494

495
496
497
498
499

500
501
502
503
504
505

506

507

508
509
510
511
512

514
515

516
517
518
519
520

A Theia Model Architecture

Backbone. We use the DeiT-Tiny, DeiT-Small, and DeiT-Base models [39] as our backbone archi-
tectures. We keep the [CLS] token in the model and in the forward pass, but there is no supervisory
signal provided for it. As a result, the [CLS] token serves as a “register token” [24], which provides
some benefits for learning high quality representations. We train Theia from scratch (no pre-trained
DeiT [39] weights are applied).

Feature Translators. The feature translators are composed primarily of CNNs, with a linear
layer appended at the end to match the teacher’s representation dimension. Pure linear transforms
might not be able to map Theia-representations to all three teacher representations well, resulting in
a failure of learning (See Table 62). Thus, we use three CNN layers to account for the fact that each
teacher model’s representations are very different from one another. Details are listed in Table 4,
where we show the architectural details of the translators used for our (student, teacher)-feature
pairs.

Table 4: Feature Translator configurations
Student ds x 14 x 14 (Theia backbone=ViT-T, -S, -B) to Teacher d; x 16 x 16 (CLIP, DINOv2, ViT)

ConvTranspose2d(ds, ds, kernel_size=3, stride=1, output_padding=0)
LayerNorm

Conv2d(d;, ds, kernel_size=3, padding=1)

ReLU+LayerNorm

Conv2d(d;, ds, kernel_size=3, padding=1)

ReLU+LayerNorm

Flatten and Linear(d,, d;)

Student ds x 14 x 14 to Teacher d; x 64 x 64 (SAM and Depth-Anything)

ConvTranspose2d(ds, ds, kernel _size=3, stride=2, padding=1
LayerNorm

ConvTranspose2d(ds, ds, kernel_size=3, stride=2, output_padding=1)
ReLU+LayerNorm

Conv2d(ds, ds, kernel_size=3, padding=1)

ReLU+LayerNorm

Flatten and Linear(d, d;)

B Training

We train Theia on § NVIDIA H100 GPUs. The main bottlenecks in training are the data transfer
speed between devices and the GPU memory bandwidth to load large spatial feature tensors, for
example, of size 1280x16x16 for ViT-H and 256x64x64 for SAM. We pre-compute the features
from all teacher models instead of doing inference on the fly. This approach requires extra storage
space to save all the features extracted from the VFMs, but significantly saves on training time and
avoids loading models with high GPU memory usage during training, such as Depth-Anything or
SAM (a batch size of 16 cannot fit into 80GB of GPU memory). All training configurations are
listed in Table

Teacher VFM Features. We use the output representations at the last layer of ViT [5], CLIP [2],
and DINOv2 [7]. For SAM [10], we use its encoder output. For Depth-Anything [!], since it is
initialized from DINOv2, we use the latent representation before the final convolution layer. When
decoding SAM and Depth-Anything results from Theia-predicted representations, we send the pre-
dicted representations through the remaining layers of original models and obtain the output.

14

521

522
523
524
525
526
527
528
529

530

531

532
533

Table 5: Theia Training Configuration

Hyperparameters

GPUs 8

Batch size 16 / GPU (128 effective)
Learning rate (LR) Se-4

LR Schedule Constant
Weight decay 0.01
Optimizer AdamW
Betas [0.9, 0.999]
Epochs 50
Warm-up epochs 5
Warm-up LR schedule Linear (1e-2*LR)
Gradient clipping None
Image augmentation None

Total GPU hours 152

Table 6: More ablation studies on model design. All experiments are based on Theia-T. Scores are
the average performance from the MuJoCo subset of CortexBench.

(a) Feature Translator Architecture (b) Training from Scratch vs Pre-trained Backbone
CNNs Linear Training from Scratch Pre-trained Backbone
789 +08 41.7+£1.6 789 £0.8 80.8 + 1.5

C Additional Ablation Studies

We conduct two additional ablation studies to verify design choices in the Theia model. The first
is a comparison between the current CNN-based feature translator and a linear feature translator.
In Table 6a, we find that using a Linear feature translator leads to a significant performance drop.
The second ablation studies whether Theia should be trained from scratch or be initialized using
the pre-trained DeiT [39] weights. In Table 6b, we find that using pre-trained weights improves the
downstream performance. This could be interpreted as the positive effect of incorporating knowl-
edge from an additional useful model into the distillation process. We would expect to see similar
performance improvements as more informative models are included during training.

D Full Experimental Settings

Table 7: Comparison of model architectures, training datasets, total number of images, objectives,
and training duration (epochs or GPU hours) across the models used in this paper. We use the
numbers reported in their original papers and - stands for we could not find such information.

Model Architecture Dataset(s) Total # Images Objective Training Duration
Theia ViT TmageNet-1k [23] 12M Distillation 50 epochs / 152 GPU hours on H100s
RADIO/E-RADIO [50] ViT/Self-designed DataComp-1B [70] 1.4B Distillation -
VC-1[20] VIT/MAE[11] ImageNet-Tk [23]+V [31, 51, 53, 524N 5.6M MAE [11] 182 epochs / over 10,000 GPU hours
MVP [19] VIT/MAE[14] ImageNet-1k [23]+Video [53, 52, 51] 19M MAE [14] 1600 epochs
R3M [17] ResNet [1] EgodD [31] - Time Contrastive [23]+Vision-Language Alignment 1.5M steps
VIP 18] ResNet [4] EgodD [31] 43M VIP [15] -
DINOv2 [7] ViT LVD-142M [7] 142M Self-distillation 22,016 GPU hours for DINOv2-g
CLIP [2] (Vision Encoder) ViT - 400M image-text contrastive learning 2] 73,728 GPU hours for CLIP ViT-L/14 on V100s
iT [5) ViT ImageNet-21k [23] / JFT-300M 14M / 300M Classification 90 epochs / 7 epochs
DeiT [39] ViT ImageNet- Tk 12M Classification+Distillation 300 epochs / 288 GPU hours on V100s

D.1 Baseline Models

Theia and baseline models are trained on different sizes of datasets using different objectives. We
organize these details in Table 7 to provide a comprehensive comparison between them.

15

534

535
536

537
538

539
540
541

542
543

544
545

546
547
548
549
550

552

553

554
555

556
557
558
559
560
561
562
563
564
565

D.2 CortexBench

For all of our CortexBench experiments, we use the original setup [20], except for a few modifica-
tions to produce more reliable results. The modifications include:

* We increase the number of evaluation roll-outs from 10 (original) to 25 (ours) in DMC tasks.
The mean scores reported are from a total of 75 runs (25 per seed x 3).

* We remove the noise added to the policy network output in the CortexBench code base. The
noise causes minor performance degradation (about 1.0 on overall mean score for MuJoCo tasks)
compared to the version without noise.

* We modify the policy networks to take spatial feature inputs for MuJoCo and Trifinger tasks
(details follow and are presented in Table).

Note that prior models including R3M, VIP, MVP, and VC-1 are all re-run using the same settings
in MuJoCo tasks for the purposes of making a fair comparison when evaluating against Theia.

Policy Networks. For MuJoCo and Trifinger tasks we utilize a three-layer MLP for vector-based
representations, including ResNet models and Transformer models that use the [CLS] token. For
models that generate spatial feature maps, such as Transformers using spatial tokens, we introduce a
three-layer CNN before the MLP. For Habitat tasks, we exclusively benchmark models that produce
spatial feature maps and adopt the same policy network as used by Majumdar et al. [20]. Details can
be found in Table 8.

Table 8: Policy Networks for MuJoCo Tasks
Spatial Representation dimension d x H x W

Conv2d(d, 256, kernel_size=4, stride=2, padding=1)
ReLU

Conv2d(256, 256, kernel _size=3, stride=2)

ReLU

Conv2d(256, 256, kernel _size=3, stride=1)
Linear(256, 256)

Linear(256, 256)

Linear(256, action dimension)

Vector Representation dimension d

Linear(d, 256)
Linear(256, 256)
Linear(256, action dimension)

D.3 Real World Robot Learning
D.3.1 WidowX Arm Experiments

WidowX Arm Setup. The robot used for these experiments is a 6-degree-of-freedom (DOF) Wid-
owX 250s arm. The data collection and evaluation framework is based on [56].

We train a behavior-cloning policy for each of the four evaluated setups and for each evaluated
baseline (see Table 2 and Figure 3); the training hyperparameters are shown in Table 9. The
policy’s observations are RGB images and robot joint states. Images are encoded by a pre-trained
visual encoder and a randomly initialized, unfrozen feature neck (“compression layer” [68]). We
use the same feature neck as we did for the previously discussed MuJoCo tasks in Section

The encoded vector is concatenated with the robot’s joint states, which is fed into a 3-layer MLP
with a hidden dimension of size 256. The policy outputs end-effector commands, consisting of
the end-effector’s delta positions (Cartesian coordinates), delta rotations (Euler angles), and the
gripper’s opening/closing command; such commands are tracked by the robot at a frequency of
5 Hz. In addition to the hyperparameters listed in Table 9, we vary the policy action prediction

16

566
567

568

569
570
571
572
573
574
575

577
578
579
580

582

583
584
585
586
587
588
589
590
591

Table 9: WidowX Policy Training Configuration

Hyperparameters

Batch size 16
Learning rate le-4
Weight decay 0.01
Optimizer AdamW
Betas [0.9, 0.999]
Epochs 400
Loss SmoothL1

Table 10: Spot Policy Training Configuration

Hyperparameters

Batch size 32
Learning rate 3e-4
Weight decay cosine
Optimizer Adam
Betas [0.9, 0.999]
Training Iterations 3000
Loss MSE
Policy Horizon 4

horizon depending of the difficulty of the task, i.e., at each step the policy predicts the next 10, 10
and 5 actions for Door Opening, Toy-Microwave Cooking, and Pick-and-Place, respectively.

In the following, we give more details about the WidowX tasks showcased in our work.

Door Opening. In this task the robot has to open a fridge door in a toy-kitchen setup; we identify
two stages to evaluate the task’s success: Open and Fully Open (see Figure 3). We place the robot
in front of the fridge and collect 63 demonstrations to train the behavioral cloning policy. We
vary the height (z-axis) of the robot base between 40-46¢cm, and the position (x-axis, parallel to
the toy kitchen) of the robot base. At inference time, we vary the height of the robot base among
{40,42,43, 44,46} cm, and select between 5 randomly-picked positions along the x-axis (for all
policies). For each robot position, we evaluate the policy twice, for a total of 50 runs.

Pick-and-Place. In this task, the robot has to pick up a pink cup from a toy-sink and drop it into
a drying rack located on the left of the sink. We collected 48 demonstrations to train the policy.
During evaluation, we vary the cup’s starting position amongst a total of 10 positions, of which 8
positions are equally distributed about the perimeter, and 2 are in the center of the sink. We also
roughly vary the direction of the cup handle towards the left or the right. In total, we evaluate this
task for 20 runs. There are two key stages for which we measure the success rate: picking up the
cup and successfully releasing it into the drying rack.

Toy-Microwave Cooking. In this task, the robot has to pick up an object from within the pot on
the stovetop, putting the object into a toy-microwave, and closing the microwave. In each test, we
initialize the environment with the microwave door open. In this task, we collected 100 demonstra-
tions across 10 different toy-food objects (10 demonstrations per object) with randomized object
positions. During evaluation, we test 40 runs on 10 seen objects (4 runs per object), and 10 runs
on 5 unseen objects (2 each), for a total of 50 runs. Furthermore, we vary the position of the pot
that holds the object. The longer horizon and the variety of objects in this task make it particularly
challenging, so using frozen visual encoders was not effective (0% success rate). However, with
fine-tuning, the policies performed reasonably well.

17

592

593
594
595

596
597
598
599
600
601
602

603

604
605
606

607

608
609
610
611
612

614
615
616

D.3.2 Spot Experiments

Spot Setup. For the Spot experiments, we train a diffusion policy [69] conditioned on the encoded
image. The diffusion policy outputs the desired absolute positions and rotations of the end-effector
and the gripper state. Hyperparameters for the policies are shown in Table 10.

Drawer Opening. In this task, the robot has to open the top drawer of a cabinet. The policy
receives color images from a single forward facing camera mounted on the body of the Spot. A
fiducial marker is used to enable the robot to walk to a random position and orientation for each
trial. The starting locations vary by £5 cm in x and y and 0.2 radians in orientation. 50 successful
demonstrations were collected using a scripted policy and we evaluate each policy for 20 trials. A
trial is considered successful if the drawer is opened at least 10 cm. After each trial, a scripted policy
uses the fiducial marker to reset the environment and the robot moves to a new random location.

E More Visualizations of Translating to Teacher Model Features

Depth- Depth-
Input DINOv2 SAM Anything Input DINOv2 SAM Anything
; - Y | -

Theia

Original |
VFEMs §

Theia

Original
VFMs

Figure 8: More examples of decoding Theia-representation to VFM outputs using feature translator
and original VFM decoders. We select robot images from our experiment recordings. Theia and
VEMs are not trained on these images.

We attach examples of decoding Theia-representations of 4 frames from a robot video into VFM
outputs in Figure &. Note that Theia and VFMs are not trained on the robot images on which we run
this evaluation.

F Per-Task CortexBench Results

In Table || we report per-task scores of the models evaluated in Figure 4, over the MuJoCo subset
of tasks. In Table 12, we report per-task scores of all 14 tasks we evaluated in Cortexbench, corre-
sponding to Table I. Note that we perform the evaluation following the original Cortexbench [20]
protocol, where there are a total of 75 runs per MuJoCo task (we increased it from 30 to 75 for DMC
tasks), 100 runs in Reach Cube, and 4200 runs in ImageNav.

G Analysis of Visual Representations
Entropy of the Representation Norm Distribution. Given NV representations produced by en-

coding IV images per model, where each representation contains P spatial tokens, we discretize the
distribution of token norms over all N x P tokens by using a histogram. We normalize the count

18

617
618
619
620
621
622

623
624
625
626

627
628
629

630
631
632
633
634
635
636

638
639
640

641
642

643
644
645
646
647

Table 11: Per-Task Results on the MuJoCo Subset.

Model Assembly _ Bin-picking _ Button-press _ Cheetah-run _ Finger-spin _Reacher-casy _Walker-stand _ Walker-walk _Drawer-open __Hammer Pen Relocate
Theia-T 90.0048.49 74.00:849 80.00:0.00 63.78+1.65 69.76£0.97 79.18+3.87 90.59+1.60 81.06+1.92 100.00+0.00 98.00+2.83 74.00+2.83 46.00+2.83
Theia-S 94.6749.24 70.67+11.55 72.00+14.42 67.37+4.25 70.46+0.80 8325519 92243075 82.62+1.91 100.00+0.00 97.33x4.62 81.33x231 50.67+6.11
Theia-B 9333£8.33 76.00:4.00 82.67+6.11 67.67+1.92 70.84x1.37 83.237.05 92.55:3.67 81.33x3.11 100.00:0.00 98.67+2.31 78.67+231 46.67+2.31

DINOv2-L 93.33+8.33 80.00+8.00 61.33+2.31 45.66+5.69 70.95+0.25 74.24%£16.02 92.84+4.55 83.70£1.34 100.00£0.00 100.00£0.00 ~ 77.33+4.62 36.00+0.00
DINOv2-B 92.00+8.00 76.00+14.42 72.00+4.00 48.02+#3.71 70.77£0.59 75.84+2.63 92.64+1.81 83.8242.26 100.00£0.00 98.67+2.31 68.00+4.00 33.3342.31
DINOv2-S 93.33+8.33 68.00+8.00 81.33x12.22 45.43+5.33 70.70£0.81 59.86+7.73 88.21+1.90 77.62+6.32 100.00£0.00 98.67+2.31 77.33+4.62 36.00£4.00

CLIP-L 69.33+4.62 76.00£4.00 64.00+8.00 33.63x1.21 69.97£2.02 89.42+3.92 95.12#0.89 75.87+5.33 100.00£0.00 96.00+4.00 73.33%8.33 37.3346.11
ViT-H 94.67£9.24 76.00£12.00 77.33%9.24 47.89£10.10 69.84%1.16 84.33+6.46 90.97+5.36 100.00£0.00 ~ 94.67+2.31 56.00£0.00 41.33+4.62
ViT-L 96.00£5.66 54.00£25.46 81.60+3.58 50.32+£5.24 69.54+0.80 84.49+3.26 89.43+2.30 100.00£0.00 96.00£3.27 68.00£3.27 41.60+8.29
ViT-B 96.00£6.93 74.67£10.07 76.00+10.58 46.28#532 72.05£1.23 73.71+0.80 77.1346.50 100.00£0.00 96.00+4.00 68.00£0.00 32.00+4.00
ViT-S 93.33#8.33 77.33#2.31 61.33x6.11 42.99+1.13 70.71£0.68 70.46+2.59 88.34£2.63 100.00£0.00 90.67+9.24 68.00£4.00 37.33+4.62
VIiT-T 93.33+8.33 82.67+4.62 65.33x10.07 39.02+1.47 71.45£1.07 71.13%3.24 84.05+0.84 100.00£0.00 84.00£6.93 60.00£10.58 25.33+4.62
VC-1-L-sp 85.33+8.33 66.67+12.22 56.00£8.00 66.88+6.66 ~ 71.19+0.67 70.67+8.36 93.43+6.08 83.28+2.40 100.00+0.00 93.33+2.31 68.00+0.00 24.00+8.00
CDV 73.33+24.44 74.40£11.87 30.67£39.26 50.53%12.08 71.94£1.07 71.60+17.03 94.85+1.27 78.36£5.72 100.00£0.00 93.60£6.07 75.33£5.89 39.33+10.25
RADIO 96.00£6.93 84.00£8.00 82.67+12.86 35.92+1.59 71.98+1.41 78.466.50 89.06£2.42 8133491 100.00£0.00 98.67+2.31 68.00£0.00 40.00£6.93

E-RADIO 94.67+9.24 82.67+2.31 80.00£4.00 57.37+2.27 69.68+1.05 75.59+1.29 91.73£2.03 80.32+2.06 100.00£0.00 100.00+0.00 66.67+12.86 ~ 45.33+2.31
MVP-L-sp 93.33+8.33 73.33%4.62 82.67+10.07 68.07x1.71 71.03%2.10 69.87+6.75 88.44+4.21 80.14£1.50 100.00£0.00 97.33+2.31 77.33%£1222 26.67£11.55

MVP-L 94.67£9.24 82.67£9.24 89.33x8.33 34.62+£5.83 68.63£2.02 67.95+3.18 74.50£1.65 48.04£1.37 100.000.00 88.00£6.93 62.67+6.11 20.00£4.00
R3M 96.00£6.93 92.00£4.00 68.00+4.00 55.88+1.12 70.65£0.34 82.37+3.70 88.88£2.70 69.52+4.94 100.000.00 98.67+2.31 73.33%2.31 58.6744.62
VIP 93.33+8.33 70.67+8.33 76.004.00 45.10+4.02 69.02+0.67 68.08+3.45 78.50£2.49 63.52+1.40 98.67+231 96.00+4.00 73.33x6.11 29.33x10.07

Table 12: Per-task results on CortexBench (excluding Move Cube, ObjectNav, and MobilePick due
to reproducibility issues).

Model Assembly _ Bin-picking _ Button-press _ Cheetah-run__Finger-spin _Reacher-casy _Walker-stand _Walker-walk _ Drawer-open __Hammer Pen Relocate _ Reach-cube _ImageNav
TheiaB 9333:833 76.00£4.00 8267+6.11 67.674192 70.84x137 83232705 9255:3.67 8133311 10000000 98.67:231 78.67:231 46.67+231 86.19:0.11 59307
VC-I-L-sp 8533833 66.6741222 56.0048.00 66.88:6.66 71.19:0.67 70.67+8.36 9343608 83284240 100.00£0.00 93.33:231 68.00£0.00 24.00£8.00 84.79:0.63 70.3%0.7
E-RADIO 94.67+9.24 82673231 80.0044.00 57374227 69.68+1.05 75.59+1.29 3 80324206 100.00+0.00 100.00£0.00 66.67+12.86 4533231 87.81+0.12 53.0+0.7
MVP-L-sp 9333833 7333+4.62 82.67£10.07 68.07+1.71 71.03:2.10 69.87%6.75 80.14£1.50 100.00£0.00 97.33£231 7733:1222 26.67+1155 87.54:02 68.10.7
R3M 96.0046.93 92.00£4.00 68.00+4.00 S55.88+1.12 70.65£034 8237:370 88.88+2.70 69.52+4.94 100.00:0.00 98.67+2.31 7333:231 58.67+4.62 86.5 30.6£0.7
VIP 9333833 70.67+833 76.00£4.00 45105402 69.02:0.67 68084345 78.50+2.49 63.5241.40 9867231 96.00:4.00 73336.11 29.33£10.07 86.2 48.8+0.8

of each bin in histogram by the total number of tokens to obtain the probabilities of each bin. We
then calculate the Shannon entropy, given by — . p; log(p;). We find that the distilled models
have higher entropy than the regular models, so we divide them into two distinct groups. Results
are plotted as model performance vs entropy on the MuJoCo tasks. We attach the full version of
plot presented on the left of Figure 7 here in Figure 9, including two plots corresponding to each
category of models and one plot for all models.

At the top of Figure 10, we find that both CLIP and VC-1 have high-norm outlier tokens. To
better visualize the values of normal tokens, we use the median of norm values to clip the values.
Specifically, we clip the norm values to range [0, 2 * median] and visualize the clipped norm values
on the bottom of Figure 0. We find that the high-norm tokens are still not task-relevant.

In Figure 11, we attach the feature norm map of all other models. Among those, we find that
MVP [19], which performs well on CortexBench, also produces features without outlier tokens.
Feature norms from Depth-Anything [1] and SAM [10], in contrast, have low diversity.

PCA Explained-Variance Ratio of Representations. Similar to the entropy analysis, given NxP
spatial token representations, we apply PCA to them and extract the explained-variance ratio (EVR)
of each latent dimension. We calculate and plot the cumulative sum of EVRs, as well as calculate
the Area Under the Curve (AUC) of cumulative sum of the EVR. When comparing Theia-B with
ViT-B, DINOv2-B and VC-1-B (Figure 12), we find that Theia-B has the lowest AUC and the
best MuJoCo performance, while VC-1 has the highest AUC and the worse MuJoCo performance
amongst these 4 models. The higher AUC is caused by one or few principle components that have
very high EVRs, indicating that these components are capturing the majority of the variance of the
feature representations. This means that less information is encoded within such representations. In
contrast, the Theia-representation has a low AUC which we believe is due to the rich information
that has been encoded within the latent space.

However, when extending the scope to encompass all the models we evaluated (Figure 13 left), we
find that the AUC of the EVR does not have a strong correlation with robot learning performance.

Cosine Similarity of Representations. We also use cosine similarity to analyze the representa-
tions from different models by first calculating the mean of all representations and then computing
cosine similarity between each representation and this mean representation. Results are shown on
the right of Figure 13, which shows very weak correlation between cosine similarity and perfor-
mance on CortexBench.

19

648

649
650
651
652
653
654
655

Regular Models

82
ViT
VC1
CLIP
80 DINOV2
MVP
[l
Q78
g MVP-L-sp
8 DINOV2-L _--A7T7]
576 st (2
L Jp——
s
I e R: 0.943
= CLP==""2) VIT-B
__yc;-a-—s;l)‘ \}El-L-Sp
72
7
%.0 5.5 6.0 6.5 7.0 7.5 8.0
Entropy
& Distilled Models
Theia Theia-T_cdivr Theia-B cdiv
DeiT e _ ..
DINOV2 Theia-B,tdisv
80 RADIO e
E-RADIO Theia-S_cdisv
Theia-TicdivEARADJ/Q/L
§ 78 Theia-T_cdisv
g Theia-T_vigapio-H
S Theia-T_clip ,»*
£ .
] 76 DINOVZ;?/ R: 0.638
] e DINOV2-S
2 "
27
S Theia-T_sam
Theia-T_dinov2™ s
72 -
VIT-T
7 Theia-T_depthanything
%.0 5.5 6.0 6.5 7.0 7.5 8.0
Entropy
82 " -
Theia Theia-T_cdivr Theia-B cdiv
ViT —
VICI Theia-B_cdisv
80 cLIp
DINOV2 Theia-S_cdisv
N RaDIO Theia-T_cdivE-RADIO-L
% 78 E-RADIO Theia-T_cdisv ’Mqu_j;p
g) _ Theia-T¥ifRADIO-H
£ TheiaT clib _5ijoy2-L ViTH
o 76 DINO\2-B
< Jivtics VIT-L
3 T DINOV2-S
ERY! CWPL v R: 0.563
VC1-B'sp VCl:kssp)
e Theia-T_sanViT-S
72 /,—’/ Theia-T_dinov2
VITT
7 Theia-T_depthanything
QS.O 5.5 6.0 6.5 7.0 7.5 8.0
Entropy

Figure 9: Full results of feature norm entropy.

H Linear Probing on ImageNet

In addition to robot learning, we evaluate the Theia-representation on vision tasks to show to how
well such abilities are maintained after the distillation process. For example, to evaluate image
classification performance we apply linear probing on the Theia-representation to classify images
from ImageNet-1k [23]. We use mean pooling of the Theia-representation (i.e. spatial tokens) and
the same training schedule as MAE [14]. Results are shown in Table 13, where we find that Theia
outperforms MAE [14] at the same model size, but is not comparable to SOTA results from models
like DINOV2 [7].

20

velvitlsp

Figure 10: Feature norm map visualizations of CLIP and VCl, original (top) and with high-norm
outlier values clipped (bottom)

Figure 11: Feature norm map visualizations of ViT [5], DINOv2 [7], MVP [19], Depth-
Anything [1], SAM [10], RADIO [50], and E-RADIO [50].

Table 13: ImageNet-1k [23] evaluation accuracy using linear probing.

Model Accuracy
Theia-B 72.1%
Theia-B (initialized from DeiT-B [39] weights) 75.2%
MAE (ViT-B) [14] 67.5%
DINOV2 [7] (ViT-L) 84.5%

21

PCA Explained Varaince Ratio Cumsum

1.0 4
0.8 4
0.6
0.4
— vitb
0.2 4 —— dinov2b
—— vcl vitb sp
—— theia_base
T T T T T T T T T
0 100 200 300 400 500 600 700 800

Figure 12: Cumulative sum of PCA Explained Variance Ratio of features from ViT-B, DINOv2-B,
VC-1-B, and Theia-B.

PCA Explained Variance Ratio AUC vs CortexBench Performance Cos Similarity vs CortexBench Performance
‘heia_base_cdisv peia_base_cdisv
80 80
di theia_small_cdisv theia_small_cdisv
.e_ra io ;_radlo
78 gheia_tiny_cdisv 78 g\eia_tmy_cdisv
i eia_tiny_vit mvpl_sp eia_tiny_vit vpl_s|
.radlo J‘ _tiny_) [] wadio m gvpsp
theia_tiny_clig - h dinov2theia_tiny_clip
[ith dinov2 -~ vi o,
%1 - q’dinovzb 76 Se—al vitiinov2b
—_—————— witl ~~o o
e ————— - -~ -
e -~ "
®dinov2s " ‘~£IE)V~ZS
R: -0.085 R: -0.207 -~
74 1 vith . 74 1
clip . ith i
Rivisp o ool oo
i vitb_s| _—
‘tspeia_tiny_sam vc¥_vitb_sp -Vitb_sp theia_tiny_sam
¢ ® ®its
729 meﬁa_tlny_dinovz 72 1 theia_tiny_dfnov2
Xitt weia_tiny_depthanything Vlott
theia_tiny_depthanytﬁng
70 T T T T T 70 T T T T T T T
0.75 0.80 0.85 0.90 0.95 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 13: PCA explained variance ratio-AUC (left) and cosine similarity (right) vs MuJoCo per-
formance of many models evaluated.

22

	Introduction
	Related Work
	Visual Representations for Robot Learning
	Vision Foundation Models
	Knowledge Distillation in Vision Models

	Method
	Rich Spatial Representation
	Training

	Experiments
	Benchmark and Settings
	Simulation Results
	Real World Robot Learning
	Ablation Studies
	Qualitative Visualizations

	What Makes Visual Representations Good for Robot Learning?
	Conclusion
	Theia Model Architecture
	Training
	Additional Ablation Studies
	Full Experimental Settings
	Baseline Models
	CortexBench
	Real World Robot Learning
	WidowX Arm Experiments
	Spot Experiments

	More Visualizations of Translating to Teacher Model Features
	Per-Task CortexBench Results
	Analysis of Visual Representations
	Linear Probing on ImageNet

