
A Theia Model Architecture494

Backbone. We use the DeiT-Tiny, DeiT-Small, and DeiT-Base models [39] as our backbone archi-495

tectures. We keep the [CLS] token in the model and in the forward pass, but there is no supervisory496

signal provided for it. As a result, the [CLS] token serves as a “register token” [24], which provides497

some benefits for learning high quality representations. We train Theia from scratch (no pre-trained498

DeiT [39] weights are applied).499

Feature Translators. The feature translators are composed primarily of CNNs, with a linear500

layer appended at the end to match the teacher’s representation dimension. Pure linear transforms501

might not be able to map Theia-representations to all three teacher representations well, resulting in502

a failure of learning (See Table 6a). Thus, we use three CNN layers to account for the fact that each503

teacher model’s representations are very different from one another. Details are listed in Table 4,504

where we show the architectural details of the translators used for our (student, teacher)-feature505

pairs.

Table 4: Feature Translator configurations
Student ds ⇥ 14⇥ 14 (Theia backbone=ViT-T, -S, -B) to Teacher dt ⇥ 16⇥ 16 (CLIP, DINOv2, ViT)

ConvTranspose2d(ds, ds, kernel size=3, stride=1, output padding=0)
LayerNorm
Conv2d(ds, ds, kernel size=3, padding=1)
ReLU+LayerNorm
Conv2d(ds, ds, kernel size=3, padding=1)
ReLU+LayerNorm
Flatten and Linear(ds, dt)

Student ds ⇥ 14⇥ 14 to Teacher dt ⇥ 64⇥ 64 (SAM and Depth-Anything)

ConvTranspose2d(ds, ds, kernel size=3, stride=2, padding=1
LayerNorm
ConvTranspose2d(ds, ds, kernel size=3, stride=2, output padding=1)
ReLU+LayerNorm
Conv2d(ds, ds, kernel size=3, padding=1)
ReLU+LayerNorm
Flatten and Linear(ds, dt)

506

B Training507

We train Theia on 8 NVIDIA H100 GPUs. The main bottlenecks in training are the data transfer508

speed between devices and the GPU memory bandwidth to load large spatial feature tensors, for509

example, of size 1280⇥16⇥16 for ViT-H and 256⇥64⇥64 for SAM. We pre-compute the features510

from all teacher models instead of doing inference on the fly. This approach requires extra storage511

space to save all the features extracted from the VFMs, but significantly saves on training time and512

avoids loading models with high GPU memory usage during training, such as Depth-Anything or513

SAM (a batch size of 16 cannot fit into 80GB of GPU memory). All training configurations are514

listed in Table 5.515

Teacher VFM Features. We use the output representations at the last layer of ViT [5], CLIP [2],516

and DINOv2 [7]. For SAM [10], we use its encoder output. For Depth-Anything [1], since it is517

initialized from DINOv2, we use the latent representation before the final convolution layer. When518

decoding SAM and Depth-Anything results from Theia-predicted representations, we send the pre-519

dicted representations through the remaining layers of original models and obtain the output.520
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Table 5: Theia Training Configuration
Hyperparameters

# GPUs 8
Batch size 16 / GPU (128 effective)
Learning rate (LR) 5e-4
LR Schedule Constant
Weight decay 0.01
Optimizer AdamW
Betas [0.9, 0.999]
Epochs 50
Warm-up epochs 5
Warm-up LR schedule Linear (1e-2*LR)
Gradient clipping None
Image augmentation None
Total GPU hours 152

Table 6: More ablation studies on model design. All experiments are based on Theia-T. Scores are
the average performance from the MuJoCo subset of CortexBench.

(a) Feature Translator Architecture

CNNs Linear

78.9 ± 0.8 41.7 ± 1.6

(b) Training from Scratch vs Pre-trained Backbone

Training from Scratch Pre-trained Backbone

78.9 ± 0.8 80.8 ± 1.5

C Additional Ablation Studies521

We conduct two additional ablation studies to verify design choices in the Theia model. The first522

is a comparison between the current CNN-based feature translator and a linear feature translator.523

In Table 6a, we find that using a Linear feature translator leads to a significant performance drop.524

The second ablation studies whether Theia should be trained from scratch or be initialized using525

the pre-trained DeiT [39] weights. In Table 6b, we find that using pre-trained weights improves the526

downstream performance. This could be interpreted as the positive effect of incorporating knowl-527

edge from an additional useful model into the distillation process. We would expect to see similar528

performance improvements as more informative models are included during training.529

D Full Experimental Settings530

Table 7: Comparison of model architectures, training datasets, total number of images, objectives,
and training duration (epochs or GPU hours) across the models used in this paper. We use the
numbers reported in their original papers and - stands for we could not find such information.

Model Architecture Dataset(s) Total # Images Objective Training Duration

Theia ViT ImageNet-1k [23] 1.2M Distillation 50 epochs / 152 GPU hours on H100s
RADIO / E-RADIO [50] ViT/Self-designed DataComp-1B [70] 1.4B Distillation -

VC-1 [20] ViT/MAE [14] ImageNet-1k [23]+V [31, 51, 53, 52]+N 5.6M MAE [14] 182 epochs / over 10,000 GPU hours
MVP [19] ViT/MAE [14] ImageNet-1k [23]+Video [53, 52, 51] 1.9M MAE [14] 1600 epochs
R3M [17] ResNet [4] Ego4D [31] - Time Contrastive [33]+Vision-Language Alignment 1.5M steps
VIP [18] ResNet [4] Ego4D [31] 4.3M VIP [18] -

DINOv2 [7] ViT LVD-142M [7] 142M Self-distillation 22,016 GPU hours for DINOv2-g
CLIP [2] (Vision Encoder) ViT - 400M image-text contrastive learning [2] 73,728 GPU hours for CLIP ViT-L/14 on V100s

ViT [5] ViT ImageNet-21k [23] / JFT-300M 14M / 300M Classification 90 epochs / 7 epochs
DeiT [39] ViT ImageNet-1k 1.2M Classification+Distillation 300 epochs / 288 GPU hours on V100s

D.1 Baseline Models531

Theia and baseline models are trained on different sizes of datasets using different objectives. We532

organize these details in Table 7 to provide a comprehensive comparison between them.533
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D.2 CortexBench534

For all of our CortexBench experiments, we use the original setup [20], except for a few modifica-535

tions to produce more reliable results. The modifications include:536

• We increase the number of evaluation roll-outs from 10 (original) to 25 (ours) in DMC tasks.537

The mean scores reported are from a total of 75 runs (25 per seed x 3).538

• We remove the noise added to the policy network output in the CortexBench code base. The539

noise causes minor performance degradation (about 1.0 on overall mean score for MuJoCo tasks)540

compared to the version without noise.541

• We modify the policy networks to take spatial feature inputs for MuJoCo and Trifinger tasks542

(details follow and are presented in Table 8).543

Note that prior models including R3M, VIP, MVP, and VC-1 are all re-run using the same settings544

in MuJoCo tasks for the purposes of making a fair comparison when evaluating against Theia.545

Policy Networks. For MuJoCo and Trifinger tasks we utilize a three-layer MLP for vector-based546

representations, including ResNet models and Transformer models that use the [CLS] token. For547

models that generate spatial feature maps, such as Transformers using spatial tokens, we introduce a548

three-layer CNN before the MLP. For Habitat tasks, we exclusively benchmark models that produce549

spatial feature maps and adopt the same policy network as used by Majumdar et al. [20]. Details can550

be found in Table 8.
Table 8: Policy Networks for MuJoCo Tasks

Spatial Representation dimension d⇥H ⇥W

Conv2d(d, 256, kernel size=4, stride=2, padding=1)
ReLU
Conv2d(256, 256, kernel size=3, stride=2)
ReLU
Conv2d(256, 256, kernel size=3, stride=1)
Linear(256, 256)
Linear(256, 256)
Linear(256, action dimension)

Vector Representation dimension d

Linear(d, 256)
Linear(256, 256)
Linear(256, action dimension)

551

D.3 Real World Robot Learning552

D.3.1 WidowX Arm Experiments553

WidowX Arm Setup. The robot used for these experiments is a 6-degree-of-freedom (DOF) Wid-554

owX 250s arm. The data collection and evaluation framework is based on [56].555

We train a behavior-cloning policy for each of the four evaluated setups and for each evaluated556

baseline (see Table 2 and Figure 3); the training hyperparameters are shown in Table 9. The557

policy’s observations are RGB images and robot joint states. Images are encoded by a pre-trained558

visual encoder and a randomly initialized, unfrozen feature neck (“compression layer” [68]). We559

use the same feature neck as we did for the previously discussed MuJoCo tasks in Section 4.2.560

The encoded vector is concatenated with the robot’s joint states, which is fed into a 3-layer MLP561

with a hidden dimension of size 256. The policy outputs end-effector commands, consisting of562

the end-effector’s delta positions (Cartesian coordinates), delta rotations (Euler angles), and the563

gripper’s opening/closing command; such commands are tracked by the robot at a frequency of564

5 Hz. In addition to the hyperparameters listed in Table 9, we vary the policy action prediction565
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Table 9: WidowX Policy Training Configuration
Hyperparameters

Batch size 16
Learning rate 1e-4
Weight decay 0.01
Optimizer AdamW
Betas [0.9, 0.999]
Epochs 400
Loss SmoothL1

Table 10: Spot Policy Training Configuration
Hyperparameters

Batch size 32
Learning rate 3e-4
Weight decay cosine
Optimizer Adam
Betas [0.9, 0.999]
Training Iterations 3000
Loss MSE
Policy Horizon 4

horizon depending of the difficulty of the task, i.e., at each step the policy predicts the next 10, 10566

and 5 actions for Door Opening, Toy-Microwave Cooking, and Pick-and-Place, respectively.567

In the following, we give more details about the WidowX tasks showcased in our work.568

Door Opening. In this task the robot has to open a fridge door in a toy-kitchen setup; we identify569

two stages to evaluate the task’s success: Open and Fully Open (see Figure 3). We place the robot570

in front of the fridge and collect 63 demonstrations to train the behavioral cloning policy. We571

vary the height (z-axis) of the robot base between 40-46cm, and the position (x-axis, parallel to572

the toy kitchen) of the robot base. At inference time, we vary the height of the robot base among573

{40, 42, 43, 44, 46} cm, and select between 5 randomly-picked positions along the x-axis (for all574

policies). For each robot position, we evaluate the policy twice, for a total of 50 runs.575

Pick-and-Place. In this task, the robot has to pick up a pink cup from a toy-sink and drop it into576

a drying rack located on the left of the sink. We collected 48 demonstrations to train the policy.577

During evaluation, we vary the cup’s starting position amongst a total of 10 positions, of which 8578

positions are equally distributed about the perimeter, and 2 are in the center of the sink. We also579

roughly vary the direction of the cup handle towards the left or the right. In total, we evaluate this580

task for 20 runs. There are two key stages for which we measure the success rate: picking up the581

cup and successfully releasing it into the drying rack.582

Toy-Microwave Cooking. In this task, the robot has to pick up an object from within the pot on583

the stovetop, putting the object into a toy-microwave, and closing the microwave. In each test, we584

initialize the environment with the microwave door open. In this task, we collected 100 demonstra-585

tions across 10 different toy-food objects (10 demonstrations per object) with randomized object586

positions. During evaluation, we test 40 runs on 10 seen objects (4 runs per object), and 10 runs587

on 5 unseen objects (2 each), for a total of 50 runs. Furthermore, we vary the position of the pot588

that holds the object. The longer horizon and the variety of objects in this task make it particularly589

challenging, so using frozen visual encoders was not effective (0% success rate). However, with590

fine-tuning, the policies performed reasonably well.591
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D.3.2 Spot Experiments592

Spot Setup. For the Spot experiments, we train a diffusion policy [69] conditioned on the encoded593

image. The diffusion policy outputs the desired absolute positions and rotations of the end-effector594

and the gripper state. Hyperparameters for the policies are shown in Table 10.595

Drawer Opening. In this task, the robot has to open the top drawer of a cabinet. The policy596

receives color images from a single forward facing camera mounted on the body of the Spot. A597

fiducial marker is used to enable the robot to walk to a random position and orientation for each598

trial. The starting locations vary by ±5 cm in x and y and ±0.2 radians in orientation. 50 successful599

demonstrations were collected using a scripted policy and we evaluate each policy for 20 trials. A600

trial is considered successful if the drawer is opened at least 10 cm. After each trial, a scripted policy601

uses the fiducial marker to reset the environment and the robot moves to a new random location.602

E More Visualizations of Translating to Teacher Model Features603

DINOv2 SAM
Depth-

Anything DINOv2 SAM
Depth-

Anything

Theia

Input

Original 
VFMs

Theia

Original 
VFMs

Input

Figure 8: More examples of decoding Theia-representation to VFM outputs using feature translator
and original VFM decoders. We select robot images from our experiment recordings. Theia and
VFMs are not trained on these images.
We attach examples of decoding Theia-representations of 4 frames from a robot video into VFM604

outputs in Figure 8. Note that Theia and VFMs are not trained on the robot images on which we run605

this evaluation.606

F Per-Task CortexBench Results607

In Table 11 we report per-task scores of the models evaluated in Figure 4, over the MuJoCo subset608

of tasks. In Table 12, we report per-task scores of all 14 tasks we evaluated in Cortexbench, corre-609

sponding to Table 1. Note that we perform the evaluation following the original Cortexbench [20]610

protocol, where there are a total of 75 runs per MuJoCo task (we increased it from 30 to 75 for DMC611

tasks), 100 runs in Reach Cube, and 4200 runs in ImageNav.612

G Analysis of Visual Representations613

Entropy of the Representation Norm Distribution. Given N representations produced by en-614

coding N images per model, where each representation contains P spatial tokens, we discretize the615

distribution of token norms over all N⇥P tokens by using a histogram. We normalize the count616

18



Table 11: Per-Task Results on the MuJoCo Subset.
Model Assembly Bin-picking Button-press Cheetah-run Finger-spin Reacher-easy Walker-stand Walker-walk Drawer-open Hammer Pen Relocate
Theia-T 90.00±8.49 74.00±8.49 80.00±0.00 63.78±1.65 69.76±0.97 79.18±3.87 90.59±1.60 81.06±1.92 100.00±0.00 98.00±2.83 74.00±2.83 46.00±2.83
Theia-S 94.67±9.24 70.67±11.55 72.00±14.42 67.37±4.25 70.46±0.80 83.25±5.19 92.24±0.75 82.62±1.91 100.00±0.00 97.33±4.62 81.33±2.31 50.67±6.11
Theia-B 93.33±8.33 76.00±4.00 82.67±6.11 67.67±1.92 70.84±1.37 83.23±7.05 92.55±3.67 81.33±3.11 100.00±0.00 98.67±2.31 78.67±2.31 46.67±2.31
DINOv2-L 93.33±8.33 80.00±8.00 61.33±2.31 45.66±5.69 70.95±0.25 74.24±16.02 92.84±4.55 83.70±1.34 100.00±0.00 100.00±0.00 77.33±4.62 36.00±0.00
DINOv2-B 92.00±8.00 76.00±14.42 72.00±4.00 48.02±3.71 70.77±0.59 75.84±2.63 92.64±1.81 83.82±2.26 100.00±0.00 98.67±2.31 68.00±4.00 33.33±2.31
DINOv2-S 93.33±8.33 68.00±8.00 81.33±12.22 45.43±5.33 70.70±0.81 59.86±7.73 88.21±1.90 77.62±6.32 100.00±0.00 98.67±2.31 77.33±4.62 36.00±4.00
CLIP-L 69.33±4.62 76.00±4.00 64.00±8.00 33.63±1.21 69.97±2.02 89.42±3.92 95.12±0.89 75.87±5.33 100.00±0.00 96.00±4.00 73.33±8.33 37.33±6.11
ViT-H 94.67±9.24 76.00±12.00 77.33±9.24 47.89±10.10 69.84±1.16 84.33±6.46 90.97±5.36 79.99±6.24 100.00±0.00 94.67±2.31 56.00±0.00 41.33±4.62
ViT-L 96.00±5.66 54.00±25.46 81.60±3.58 50.32±5.24 69.54±0.80 84.49±3.26 89.43±2.30 77.43±1.80 100.00±0.00 96.00±3.27 68.00±3.27 41.60±8.29
ViT-B 96.00±6.93 74.67±10.07 76.00±10.58 46.28±5.32 72.05±1.23 73.71±0.80 77.13±6.50 69.75±3.36 100.00±0.00 96.00±4.00 68.00±0.00 32.00±4.00
ViT-S 93.33±8.33 77.33±2.31 61.33±6.11 42.99±1.13 70.71±0.68 70.46±2.59 88.34±2.63 67.83±4.00 100.00±0.00 90.67±9.24 68.00±4.00 37.33±4.62
ViT-T 93.33±8.33 82.67±4.62 65.33±10.07 39.02±1.47 71.45±1.07 71.13±3.24 84.05±0.84 70.74±3.03 100.00±0.00 84.00±6.93 60.00±10.58 25.33±4.62
VC-1-L-sp 85.33±8.33 66.67±12.22 56.00±8.00 66.88±6.66 71.19±0.67 70.67±8.36 93.43±6.08 83.28±2.40 100.00±0.00 93.33±2.31 68.00±0.00 24.00±8.00
CDV 73.33±24.44 74.40±11.87 30.67±39.26 50.53±12.08 71.94±1.07 71.60±17.03 94.85±1.27 78.36±5.72 100.00±0.00 93.60±6.07 75.33±5.89 39.33±10.25
RADIO 96.00±6.93 84.00±8.00 82.67±12.86 35.92±1.59 71.98±1.41 78.46±6.50 89.06±2.42 81.33±4.91 100.00±0.00 98.67±2.31 68.00±0.00 40.00±6.93
E-RADIO 94.67±9.24 82.67±2.31 80.00±4.00 57.37±2.27 69.68±1.05 75.59±1.29 91.73±2.03 80.32±2.06 100.00±0.00 100.00±0.00 66.67±12.86 45.33±2.31
MVP-L-sp 93.33±8.33 73.33±4.62 82.67±10.07 68.07±1.71 71.03±2.10 69.87±6.75 88.44±4.21 80.14±1.50 100.00±0.00 97.33±2.31 77.33±12.22 26.67±11.55
MVP-L 94.67±9.24 82.67±9.24 89.33±8.33 34.62±5.83 68.63±2.02 67.95±3.18 74.50±1.65 48.04±1.37 100.00±0.00 88.00±6.93 62.67±6.11 20.00±4.00
R3M 96.00±6.93 92.00±4.00 68.00±4.00 55.88±1.12 70.65±0.34 82.37±3.70 88.88±2.70 69.52±4.94 100.00±0.00 98.67±2.31 73.33±2.31 58.67±4.62
VIP 93.33±8.33 70.67±8.33 76.00±4.00 45.10±4.02 69.02±0.67 68.08±3.45 78.50±2.49 63.52±1.40 98.67±2.31 96.00±4.00 73.33±6.11 29.33±10.07

Table 12: Per-task results on CortexBench (excluding Move Cube, ObjectNav, and MobilePick due
to reproducibility issues).

Model Assembly Bin-picking Button-press Cheetah-run Finger-spin Reacher-easy Walker-stand Walker-walk Drawer-open Hammer Pen Relocate Reach-cube ImageNav
Theia-B 93.33±8.33 76.00±4.00 82.67±6.11 67.67±1.92 70.84±1.37 83.23±7.05 92.55±3.67 81.33±3.11 100.00±0.00 98.67±2.31 78.67±2.31 46.67±2.31 86.19±0.11 59.3±0.7
VC-1-L-sp 85.33±8.33 66.67±12.22 56.00±8.00 66.88±6.66 71.19±0.67 70.67±8.36 93.43±6.08 83.28±2.40 100.00±0.00 93.33±2.31 68.00±0.00 24.00±8.00 84.79±0.63 70.3±0.7
E-RADIO 94.67±9.24 82.67±2.31 80.00±4.00 57.37±2.27 69.68±1.05 75.59±1.29 91.73±2.03 80.32±2.06 100.00±0.00 100.00±0.00 66.67±12.86 45.33±2.31 87.81±0.12 53.0±0.7
MVP-L-sp 93.33±8.33 73.33±4.62 82.67±10.07 68.07±1.71 71.03±2.10 69.87±6.75 88.44±4.21 80.14±1.50 100.00±0.00 97.33±2.31 77.33±12.22 26.67±11.55 87.54±0.2 68.1±0.7
R3M 96.00±6.93 92.00±4.00 68.00±4.00 55.88±1.12 70.65±0.34 82.37±3.70 88.88±2.70 69.52±4.94 100.00±0.00 98.67±2.31 73.33±2.31 58.67±4.62 86.5 30.6±0.7
VIP 93.33±8.33 70.67±8.33 76.00±4.00 45.10±4.02 69.02±0.67 68.08±3.45 78.50±2.49 63.52±1.40 98.67±2.31 96.00±4.00 73.33±6.11 29.33±10.07 86.2 48.8±0.8

of each bin in histogram by the total number of tokens to obtain the probabilities of each bin. We617

then calculate the Shannon entropy, given by �
P

i pi log(pi). We find that the distilled models618

have higher entropy than the regular models, so we divide them into two distinct groups. Results619

are plotted as model performance vs entropy on the MuJoCo tasks. We attach the full version of620

plot presented on the left of Figure 7 here in Figure 9, including two plots corresponding to each621

category of models and one plot for all models.622

At the top of Figure 10, we find that both CLIP and VC-1 have high-norm outlier tokens. To623

better visualize the values of normal tokens, we use the median of norm values to clip the values.624

Specifically, we clip the norm values to range [0, 2 ⇤ median] and visualize the clipped norm values625

on the bottom of Figure 10. We find that the high-norm tokens are still not task-relevant.626

In Figure 11, we attach the feature norm map of all other models. Among those, we find that627

MVP [19], which performs well on CortexBench, also produces features without outlier tokens.628

Feature norms from Depth-Anything [1] and SAM [10], in contrast, have low diversity.629

PCA Explained-Variance Ratio of Representations. Similar to the entropy analysis, given N⇥P630

spatial token representations, we apply PCA to them and extract the explained-variance ratio (EVR)631

of each latent dimension. We calculate and plot the cumulative sum of EVRs, as well as calculate632

the Area Under the Curve (AUC) of cumulative sum of the EVR. When comparing Theia-B with633

ViT-B, DINOv2-B and VC-1-B (Figure 12), we find that Theia-B has the lowest AUC and the634

best MuJoCo performance, while VC-1 has the highest AUC and the worse MuJoCo performance635

amongst these 4 models. The higher AUC is caused by one or few principle components that have636

very high EVRs, indicating that these components are capturing the majority of the variance of the637

feature representations. This means that less information is encoded within such representations. In638

contrast, the Theia-representation has a low AUC which we believe is due to the rich information639

that has been encoded within the latent space.640

However, when extending the scope to encompass all the models we evaluated (Figure 13 left), we641

find that the AUC of the EVR does not have a strong correlation with robot learning performance.642

Cosine Similarity of Representations. We also use cosine similarity to analyze the representa-643

tions from different models by first calculating the mean of all representations and then computing644

cosine similarity between each representation and this mean representation. Results are shown on645

the right of Figure 13, which shows very weak correlation between cosine similarity and perfor-646

mance on CortexBench.647
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Figure 9: Full results of feature norm entropy.

H Linear Probing on ImageNet648

In addition to robot learning, we evaluate the Theia-representation on vision tasks to show to how649

well such abilities are maintained after the distillation process. For example, to evaluate image650

classification performance we apply linear probing on the Theia-representation to classify images651

from ImageNet-1k [23]. We use mean pooling of the Theia-representation (i.e. spatial tokens) and652

the same training schedule as MAE [14]. Results are shown in Table 13, where we find that Theia653

outperforms MAE [14] at the same model size, but is not comparable to SOTA results from models654

like DINOv2 [7].655
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Figure 10: Feature norm map visualizations of CLIP and VC1, original (top) and with high-norm
outlier values clipped (bottom)

Figure 11: Feature norm map visualizations of ViT [5], DINOv2 [7], MVP [19], Depth-
Anything [1], SAM [10], RADIO [50], and E-RADIO [50].

Table 13: ImageNet-1k [23] evaluation accuracy using linear probing.
Model Accuracy

Theia-B 72.1%
Theia-B (initialized from DeiT-B [39] weights) 75.2%

MAE (ViT-B) [14] 67.5%
DINOv2 [7] (ViT-L) 84.5%
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theia_base

Figure 12: Cumulative sum of PCA Explained Variance Ratio of features from ViT-B, DINOv2-B,
VC-1-B, and Theia-B.

Figure 13: PCA explained variance ratio-AUC (left) and cosine similarity (right) vs MuJoCo per-
formance of many models evaluated.
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