate [0.01, 0.1, 0.5, 1] 0.1
global learning rate [0.01, 0.1, 1.0] 1.0/0.1
learning rate decay [0.995, 0.998, 0.9995] 0.998

relaxed coefficient β [0.01, 0.02, 0.05, 0.1, 0.15] 0.1/0.01

Dataset CIFAR-100 best selection

communication round T 500 -
local interval K 5 -

minibatch 50 -
weight decay 1e−3 -

local learning rate [0.01, 0.1, 0.5, 1] 0.1
global learning rate [0.01, 0.1, 1.0] 1.0/0.1
learning rate decay [0.998, 0.9995, 0.9998] 0.998/0.9995

relaxed coefficient β [0.01, 0.02, 0.05, 0.1, 0.15] ⋆

Table 7: Algorithm-specific hyperparameter introductions.

Method specific hyperparameter introduction selection best selection

FedAdam global learning rate adaptive learning rate [0.01, 0.05, 0.1, 1] 0.1
FedSAM perturbation learning rate ascent step update [0.01, 0.1, 1] 0.1
FedDyn regularization coefficient coefficient of prox-term [0.001, 0.01, 0.1, 1] ⋆
FedCM client-level coefficient ratios in local updates [0.05, 0.1, 0.5, 0.9] ⋆

Generally, it adopts the regularization coefficient to be 0.1 on CIFAR-10 and 0.01/0.001 on CIFAR-100. In
FedCM, we select the client-level coefficient as 0.1 which is followed by Xu et al. [46] in most cases. However,
on the VGG-11 model, it fails to converge with a small client-level coefficient.
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B.2 Experiments

B.2.1 Curves

In this section, we show the curves of our results.
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Figure 3: Loss on the CIFAR-10 dataset.
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Figure 4: Loss on the CIFAR-100 dataset.
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Figure 5: Test accuracy on the CIFAR-10 dataset.
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Figure 6: Test accuracy on the CIFAR-100 dataset.

To show the stable accuracy curves, we use the third-party tsmoothie.smoother to smooth the raw curve via
the function ConvolutionSmoother(window_len=100, window_type=‘hanning’). On most setups, our
proposed FedInit achieves the SOTA results. It effectively avoids negative impacts from local overfitting.
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B.2.2 Consistency of Different Initialization

In this part, we mainly test the consistency level of different β. The coefficient β controls the divergence level
of the local initialization states. We select the FedAvg and SCAFFOLD to show the efficiency of the proposed
relaxed initialization.
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Figure 7: Experiments of FedAvg on the CIFAR-10 dataset.
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Figure 8: Experiments of SCAFFOLD on the CIFAR-10 dataset.

These experiments show that the relaxed initialization (RI) effectively reduces the consistency and improves
the test accuracy. In all tests, when β = 0 (green curve), it represents the vanilla method without RI. After
incorporating the RI, the test accuracy achieves at least 2% improvement on each setup.
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B.2.3 Communication, Calculation and Storage Costs

In this part, we mainly compare the communication, calculation, and storage costs theoretically and experimen-
tally. By assuming the total model maintain d dimensions, we summarize the costs of benchmarks and our
proposed FedInit as follows:

Table 8: Communication, calculation, and storage costs per communication round.

Method communication ratio gradient calculation ratio total storage ratio

FedAvg Nd 1× NKd 1× Cd 1×
FedAdam Nd 1× NKd 1× Cd 1×
FedSAM Nd 1× 2NKd 2× 2Cd 2×

SCAFFOLD 2Nd 2× NKd 1× 3Cd 3×
FedDyn Nd 1× NKd 1× 3Cd 3×
FedCM 2Nd 2× NKd 1× 2Cd 3×
FedInit Nd 1× NKd 1× Cd 1×

where N is the number of participating clients, C is the total number of clients, and K is the local training
interval.

Limitations of the benchmarks. From this table, we can see that SCAFFOLD and FedCM both require double
communication costs than the vanilla FedAvg. They adopt the correction term (variance reduction and client-level
momentum) to revise each local iteration. Though this achieves good performance, we must indicate that under
the millions of edge devices in the FL paradigm, this may introduce a very heavy communication bottleneck. In
addition, the FedSAM method considers adopting the local SAM optimizer instead of ERM to approach the flat
minimal. However, it requires double gradient calculations per iteration. For the very large model, it brings a
large calculation cost that can not be neglected. SCAFFOLD and FedDyn are required to store 3× vectors on
each local devices. This is also a limitation for the light device, i.e. mobiles.

We also test the practical wall-clock time on real devices. Our experiment environments are stated as follows:

Table 9: Experiment environments.

GPU CUDA Driver Version CUDA Version Platform

Tesla-V100 (16GB) NVIDIA-SMI 470.57.02 470.57.02 11.4 Pytorch-1.12.1

In the following table, we test the wall-clock time cost of each method:

Table 10: Wall-clock time cost (s/round).

FedAvg FedAdam FedSAM SCAFFOLD FedDyn FedCM FedInit

10%-100 19.38 23.22 30.23 28.61 23.84 22.63 20.41
ratio 1× 1.19× 1.56× 1.47× 1.23× 1.17× 1.05×

5%-200 15.87 17.50 22.18 24.49 20.61 18.19 16.14
ratio 1× 1.10× 1.40× 1.54× 1.30× 1.15× 1.02×

From this table, due to the different communication costs and calculation costs, the practical wall-clock time is
different for each method. Generally, FedAvg adopts the local-SGD updates without any additional calculations.
FedAdam adopts similar local-SGD updates and an adaptive optimizer on the global server. FedSAM calculation
double gradients, which is the main reason for being slowest among the benchmarks. SCAFFOLD, FedDyn, and
FedCM are required to calculate some additional vectors to correct the local updates. Therefore they need some
additional time costs. Our proposed FedInit only adopts an additional initialization calculation, which requires
the same costs as FedAvg.
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B.2.4 Training Efficiency: Communication Rounds and Time Costs

In this part, we mainly show the results of the training efficiency. We set the target accuracy and compare their
required communication rounds and training time respectively. We test on the ResNet-18-GN model with the
10%-100 Dir-0.1 splitting.

Table 11: We train 500 rounds on CIFAR-10 and 800 rounds on CIFAR-100. “-" means the corresponding
method can not achieve the target accuracy during the training processes.

Method

CIFAR-10 (≥70%) CIFAR-100 (≥30%)

Round Time (s) Round Time (s)

Speed Ratio Speed Ratio Speed Ratio Speed Ratio

FedAvg 371 1× 7189 1× 191 1× 3701 1×
FedAdam 489 0.76× 11354 0.63× 256 0.74× 5944 0.62×
FedSAM 377 0.98× 11396 0.63× 204 0.93× 6166 0.60×
SCAFFOLD 248 1.50× 7095 1.01× 211 0.90× 6036 0.61×
FedDyn 192 1.93× 4577 1.57× 122 1.56× 2908 1.27×
FedCM 183 2.02× 4141 1.73× 95 2.01× 2149 1.72×
FedInit 172 2.15× 3510 2.04× 132 1.44× 2694 1.37×

The setups of the test environment are stated in Table 9. According to this table, we clearly see that some
advanced methods, i.e. SCAFFOLD and FedDyn, are efficient on the communication round T . However, due to
the additional costs of each training iteration, they must spend more time on the total training. FedInit is a very
light and practical method, which only adopts a relaxed initialization on the FedAvg method, which makes it to
be better and even achieves SOTA results.
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