
A Missing Preliminaries

A.1 Fractional Optimal and the Incremental-bang-per-buck Algorithm

[SZ79] introduce the notion of Dominated and LP dominated ads and show that they are not used in
the fractional optimal solution.

Definition 3 (Dominated/LP-dominated [SZ79]). For an advertiser i, the rich ads of the advertiser
can be dominated in two ways.

• Dominated: If two rich ads satisfy wij  wik and bij � bik then k is dominated by j.

• LP Dominated: If three rich ads j, k, l with wij < wik < wil and bij < bik < bil, satisfy
bil�bik
wil�wik

� bik�bij

wik�wij
, then k is LP-dominated by j and l.

Moroever, [SZ79] showed that the fractional optimal solution can be obtained through the following
incremental-bang-per-buck algorithm.

Algorithm 2.

• Eliminate all the Dominated and LP-dominated rich ads for each advertiser.

• (Compute incremental-bang-per-buck) For each advertiser, allocate the null ad. Sort the remaining
rich ads by space (label them i1, . . . ik, . . .). Construct a vector of scores bik�bik�1

wik�wik�1
for these.

• (Allocate in incremental bang-per-buck order) While space remains: select the rich ad (i, k)
with highest score among remaining rich ads. If the remaining space is at least as much as the
incremental space required (wik � wi(k�1)), this new rich ad is allocated to its advertiser and it
fully replaces previously allocated rich ad for the advertiser. Otherwise, allocate the advertiser
fractionally in the remaining space. This fractional allocation puts a weight x on the previously
allocated rich ad of the advertiser and (1�x) on the newly selected rich-ad such that the fractional
space equals remaining space plus previously allocated space of the advertiser.6

We prove some lemmas about the optimal fractional solution. The following lemma provides a simple
characterization of the advertisers’ welfare depending on whether the optimal solution uses one or
two rich ads fractionally.

Lemma 2. Let W ⇤
i

be the space allocated to advertiser i with a non-null allocation in an optimal
solution to the MULTI-CHOICE KNAPSACK problem.

There are two cases.

1. The optimal allocation uses a single non-null rich ad with (value, size) (bl, l) (l = W
⇤
i

) in
space W

⇤
i

. The advertiser is allocated integrally and its value is bl.

2. The optimal allocation uses two rich ads with (value, size) (bs, s), (bl, l), with s < W
⇤
i
< l

and (bl, l) not null, in space W
⇤
i

. We have that bl > bs and the advertiser’s value (i.e.
their contribution to the social welfare) is bs + bl�bs

l�s
(W ⇤

i
� s). If (bs, s) is not null,

bs
s
� bl

l
� bl�bs

l�s
.

Proof. Recall that the main purpose of the null ad is to help make the fractional allocation of
advertiser i exactly equal to one. We can reason about the optimal allocation of advertiser i in space
Wi without the null ad and bringing the null ad if i’s allocation is less than one. Note that the null ad
does not change the value or space occupied by advertiser i. The optimization problem for a single

6For more details refer to Lemma 2 in the appendix.

14

advertiser (without the null ad) is as follows. Let S be the set of rich ads for advertiser i.

max
X

k2S

xkbk

s.t.

X

k2S

xkwk  W
⇤
i

X

k2S

xk  1

xk � 0 8k 2 S

This LP has |S| variables and |S|+ 2 constraints, so there exists an optimal solution with at most 2
non-zero variables.

Suppose there is only one non-zero variable. The optimal fractional solution is made of a single ad
(bl, l) with s � W

⇤
i

. Suppose the advertiser is allocated x  1. Then since lx  W
⇤
i

, we have that
x  W

⇤
i
l

. Since the optimal fractional solution maximizes the advertiser i’s value blx in that space (as
noted in Fact 1), we have that x = W

⇤
i
l

and the advertisers value is bl
W

⇤
i
l

= bl
l
W

⇤
i

. When l = W
⇤
i

,
x = 1 and the advertiser’s allocation is integral. Otherwise, x < 1, we can set (bs, s) = (0, 0) with
xs = 1� x and the advertiser’s value is still bl

l
W

⇤
i
= bl�0

l�0 W
⇤
i
+ 0.

Suppose the optimal allocation uses two (non-null) rich ads (bs, s), (b`, `). Then both the knapsack
and unit demand constraints must be tight. That is xss+x`` = 1 and xss+x`` = W

⇤
i

. The solution
to this system is to have xs =

l�W
⇤
i

l�s
and xl =

W
⇤
i �s

l�s
. Both xs and xl are fractional if s < W

⇤
i
< l.

And the advertiser’s value is

bs
l �W

⇤
i

l � s
+ bl

W
⇤
i
� s

l � s

= bs + (bl � bs)
W

⇤
i
� s

l � s

= bs +
bl � bs

l � s
(W ⇤

i
� s)

The following lemma is a niche property of the optimal fractional solution constructed by the
incremental bang-per-buck order algorithm (Appendix A.1) that can be easily derived and that we
use in our proofs.
Lemma 3. Let i be the last advertiser that is allocated in the incremental bang-per-buck order
algorithm and suppose it is allocated fractionally. Let x⇤ = x(OPT) denote the optimal fractional
allocation. Let (bs, s), (b`, `) be the ads used in x

⇤
i
. For all j 6= i, b`�bs

`�s
 bj ·x⇤

j

W⇤
j

.

Proof. Let j be an advertiser with j 6= i. Since j 6= i, by Fact 1 allocation of j in x⇤ is integral.
Let (bjk, wjk) be the ad allocated to j. Let (bjt, wjt) be the ad that was previously allocated to j

when (bjk, wjk) was considered. Since the incremental bang-per-buck is defined by sorting ads in
increasing order of their space, wjk � wjt. Thus bjk�bjt

wjk�wjt
is the incremental bang-per-buck that

allowed j to be selected and since i is the last advertiser we have that bl�bs
l�s

 bjk�bjt

wjk�wjt
.

To conclude the proof, we show that bjk�bjt

wjk�wjt
 bjk

wjk
. This is true if and only if bjk

wjk
 bjt

wjt
. We have

that 0  wjt  wjk. We can conclude that 0  bjt  bjk, as otherwise, k is dominated by t. Finally,
Suppose, bjk

wjk
>

bjt

wjt
, then with simple rearrangement we can obtain that bjk

wjk
<

bjt�bjk

wjt�wjk
and k is

LP-dominated by 0 and t.

A.2 GSP Pricing and Price of Anarchy

In Sponsored Search, a popular pricing choice is the Generalized Second Price (GSP) [Var07, EOS07].
While this is classically defined for a position auction with k ads being selected, it can be defined for
any allocation algorithm that is monotone in the bid.

15

Definition 4 (GSP). For any allocation rule xi that is monotone in bid, and a bid profile (b,S),
the GSP per click price for advertiser i is the minimum bid below which the advertiser obtains
a smaller amount of expected clicks: cpci(b,S) = argminb0i:xi(b0i,Si,b�i,Si)=xi(bi,Si,b�i,S�i) b

0
i
.

Given a GSP cost-per-click, the GSP payment is the cost-per-click times expected number of clicks:
pi(b,S) = xi(b,S)cpci(b,S).

The mechanism that charges GSP prices may not be truthful. We can study the Price of An-
archy (PoA) [KP99] to understand the effective social welfare. The notion of Price of Anar-
chy captures the inefficiency of a pure Nash equilibrium. Fix a valuation profile (v,A). A
set of bids (b,S) is a pure Nash equilibrium, if for each i, for any (b0

i
, Si), ui(vi, Ai !

bi, Si;b�i,S�i) � ui(vi, Ai ! b
0
i
, S

0
i
;b�i,S�i). The pure Price of Anarchy is the ratio of the

optimal social welfare to the social welfare of the worst pure Nash equilibrium of the mechanism M:
pure PoA = supv,A, pure Nash(b,S)

SW (OPT (v,A))
SW (M(b,S)) .

We will also consider Bayes-Nash Price of Anarchy. Let (v,A) be drawn from a (possibly correlated)
distribution D, and Di be the marginal of i in D. A Bayes-Nash equilibrium is a (possibly randomized)
mapping from value, set of rich ads (vi, Ai) to a reported type (bi(vi, Ai), Si(vi, Ai)) for each i and
(vi, Ai) 2 Support(Di) such that, for any b

0
i

and S
0
i
✓ Ai,

Ev�i,A�i,b�i,S�i [ui(vi, Ai ! bi, Si;b�i,S�i)] � Ev�i,A�i,b�i,S�i [ui(vi, Ai ! b
0
i
, S

0
i
,b�i,S�i)]

In the expression above the expectation is conditioned on vi and over random draws of v�i,A�i

and the competitors bids b�i,S�i drawn from the mapping bj(vj , Aj), Sj(vj , Aj) for each j 6= i.
The Bayes-Nash Price of Anarchy (PoA) is the ratio of the optimal social welfare to that of the worst
Bayes-Nash equilibrium of the mechanism M.

Bayes-Nash POA = sup
D,(b,S) Bayes Nash eq.

E(v,A)[SW (OPT (v,A))]

E(v,A),(b,S)[SW (M(b(v,A),S(v,A)))]
.

For the PoA bounds we also focus on equilibria that satisfy the no overbidding condition, i.e. equilibria
where each bid profile b,S satisfies bi  vi for every advertiser i. Note that, the equilibrium condition
still allows for deviations that overbid. However, by the definition of GSP overbidding is dominated.
If an advertiser can obtain a higher expected number of clicks by bidding higher than their value, then
their GSP cost-per-click will be larger than their value vi, and the advertiser obtains negative utility.
On the other hand if the expected number of clicks is unchanged, then the GSP cost-per-click is also
the same and the utility is unchanged as well, thus no advertiser will be able to gain by overbidding.

B Proofs from Section 3

Proof of Lemma 1. We note that, for a fixed set of rich ads S
0
i

this is a single parameter setting
(in the bids bi). Since we use the same payment rule as Myerson, his result implies for any bi, S

0
i

ui(bi,b�i, S
0
i
,S�i)  ui(vi,b�i, S

0
i
,S�i). Thus the mechanism is truthful in bids.

Next we show that reporting a smaller set of rich ads and the true value is not beneficial, i.e.
ui(vi, Si,b�i,S�i)  ui(vi, Ai,b�i,S�i), for any Si ✓ Ai. From the definition of the payment,
ui(vi, Si,b�i,S�i) =

R
vi

0 xi(b, Si,b�i,S�i)db. Since the allocation rule is monotone, we have
xi(b,b�i, Ai,S�i) � xi(b,b�i, Si,S�i); the claim follows.

Finally we can chain these two results to show that misreporting both bid and the set of rich ads
will also not increase a buyer’s utility. Let Si be the reported set of rich ads, and fix b�i and S�i.
Recall that in our model the buyer can only report a subset of rich-ads, thus Si ✓ Ai. Further for any
valid allocation rule xij = 0 for all j /2 Si. Thus the utility when the true type is Ai is equal to the
utility when the true type is Si: ui(⌫i, Ai ! ⌫

0
i
, Si) = ui(⌫i, Si ! ⌫

0
i
, Si) for all ⌫i, ⌫0i. Putting all

the previous claims together we have:

ui(vi, Ai ! vi, Ai) � ui(vi, Ai ! vi, Si) (By local IC)
= ui(vi, Si ! vi, Si)

� ui(vi, Si ! bi, Si) (By local IC)
= ui(vi, Ai ! bi, Si)

16

Proof of Theorem 1 continued. Consider an instance with two advertisers A,B, and rich ads
{(1, 1), (2 � ", 2)}. The total space available is 3. The optimal allocation can randomly pick
between {A : (1, 1), B : (2� ", 2)} and {A : (2� ", 2), B : (1, 1)}, getting a total value of 3� ".
Therefore, in the output of any algorithm in this instance, some advertiser, say B, obtains value
x  (3 � ")/2. A randomized monotone allocation rule must ensure that B’s value, if she hides
(1, 1), is at most x. In that case, the algorithm will randomize between {A : (1, 1), B : (2� ", 2)}
and {A : (2� ", 2)}, and it choose the first allocation with probability more than x

2�"
. The social

welfare of this randomized allocation is at most x

2�"
· (3�")+(1� x

2�"
) · (2�")  (11/12) · (3�").

Recalling that OPT is (3� ") concludes the proof.

C Proofs and Definitions from Section 4

C.1 Formal description of ALGB

Algorithm 3 (ALGB). Let w denote the remaining space at any stage of the algorithm; initialize
w = W . Let Ei be the set of ads that are available to agent i and let E denote the set [n

i=1Ei;
initialize Ei = Si. Let xij denote the fractional allocation of advertiser i for the rich ad j. The total
space allocated to advertiser i is Wi =

P
j2M wijxij .

While the remaining space w is not zero:

1. Let i be the advertiser whose rich ad (bij , wij) has the highest bang-per-buck, among all ads in E .
Let (bik, wik) be the ad previously allocated to i; (bik, wik) = (0, 0), if no previous ad exists.

2. Remove all ads of i (including ad j) with space at most wij from Ei.

3. If w � wij � wik, add wij � wik to the total space allocated to advertiser i, which now
becomes Wi = wij . Allocate rich ad j in that space, i.e. set xij = 1 (and xik = 0). Update
w = w � wij + wik.

4. If w < wij � wik, add w to the total space allocated to advertiser i, that is, Wi = wik + w.
Allocate rich ad j to i fractionally with xij = Wi/wij (and set xik = 0). Update w = 0.

C.2 Missing Proofs

Proof of Theorem 2. ALGB allocates some ads that are later replaced. We refer to such ads as
temporarily allocated.

We first prove that an advertiser i will not get allocated less space when bidding b
0
i
> bi. For any

agent i 2 N and any j 2 Si, ALGB temporarily allocates j if and only if the total space occupied by
ads with higher bang-per-buck (counting only the largest such ad for each advertiser) is strictly less
than W . For any ad j 2 Si, j’s bang-per-buck bij/wij is increasing in the bid. Therefore, if j 2 Si

was temporarily allocated to i when reporting bi, then j will definitely be temporarily allocated to i

under b0
i
> bi. If j is the last ad to be allocated by the algorithm when reporting bi (and thus might

not fit integrally in the remaining space under bid bi), it will only be considered earlier under b0
i
> bi,

and therefore the remaining space (before allocating j) can only be (weakly) larger. Thus, in all cases,
the space allocated to i under b0

i
is at least as much as under bi.

We next show that by removing an ad k 2 Si the space allocated to i does not increase. Note that
it is sufficient to prove monotonicity removing one rich-ad at a time. Monotonicity for removing a
subset of rich-ads follows through transitivity. If no ad is allocated to i under Si, then definitely the
same holds for Si \ {k}. Otherwise, let j 2 Si be the final ad allocated to i under Si. If k was never
(temporarily or otherwise) allocated under Si, then the allocation under Si \ {k} remains the same.
Therefore, we focus on the case that k was allocated to i under Si.

First, consider the case that k 6= j. Let ` be an ad (temporarily or otherwise) allocated under Si \ {k},
but not under Si (if no such ad exists, the claim follows). It must be that bik/wik � bi`/wi` otherwise
the algorithm under Si would have temporarily allocated ` before k. Note, if wi` > wik and the
algorithm under Si did not allocate ` then it must be the case that space ran out before we got to `.
This implies that, also under Si \ {k}, the space will run out before we get to `. Hence wi`  wik.
At the time when ` is allocated to i (under Si \ {k}), the total space allocated to bidders other than i

17

is weakly larger compared to the time when k is allocated to i (under Si), while the space allocated
to i is weakly smaller.

Second, consider the case that k = j and i is not the last advertiser allocated by the algorithm.
Removing k leads to a different last ad, say `, for i under Si \ {k}. If this ad was temporarily
allocated under Si, the claim follows. Otherwise, ` must have a lower bang-per-buck than k. If
wi`  wik, the claim follows. Otherwise, all advertisers who got allocated after i under Si (we know
this set is non-empty) have the opportunity to claim a (weakly) larger amount of space under Si \ {k},
before ` is considered. Thus, the maximum amount of space i is allocated is wik.

Finally, suppose k = j, and i is the last advertiser allocated by the algorithm. let W�i = W �wijxij

be the space allocated to advertisers other than i, under Si. Since they are allotted this space before
ad k is considered, the maximum space i can get is W �W�i, her allocation under Si.

Proof of Theorem 3 continued. The following instance shows that the approximation of the algorithm
is at least 3 (see Appendix C for the proof). Let M be a large integer. There are four advertisers
named A,B,C,D. We describe the set of rich ads, bang-per-buck and incremental bang-per-buck
for each advertiser in Table 2. Total space W = 2M � ". We assume ties are broken in the order
A,B,C,D (but the example can be constructed without ties).

rich ads bpb ibpb
A (M, 1), (M + ",M) M,

M+"

M
M, "

M�1

B (1 + ", 1), (M + ",M) 1 + ",
M+"

M
1 + ", 1

C (M � 1,M � 1) 1 1
D (M + 2", 2M � ") M+2"

2M�"

M+2"
2M�"

Table 2: Rich ads, Bang-per-buck(bpb) and Incremental Bang-per-bucks(ibpb) for each advertiser.

The fractional optimal solution can be constructed by allocating ads in the incremental-bang-per-buck
order. The incremental bang-per-buck order is: A : (M, 1), B : (1 + ", 1), B : (M + ",M), C :
(M � 1,M � 1), D : (M + 2", 2M � "), A : (M + ",M). Any subsequent ad from the same
advertiser fully replaces the previously selected ad. The allocation stops when the space runs out, so
it will stop while allocating C : (M � 1,M � 1) which will be allocated fractionally. The social
welfare of the fractional optimal is M +M + "+ (M�1�")

M�1 · (M � 1) = 3M � 1.

ALGB considers ads in the order A : (M, 1), B : (1 + ", 1), A : (M + ",M), B : (M + ",M), C :
(M�1,M�1), D : (M+2", 2M�"). Once again, any subsequent ad from the same advertiser fully
replaces the previously selected ad. The algorithm stops when the space runs out. Thus the algorithm
stops while allocating B : (M + ",M). ALGB will allocate space of M to advertiser A and space
M � " to advertiser B. ALGI runs ALGB and post-processes to find the best ad for the allocated
space. Thus A is allocated (M + ",M) and B is allocated (1 + ", 1). The social welfare of ALGI is
1+"+M+" = M+1+2". The maximum value allocation will select D : (M+2", 2M�"). Thus
the expected value of the algorithm that randomly chooses between ALGI with probability 2/3 and
the largest value single ad with probability 1/3 is 2/3(M +1+2")+1/3(M +2") = M +2/3+2"

and the ratio with the fractional optimal allocation is 3M�1
M+2"+2/3 = 3�1/M

1+ 2
3M +2 "

M
. This ratio can be

made arbitrarily close to 3 by choosing " = 1/M and M that is large enough.

Now we prove all the claims from Section 4

Proof of Observation 1. We have that bij

wij
� bij0

wij0
and wij � wij0 . If we multiply these two

inequalities we get: bij � bij0 . If wij = wij0 , then j
0 is dominated by j. Otherwise, we will show

that j0 is LP-dominated by j and 0. We have that 0 < wij0 < wij and 0  bij0  bij . It remains to
show, bij�bij0

wij�wij0
� (bij0

wij0
. This is equivalent to bij

wij
� bij0

wij0
, which is true.

Proof of Claim 1. The post-processing step in ALGI integrally allocates the best ad that fits in Wi

for all advertisers i 2 N . Let INTi(w) denote best ad in Si that fits in space w.

18

For all i 2 I \{i0}, since Wi � W
⇤
i

and the optimal allocation x⇤
i

is integral, we get bi ·xi(ALGI) =
bi · xi(INTi(Wi) � bi · xi(INTi(W ⇤

i
)) = bi · xi(OPTi(W ⇤

i
)). Recall, by Lemma 2, we have

bi · xi(OPTi(W ⇤
i
)) = bi · x⇤

i
.

Thus we get bi · x⇤
i
 bi · xi(ALGI) for all i 2 I \ {i0}. Further, by summing up the contributions

of all i 2 I \ {i0}, we get Val(x⇤
, I \ {i0}, ~W ⇤)  Val(x(ALGI), I \ {i0}, ~W).

Proof of Claim 2. ALGB consider ads in decreasing order of bang-per-buck, and moreover by
Observation 1 it never “ignores” ads that are allocated in OPT . So, if k 2 K \ {i0} had higher
bang-per-buck in OPT than any advertiser i in ALGB , then the space allotted for k in ALGB would
have been at least W ⇤

k
; a contradiction. Note that this holds even if i = i

00 is the last advertiser
considered in ALGB (who potentially gets a fractional allocation).

Proof of Claim 3. From Lemma 2 we know that b` > bs and bi0 · x⇤
i0 = bs + (b` � bs)

W
⇤
i0�s

`�s
.

Moreover if (bs, s) is not the null ad, i.e. s > 0, b`�bs
`�s

 b`
`
 bs

s
,

Suppose that i0 2 K. If s > Wi0 , then by the same argument as Claim 2 we have that for all
i 2 N the bang-per-buck of every ad in ALGB is at least bs/s � b`/` � (b` � bs)/(` � s). If
s  Wi0 , we have bs  bi0 · xi0(ALGI). And, by the same argument as Claim 2, we have that
b`�bs
`�s

 b`
`
 bjxj(ALGI)

Wj
for j 2 N .

Suppose that i0 2 I . Clearly, s  W
⇤
i0  Wi0 , so we have bs  vi0 · xi0(ALGI). Let k 2 K be some

ad with W
⇤
k
> Wk. By Lemma 3 we have (b` � bs)/(`� s)  bk · x⇤

k
/W

⇤
k

. Claim 2 gives us that
bk ·x⇤

k
/W

⇤
k
 bi ·xi(ALGB)/Wi for all i 2 N . Thus we get (b`�bs)/(`�s)  bi ·xi(ALGB)/Wi

for all i 2 N .

C.3 Computing Myerson Payments

Finally, we note that the truthful payment function matching our allocation rule (that gives the
overall auction) can be computed in time that is polynomial in the number of advertisers and rich
ads. Let ALGmax be the algorithm which simply allocates the maximum valued ad. To compute
the payment for an advertiser i, we need to compute the expected allocation as a function of i’s
bid bi. We can compute the expected allocation from ALGI and ALGmax independently, and
the final allocation is just 2

3xi(ALGI(b,b�i,S) +
1
3xi(ALGmax(b,b�i,S). The payment is then

2
3pi(ALGI(b,S)) +

1
3pi(ALGmax(b,S)).

The payment for ALGmax is simple: Advertiser i’s allocation is maxj2Si ↵ij if she is the high-
est value bidder, and zero otherwise. The expected payment pi is the second highest value
maxi0 6=i,j2Si0 bi

0j if i is allocated and zero otherwise. The payment for ALGI can be com-
puted by identifying possible thresholds for i’s bid where i’s allocation changes, and comput-
ing expected allocation for these thresholds. Advertiser i’s allocation can change only when
his bang-per-buck for one of his ads is tied with that of another ad: there are therefore at most
O(n|S|2) such thresholds. Once we identify thresholds t1, t2, ..., the corresponding allocations
can be computed by re-running the bang-per-buck allocation algorithm. Note that as i’s bid
changes, the relative order of rich ads does not change for any advertiser j 2 N . Thus, the
new bang-per-buck allocation can be computed in O(n|S|) time. Once we have the thresholds
t0 = 0, t1, t2, ... and the corresponding expected allocations xi(ALGI(tj , b�i,S)), the final payment
is
P

j=1 (xi(ALGI(tj , b�i,S))� xi(ALGI(tj�1, b�i,S)) tj .

D Examples

The following example shows that ALGB might not be monotone.
Example 4. Consider two advertisers A and B. A has two rich ads with (value,size) = (2, 2) and
(1, 3), and B has one rich ad with value size (0.5, 3). Let the total space W = 3. ALGB will allocate
(1, 3). But if A removed (1, 3), then the algorithm allocates (2, 2) to A and (0.5, 3) to B fractionally.

The following example shows that ALGI can be an arbitrarily bad approximation to the social
welfare.

19

Example 5. We have two advertisers A and B. A has one rich ad with (value, size) = (", "/2), and
B has one rich ad ((M,M)). The total space available is W = M .

Clearly, the optimal integer allocation is to award the entire space to B, to obtain social welfare
= M . The fractional opt selects A : (", "/2) and B : (M,M) with weight M � "/2, obtaining
social welfare = M + "/2. We note that, in this instance the bang-per-buck algorithm also selects
the fractional optimal allocation. At the same time, the integer allocation x(ALGI), drops B, and
only obtains social welfare = ".

E Price of Anarchy Bounds for GSP

In this section we prove bounds on the pure and Bayes-Nash PoA when monotone algorithms are
paired with the GSP payment rule. Note that unlike the previous section, in this section we bound
relative to the optimal integer allocation which we denote as IntOPT .

We consider a mechanism M that runs ALGI with probability 1/2 and allocates the maximum
value ad with probability 1/2. The corresponding GSP payment for either allocation rule is charged
depending on the coin flip. The bidders utility is modelled in expectation over the random coin flip
that selects between the two allocation rules. We refer to ALGI as bang-per-buck allocation and that
of the maximum-value ad as the max-value allocation.

The following example illustrates that GSP paired with our allocation rules can be non-truthful.
Example 6. Suppose there are two advertisers. Advertiser 1 has value v1 = 1 and set of rich ads A1

with one rich ad with (click probability, space): (1/M, 1). Advertiser 2 has value v2 = 1 and set of
rich ads A2 with two rich ads having (click probability, space): ("/M, 1), (1 + "

2
,M) respectively.

Suppose total space W = M .

In this example, truth-telling is not an equilibrium. Suppose both advertisers bid truthfully. The
bang-per-buck order is 2 : (1 + "

2
,M), 1 : (1/M, 1), 2 : ("/M, 1). Thus advertiser 2 gets allocated

(1 + "
2
,M) and pays cost-per-click 1

M
· M

1+"2
, which is the minimum bid below which 2’s bang-

per-buck (1 + "
2) · bid/M is lower than advertiser 1’s. In the max-value allocation advertiser 2 is

allocated (1 + "
2
,M) with the GSP cost-per-click of 1/M · 1/(1 + "

2). Advertiser 2’s utility is

u2(v1, A1, v2, A2) =
1

2
(1 + "

2)

✓
1� 1

M
· M

(1 + "2)

◆

+
1

2
(1 + "

2)

✓
1� 1

M
· 1

(1 + "2)

◆
=

1

2
(1 + 2"2 � 1/M)

However, if advertiser 2 bids 1
2 , advertiser 2’s utility is

u2(1/2, A1, v2, A2) =
1

2
("/M) +

1

2
(1 + "

2 � 1/M)

In the second case, the calculation for max-value is the same. In the bang-per-buck allocation,
advertiser A has higher bang-per-buck and is allocated first. The rest of the space is allocated to
advertiser 2 which is filled with the smaller ad. The GSP cost-per-click is zero. The latter utility is
higher for " < 1/M .

We will use SWbpb and SWmax to denote the social welfare of the bang-per-buck and max-value
algorithms. Then, SWM(b,S) = 1

2SWbpb(b,S) +
1
2SWmax(b,S). We use u

max

i
and u

bpb

i
to

denote the utility of advertiser i in the max-value and bang-per-buck allocation respectively.

The key challenge is in bounding the social welfare of the bang-per-buck allocation. Recall that the
bang-per-buck algorithm allocates in the order of bij/wij . Rich ads from an advertiser that occupy
less space than a previously allocated higher bang-per-buck rich ad are not picked. As the algorithm
continues, it might replace a previously allocated rich ad 7 of an advertiser with another one that
occupies more space (but may have lower value). The algorithm stops, when the next rich ad cannot
fit within the available space or the set of rich ads runs out. We also post-process each advertiser to
choose a rich ad with the highest value that fits within allocated space.

7(We will refer to these ads as being temporarily allocated)

20

We will develop a little notation to make the argument cleaner. For each i and j 2 Si we use (i, j) to
denote this rich-ad. Without loss, we can assume that the space wij occupied by any rich-ad (i, j)
is integer and the total space available W is also integer. Let’s think of the algorithm as consuming
space in discrete units. For each unit of space, we can associate with it the rich ad that was first
allocated to cover that unit of space. For the k’th unit of space, let i(k) as the advertiser the k’th
unit of space is allocated to, and j(k) the rich ad j(k) 2 Si(k) that was (temporarily) allocated for
advertiser i(k) when the k’th unit of space was first covered. Note that j(k) may not be the final rich
ad allocated to i(k). In general, the algorithm stops before all the space runs out, in particular, because
the next rich ad in the bang-per-buck order is too large to fit in the remaining space. We associate this
rich-ad with each of the remaining units of space. It helps to be able to identify (i(k), j(k)) as we
know that the bang-per-bucks bi(k)j(k)/wi(k)j(k) are non-increasing as k increases.

We use the following lemma to relate an upper bound to the payment any “small” ad has to pay and
the equilibrium social welfare.

Lemma 4. Consider an equilibrium profile of per click bids b and sets of rich ads S. We assume
the bids satisfy no overbidding bi  vi for each i. Let k = bW/2c + 1, (r, j) = (i(k), b(k)), and
� = brj

wrj
. Then, �W  2 · SWbpb(b,S) + 2 · SWmax(b,S).

Proof. Recall that we defined (i(k), j(k)) as the rich-ad allocated by ALGB to the k’th unit of space.
Then we let k⇤ = bW/2c+ 1, (r, j) = (i(k⇤), j(k⇤) and � = brj/wrj . Note that (r, j) may not be
allocated integrally if it is bigger than the remaining space.

Case (i): (r, j) is allocated integrally
The rich-ads are also allocated contiguously. Let K0 = 0 and Kt = Kt�1 + wi(Kt)j(Kt). Kt is the
cumulative units of space covered by the first t rich ads. For each k 2 {Kt�1+1,Kt�1+2, . . . ,Kt},
i(k) = i(Kt) and j(k) = j(Kt). Then

P
Kt

k=Kt�1+1
vi(k)j(k)

wi(k)j(k)
= vi(Kt)j(Kt).

�W  2�k⇤ = 2
bi(k⇤)j(k⇤)

wi(k⇤)j(k⇤)
k
⇤

 2
k
⇤X

k=1

bi(k)j(k)

wi(k)j(k)

 2
k
⇤X

k=1

vi(k)j(k)

wi(k)j(k)
= 2

X

t=1

KtX

k=Kt�1+1

vi(k)j(k)

wi(k)j(k)
= 2

X

t=1

vi(Kt)j(Kt)

 2SWbpb(b,S)

In the first inequality, we use that k⇤ > W/2. Second inequality follows since, for each k  k
⇤,

bi(k)j(k)/wi(k)j(k) � �. In the third step, we use the no-overbidding assumption. And the last
inequality uses the fact that the temporary allocation vi(Ki))j(Ki

 vi(Ki)⇢(i(Ki)) where ⇢(i) denotes
the ad allocated to advertiser i in the bang-per-buck allocation.
Case(ii) (r, j) is not placed.
We have that wrj > W/2 and �  2brj/W . Hence,�W  2brj  2SWmax(b,S).

Combining the inequalities for the two cases, we have, �W  2SWbpb(b,S) + 2SWmax(b,S)

The following lemma establishes a bound on the utility of an advertiser with rich ad (i, t) of size less
than W/2 bidding at least � wit

↵it
where ↵it is the probability of click for rich ad (i, t) . We use these

deviations with the equilibrium condition to relate the social welfare of a bid-profile to that of a target
optimal outcome.

Lemma 5. Let k = bW/2c+ 1, (r, j) = (i(k), b(k)), and � = brj/wrj as defined above. Then for
an advertiser i, with rich-ad (i, t) with wit  W/2 bidding (y, {t}) with y = min{vi,�wit/↵it+"},
for some ", ubpb

i
(y, {t},b�i,S�i) � vit � �wit.

We prove the following lemma, which covers Lemma 5, and is also used in the Bayes-Nash POA
proof.

21

Lemma 6. Let k = bW/2c+ 1, (r, j) = (i(k), b(k)), and � = brj/wrj as defined above. Then for
an advertiser i, with rich-ad (i, t) with wit  W/2 bidding (y,Ai) with vi � y � �

wit
↵it

u
bpb

i
(y,Ai,b�i,S�i) � vit � y↵it

Moreover, for some ", y = min{vi,�wit/↵it + "},

u
bpb

i
(y, {t},b�i,S�i) � vit � �wit.

Proof. First, we will argue that with any bid b
0
i
2 (�wit

↵it
, vi], and set of rich ads S0

i
✓ Ai such that

t 2 S
0
i
, i will be allocated a rich ad of value at least vit. This is tricky, because changing i’s bid

also changes the allocation of all advertisers allocated earlier in the bang-per-buck order. However,
as long as the space occupied by all ads other than i when we get to (i, t) is at most W/2, there is
sufficient space remaining to place (i, t). Since b0

i
> �

wit
↵it

, b
0
i↵it

wit
> �, and (i, t) appears before (r, j)

in bang-per-buck order. Hence the space allocated to others before (i, t) is at most W/2. Thus the
bang-per-buck algorithm will allocate at least (i, t). Suppose the algorithm allocates (i, j) instead,
then wij � wit and the post processing step guarantees that vij � vit and ↵ij � ↵it. Since the GSP
cost-per-click is at most the bid b

0
i

we get

u
bpb

i
(b0

i
, S

0
i
,b�i,S) � vij � b

0
i
↵ij = ↵ij(vi � b

0
i
) � vit � b

0
i
↵it

In the last step we use that b0
i
 vi.

If vi < �
wit
↵it

, let us consider the deviation (b0
i
, {t}) then by setting b

0
i

= vi we get
u
bpb

i
(b0

i
, Ai,b�i,S) � 0 � vit � �wit. This is because the GSP cost-per-click is at most the

bid b
0
i
 �

wit
↵it

.

Next we consider a deviation b
0
i
, {(t)} with b

0
i
= �

wit
↵it

+ " < vi, for some " > 0 such that (r, j)
immediately follows (i, t) in bang-per-buck order. In this case b0

i
is still sufficient for i to be allocated

at least (i, t). The GSP payment of (i, t) is at most � ·wit, as GSP payment is set by the bang-per-buck
of (r, j) or lower. Thus,

u
bpb

i
(b0

i
, {t},b�i,S) � vit � �wit

Now we can prove the pure price of anarchy bound. In a pure PoA proof, we can consider deviations
that depend on the other players bids which allows us to obtain a tighter analysis.
Theorem 4. With the no-overbidding assumption, the pure PoA of the mechanism that selects using
ALGI with probability 1/2, selects the maximum value ad with probability 1/2 and charges the GSP
payment in each case is at most 6

Proof. Consider the integer optimal allocation IntOPT . For each i, let ⌧(i) denote the rich ad
selected for advertiser i in IntOPT . If an advertiser i is not allocated in IntOPT , we set ⌧(i) = 0
which indicates the null ad. Let (b,S) denote a pure Nash equilibrium bid profile. The allocation of
the mechanism is composed of two parts - bang-per-buck allocation and max-value-allocation. Let
�(i) refer to the max-value allocation for advertiser i, but note that �(i) = 0, i.e. the null ad, for all
but one ad. Let ⇢(i) denote the rich ad allocated to advertiser i in the bang-per-buck allocation.

First note that for any bid b
0
i

 vi and S
0
i

✓ Ai, u
bpb

i
(b0

i
, S

0
i
,b�i,S�i) � 0 and

u
max

i
(b0

i
, S

0
i
,b�i,S�i) � 0. This is because the GSP cost-per-click is always less than the bid

and the bid is less than value. Thus in either mechanism if the allocated rich ad is (i, t), the utility
↵it(vi � cpci) � 0.

We first bound the social welfare in the bang-per-buck allocation for advertisers that obtain an ad of
space  W/2 in the optimal outcome ⌧ . Let (r, j) be defined as in Lemma 5 and let � = brj

wrj
. By

Lemma 5, for each i with wi⌧(i)  W/2, there exists an " such that with b
0
i
= min{vi,�

wi⌧(i)

↵i⌧(i)
+ "},

u
bpb

i
(b0

i
, {⌧(i)},b�i,S) � vi⌧(i) � �wi⌧(i). Thus we get,

(pvi⇢(i) + (1� p)vi�(i)) � ui(b,S)

� ui(b
0
i
, {⌧(i)},b�i,S)

� pu
bpb

i
(b0

i
, {⌧(i)},b�i,S)

� pvi⌧(i) � p�wi⌧(i)

22

Here, the first inequality uses the fact that the equilibrium payment is non-negative and the second is
from the equilibrium condition. The third inequality follows from the fact that utility in max-value
with GSP is non-negative. The last step is the estimation we have derived.

We have the above inequality for all i such that wi⌧(i)  W/2. Note that there can be at most one
advertiser with wi⌧(i) > W/2, denote this advertiser as i⇤. Let T = N \ {i⇤}. Summing the above
inequality over all i 6= i

⇤ we get,

pSW (T, ⇢) + (1� p)SW (T, �) =
X

i 6=i⇤

(pvi⇢(i) + (1� p)vi�(i))

�
X

i 6=i⇤

(pvi⌧(i) � p�wi⌧(i))

� pSW (T, ⌧)� p

X

i 6=i⇤

�wi⌧(i) (3)

Case 1: First we consider the case that there is no i
⇤ with wi⇤⌧(i⇤) > W/2. Starting from equation (3),

we can bound
P

i
wi⌧(i)  W and use Lemma 4. We have pSWbpb(b,S)+ (1�p)SWmax(b,S) �

pSW (IntOPT) � 2p(SWbpb(b,S) + SWmax(b,S)). Setting p = 1/2 and rearranging, we get
that the price of anarchy = SW (IntOPT)/SWM(b,S)  6.

Case 2: If there is an ad i
⇤ with wi⇤⌧(i⇤) > W/2. Then we have that

P
i 6=i⇤ wi⌧(i) < W/2. We will

prove the following inequality for i⇤.

pvi⇤⇢(i⇤) + (1� p)SWmax(b,S) � (1� p)vi⇤⌧(i⇤) (4)

Let i⇤ deviate to bid truthfully. His utility on deviation,

ui⇤(vi⇤ , Ai⇤ ,b�i⇤ ,S�i⇤) � (1� p)umax

i⇤ (vi⇤ , Ai⇤ ,b�i⇤ ,S�i⇤)

� (1� p) max
j2Ai⇤

vi⇤j � (1� p) max
i 6=i⇤,j2Si

bij

� (1� p)vi⇤⌧(i⇤) � (1� p) max
i 6=i⇤,j2Si

bij (5)

Here the first inequality uses the fact that with bid less than value, the utility in the bang-per-buck
allocation with GSP cost-per-click is non-negative. The second inequality is because i

⇤ may not be
allocated when bidding v

⇤
i

in which case the competing bid is larger than i
⇤’s value.

If i
⇤ gets allocated in the max-value algorithm in equilibrium, ui⇤(b,S) is at most pvi⇤⇢(i⇤) +

(1 � p)vi⇤�(i⇤) � (1 � p)maxi 6=i⇤,j2Si bij . Using the equilibrium condition with ui⇤(b,S) �
ui⇤(vi⇤ , Ai⇤ ,b�i⇤ ,S�i⇤), we get pvi⇤⇢(i⇤)+(1�p)vi⇤�(i⇤) � (1�p)vi⇤⌧(i⇤). Equation (4) follows
because vi⇤�(i⇤) = SWmax(b,S).

If i⇤ does not get allocated in the max-value algorithm in the equilibrium, then ui⇤(b,S) is at most
pvi⇤⇢(i⇤). Using (1� p)maxi 6=i⇤,j2Si bij  (1� p)SWmax(b,S), with the pure Nash equilibrium
condition, and rearranging we get pvi⇤⇢(i⇤)+(1�p)SWmax(b,S) � (1�p)vi⇤⌧(i⇤), i.e., equation (4).

Then adding equations (3) and (4), we get

pSWbpb(b,S) + 2(1� p)SWmax(b,S) � p(SW (IntOPT)� vi⇤⌧(i⇤)) + (1� p)vi⇤⌧(i⇤) � p�
W

2

where we use SWbpb(b,S) = SW (T, ⇢)+vi⇤⇢(i⇤), SWmax(b,S) � SW (T, �), SW (IntOPT) =
SW (T, ⌧) + vi⇤⌧(i⇤), and

P
i2T

wi⌧(i) < W/2. By Lemma 4, we have �W/2  SWbpb(b,S) +
SWmax(b,S). Thus,

pSWbpb(b,S) + 2(1� p)SWmax(b,S)) � pSW (IntOPT)� pSWbpb(b,S)� pSWmax(b,S).

Setting p = 1/2, we get that 6SW (b,S) � SW (IntOPT). So the price of anarchy is at most
6.

Bayes-Nash PoA We also provide bounds on the Bayes-Nash Price of Anarchy when our allocation
rule is paired with the GSP payment rule. Our proof technique is very similar to that of [CKK+15].
We borrow ideas from [CKK+15] and combine with techniques from our pure-PoA bound to prove a
smoothness inequality, and obtain a bound on the Bayes-Nash PoA.

23

Theorem 5. Under a no-overbidding assumption, the mechanism that runs ALGI with probability
1/2 and allocates to the maximum valued ad with probability 1/2, and charges the corresponding
GSP price has a Bayes-Nash PoA of 6

1�1/e .

We will prove the bound using the smoothness framework. Our proof approach is similar to that
of [CKK+15] for proving bounds on the price of anarchy of the GSP auction in the traditional position
auction setting. However the knapsack constraint and the randomized allocation rule create unique
challenges in our setting that we have to overcome.

We recall the definition of (�, µ) semi-smoothness, as defined as [CKK+15], that extends [Rou15a],
[NR10].
Definition 5 ((�, µ) semi-smooth games [CKK+15]). A game is (�, µ) semi-smooth if for any
bid-profile (b,S), for each player i, there exists a randomized distribution over over bids b0

i
such that

X

i

Eb0i(vi)
[ui(b

0
i
(vi), b�i,S)] � �SW (OPT (v,A))� µSW (Alg(b,S))

The following lemma from [CKK+15] shows that smoothness inequality of the above form provides
a bound on the Bayes-Nash POA.
Lemma 7 ([CKK+15]). If a game is (�, µ)-semi-smooth and its social welfare is at least the sum of
the players’ utilities, then the Bayes-Nash POA is at most (µ+ 1)/�.

Thus, it only remains to prove the smoothness inequality. We prove that our mechanism is (12 (1�
1
e
), 2)

semi-smooth, and hence obtain a Bayes-Nash POA bound of 6/(1� 1
e
) u 9.49186.

Theorem 6. Under a no-overbidding assumption, the mechanism that runs ALGI with probability
1/2 and allocates to the maximum valued ad with probability 1/2, and charges the corresponding
GSP price in each is (12 (1�

1
e
), 2) semi-smooth.

Proof. Fix a valuations profile (v,A) Consider the integer optimal allocation with valuation (v,A)
as OPT . For each i, let ⌧(i) denote the rich-ad selected for advertiser i in OPT . ⌧(i) = 0 be the
null ad with ↵i0 = 0 and wi0 = 0 if advertiser i is not allocated in OPT .

Let (b,S) denote a bid profile. The allocation of the mechanism is composed of two parts - bang-per-
buck allocation and max-value-allocation. Let ⇢(i) denote the rich ad allocated to advertiser i in the
bang-per-buck allocation and �(i) denote the rich ad allocated to the advertiser i in the bang-per-buck
allocation. If an advertiser is not allocated we refer to the null ad with ↵i0 = 0 and wi0 = 0. We will
use SWbpb and SWmax to denote the social welfare of the bang-per-buck and max-value allocation
algorithms. Then,

SWM(b,S) = pSWbpb(b,S) + (1� p)SWmax(b,S) = p

X

i

vi⇢(i) + (1� p)vm,µ.

Most of the difficulty in proving the smoothness inequality is in reasoning about what happens in the
bang-per-buck allocation. As in Lemma 4, let k⇤ = bW/2c+ 1 and (r, j) = (i(k⇤), j(k⇤)) be the
rich-ad that would be allocated the k

⇤’th unit of space. Let � = br↵rj/wrj .

For any advertiser i, consider the advertiser deviates to bid y drawn from a distribution on [0, vi(1�
1/e)] with f(y) = 1/(vi � y). Then by Lemma 6, ubpb

i
(y,Ai,b�i,S�i) � vi⌧(i) � y↵i⌧(i). If

↵i⌧(i) · y < �wi⌧(i), we just lower bound the utility by 0.

Ey⇠F [u
bpb

i
(y,Ai,b�i,S�i)] � Ey⇠F [↵i⌧(i)(vi � y)I(↵i⌧(i) · y � �wi⌧(i))]

=

Z
vi(1�1/e)

0
↵i⌧(i)(vi � y)I(↵i⌧(i) · y � �wi⌧(i)) ·

1

vi � y
dy

= ↵i⌧(i)vi(1� 1/e)� �wi⌧(i)

We have the above inequality for every i, with wi⌧(i)  W/2.

24

Case 1: First consider the case where every advertiser has wi⌧(i)  W/2 in OPT. Then we can sum
over all i and use the equilibrium condition to obtain a single smoothness inequality.

X

i

Ey⇠fui(y,Ai,b�i,S�i)

= p

X

i

Ey⇠fu
bpb

i
(y,Ai,b�i,S�i) + (1� p)

X

i

Ey⇠fu
max

i
(y,Ai,b�i,S�i)

� p

X

i

Ey⇠fu
bpb

i
(y,Ai,b�i,S�i)

� p

X

i

[↵i⌧(i)vi(1� 1/e)� �wi⌧(i))]

� p(1� 1/e)SW (OPT)� p�W

In the last step, we bound
P

i
wi⌧(i)  W . If p = 1/2, by Lemma 4 we have p�W 

2p(SWbpb(b,S) + SWmax(b,S) = 2SWM(b,S). And we have a smoothness inequality with
parameters (1/2(1� 1/e), 2).

Case 2: Otherwise suppose OPT has an advertiser with wi⌧(i) > W/2. Note that OPT can have
at most one advertiser with wi⌧(i) > W/2. Denote this advertiser as i

⇤. We consider the utility
of an advertiser i

⇤ as he deviates to bid y drawn from distribution f on (0, vi⇤(1 � 1/e)) with
f(y) = 1/(vi⇤ � y). With a bid of y, the bidder will definitely be allocated in the max-value
algorithm if ↵i⇤⌧(i⇤)y � SWmax(b,S). Note that this is a loose condition, (i⇤, ⌧(i⇤)) may not be
the most valuable rich ad for i⇤, and if i⇤ is allocated in the bid profile the threshold to win might
be lower than SWmax(b,S) . But we will use this weaker condition. Again, recall that the GSP
cost-per-click will be at most the bid y. Then we have,
Ey⇠f [u

max

i⇤ (y,Ai⇤ ,b�i⇤ ,S�i⇤)] � Ey⇠f [↵i⇤⌧(i⇤)(vi⇤ � y)I(↵i⇤⌧(i⇤)y � SWmax(b,S))]

�
Z

vi⇤ (1�1/e)

0
↵i⇤⌧(i⇤)(vi⇤ � y)

1

(vi⇤ � y)
I(↵i⇤⌧(i⇤)y � SWmax(b,S))dy

�
Z

vi⇤ (1�1/e)

SWmax(b,S))
↵i⇤⌧(i⇤)

↵i⇤⌧(i⇤)dy

� (1� 1/e)↵i⇤⌧(i⇤)vi⇤ � SWmax(b,S)

We can combine all the inequalities to obtain a single smoothness inequality.
X

i

Ey⇠fui(y,Ai,b�i,S�i)

= p

X

i

Ey⇠fu
bpb

i
(y,Ai,b�i,S�i) + (1� p)

X

i

Ey⇠fu
max

i
(y,Ai,b�i,S�i)

� p

X

i 6=i⇤

Ey⇠fu
bpb

i
(y,Ai,b�i,S�i) + (1� p)Ey⇠fu

max

i⇤ (y,Ai⇤ ,b�i⇤ ,S�i⇤)

� p

X

i 6=i⇤

[↵i⌧(i)vi(1� 1/e)� �wi⌧(i))] + (1� p)[(1� 1/e)↵i⇤⌧(i⇤)vi⇤ � SWmax(b,S)]

� p(1� 1/e)SW (OPT)� p�W/2 + (1� 2p)(1� 1/e)vi⇤⌧(i⇤) � (1� p)SWmax(b,S)

Here in the last step we bound
P

i 6=i⇤ wi⌧(i) < W/2.

By Lemma 4, we obtain an upper bound of 2SWbpb(b,S)+2SWmax(b,S) on �W . Setting p = 1/2,
X

i

Ey⇠fui(y,Ai,b�i,S�i) �
1

2
(1�1

e
)SW (OPT)�1

2
(SWbpb(b,S)+SWmax(b,S))�

1

2
SWmax(b,S).

Recall that SWM(b,S) = 1
2SWbpb(b,S) +

1
2SWmax(b,S). Hence, the smoothness inequality

X

i

Ey⇠fui(y,Ai,b�i,S�i) � 1/2(1� 1/e)SW (OPT)� 2SW (b,S),

follows, and we obtain a bound on the Bayes-Nash POA of 6/(1� 1/e) u 9.49186.

25

F Proofs from Section 5

We briefly sketch a proof that the new "heuristically better" algorithms are still monotone.
Lemma 8. GreedyByBangPerBuck is monotone in both bi and Si.

Proof. Recall that in GreedyByBangPerBuck we do not stop immediately when encountering an ad
that doesn’t fit, but instead we will continue until we run out ads or knapsack space. We will refer to
this as the bang-per-buck allocation. Finally, we do a post-processing step as usual.

Let Wi denote the space allocated to agent i before the post-processing step for each i. Since the post-
processing step uses the space Wi optimally, it is enough to show that the bang-per-buck allocation is
space monotone. That is, we will show that Wi is monotone in bi and Si (without worrying about
the post-processing step). Also, wlog we can assume that the algorithm continues to consider ads in
bang-per-buck order until we run out of ads (that is, if knapsack is full we will keep going without
allocating anything else).

Clearly, for any b
0
i
> bi, the advertiser will not get allocated lesser space when bidding b

0
i
. This

is because, when reporting b
0
i
, all the ads of i now have higher bang per buck (than compared to

reporting bi). So any ad j 2 Si that was allocated (temporarily or otherwise) under bi will still be
allocated in b

0
i
. In particular, the space available to j is weakly higher under b0

i
.

We next show that by removing any ad j 2 Si the space allocated to i does not increase. Note that,
by transitivity, it is sufficient to prove monotonicity for removing one ad at a time. We see that by
removing ads we can only increase the amount of space allocated to other advertisers. This is because
the algorithm will continue until we run out of space. First, if j was never (temporarily) allocated by
the algorithm then either j was dominated or there was not enough space to allocate j, in either case
nothing changes under Si \ {j}.

First consider the case where j was the final ad allocated under Si. This implies that either j was the
largest of i, or no ad k 2 Si larger than j (that is, wik > wij) had enough space available. In either
case, by removing j the space allocated to i can only be lesser, since no such larger ad k (if any) will
have enough space available.

Next we consider the case where j was temporarily allocated and finally a larger ad k was allocated
to i instead. Then under Si \ {j} can only have weakly lesser space available to k. To see why this
is true, consider "time step" at which j was temporarily allocated. Note that j being allocated does
not reduce the space available to advertiser i as subsequent rich ads of i replace j and can use the
space previously allocated to j. If w � wij is the space available to other agents at this time step,
then by removing j there is at least w � wij space available for other agents at this time step (when
j is not available). Also while j being allocated does cause the algorithm to drop other rich ads of
lower bang-per-buck and lower size, since the size of these rich ads is necessary smaller they cannot
make more space available under Si \ {j}. Hence we see that the space allocated to i is weakly lesser
under Si \ {j}.

Lemma 9. GreedyByValue is monotone in both bi and Si.

Proof. Recall that in GreedyByValue we continue allocating ads in value order (while only allocating
at most one ad per advertiser) until we run out of ads. That is, we skip past ads that do not fit in the
available space and continue considering ads in value order. Once an agent i get allocated we ignore
all their remaining ads.

Suppose i changes her bid from bi to b
0
i
> bi. This implies, the value of all of i’s ads increased.

Therefore, her allocation under b0
i

can only be better.

Similarly by dropping an ad j 2 Si the allocation of i can only be worse. If j was not allocated under
Si then nothing changes because either j didn’t fit (in which case we will still continue) or a better ad
was allocated before j and will be allocated under Si \ {j}.

If j was allocated, then j was the highest valued ad of i that fit. That is, all ads of i with higher value
than j (if any) were considered before j and did not fit. Thus they will still not be allocated even
under Si \ {j}.

26

Algorithm ApproxECPM ApproxPayment time-msec
GreedyByBPB-Myerson 0.9493 0.66 3.2914
GreedyByValue-Myerson 0.9196 1.00 1.6087

RandomizedGreedy-Myerson 0.9393 ± 0.0001 0.7758 ± 0.0007 2.7316 ± 0.0037
VCG 1.0 1.0 30.8287

Table 3: Average performance of the mechanisms compared to VCG. We report average approxi-
mation of eCPM and payment relative to VCG and average running time in miliseconds. We report
confidence intervals for the randomized mechanism.

Figure 4: Histogram of ratio of revenue with MyersonPaymentRule for GreedyByValue, GreedyBy-
BangPerBuck (GreedyByBPB) and RandomizedGreedy compared to VCG

G Further Empirical Evaluation

Comparison with Myerson Payment rule We compare the revenue performance of our allocation
algorithms when paired with truthful payment rules.

We pair IntOPT with the VCG payment rule gives the VCG mechanism. The VCG payment for
advertiser i is computed by computing the brute-force integer OPT with the advertiser i removed and
subtracting from that the allocation of all advertisers other than advertiser i in the optimal allocation.
For our monotone mechanisms we compute Myerson payments as implied by Lemma 1. We compute
the Myerson payment for advertiser i, by first computing the GSP cost per click at the submitted
bid, setting a new-bid equal to GSP cost-per-click - ✏, and rerunning the allocation algorithm. This
procedure is repeated until GSP cost-per-click or the allocation of advertiser i is equal to zero.

We first compare the revenue performance of the four different truthful mechanisms that we have.
Since these mechanisms are truthful, revenue can be compared without having to reason about
equilibrium. Note however that we do not set reserve prices and reserve prices can be set and tuned
differently to fully compare the revenue from these mechanisms. In Figure 4, the revenue from
GreedyByBangPerBuck and GreedyByValue can be both higher and lower than VCG. GreedyBy-
BangPerBuck tends to have lower revenue on average. This is probably due to the bang-per-buck
allocation — large value ads might also occupy larger space and have lower bang-per-buck. Thus,
even if a large value ad is used to price smaller ads that are selected, since the bang-per-buck is small
the payment for the smaller ad is still small. We might also make better trade-off between revenue
and efficiency by stopping the algorithms early.

In Figure 5, we compare the running time for computing truthful payments in each mechanism. We
note that all the implementations can be further optimized and the choice of programming language
can influence the running time as well. The results here are from mechanisms implemented in Python.
We see that GreedybyBangPerBuck(GreedyByBPB) and GreedyByValue run much faster than VCG.
The greedy allocation rules themselves are much faster than brute-force OPT (see Table 1), but the
truthful payment rule computation for the Greedy algorithm requires more recursive calls to the
Greedy allocation rule than that for VCG, this can be further optimized if required.

Empirical results with cardinality constraint We also implemented our algorithm with the car-
dinality constraint. Suppose there is a limit of k = 4 distinct advertisers to be shown. This changes
the optimization problem and the greedy-incremental-bang-per-buck algorithm no longer produces
the optimal allocation. We compare the performance of simple greedy algorithms with Myerson
payment rule with that of the VCG mechanism that computes the optimal allocation. The algorithm

27

Figure 5: Histogram of ratio of running time in milliseconds for for GreedyByValue-Myerson,
GreedyByBPB-Myerson and VCG mechanisms. We clip running time larger than 50 in the last bin.

Figure 6: Approximation Factor of algorithms relative to IntOPT (a) Histogram of approximation
factor for GreedyByValue, GreedyByBangPerBuck and randomized Greedy compared to IntOPT
with a cardinality constraint of 4 ads

for computing optimal allocation recurses on subsets of ads and can be easily extended to track the
cardinality constraint. The algorithm that allocates greedily by value of the rich-ad, will allocate the
highest ad that fits within the available space and this algorithm can be stopped as as soon as k distinct
advertisers have been selected. To obtain the best social welfare using the greedy by bang-per-buck
heuristic, more care is required. We cannot stop as soon as k distinct advertisers are selected, instead
we can improve social welfare further by replacing previously selected ads. Thus we extend our
GreedyByBangPerBuck algorithm such that if the cardinality constraint is reached, it replace existing
ad of the same advertiser if present (in this case the cardinality is unaffected) or replaces allocated ad
of the advertiser that has the lowest value among all allocated advertisers.

In Figure 6, we compare the approximation factor of our greedy algorithms with cardinality constraint
relative to the optimal integer allocation. We find that the worst-case approximation factors are still
0.6 and 0.4 for the GreedyByBangPerBuck and GreedyByValue algorithms, but 60% of the queries
have an approximation of 1.0.

28

	Introduction
	Preliminaries
	Monotonicity and Lower Bounds
	A Simple Monotone 3-Approximation
	Experiments
	Missing Preliminaries
	Fractional Optimal and the Incremental-bang-per-buck Algorithm
	GSP Pricing and Price of Anarchy

	Proofs from Section 3
	Proofs and Definitions from Section 4
	Formal description of ALGB
	Missing Proofs
	Computing Myerson Payments

	Examples
	Price of Anarchy Bounds for GSP
	Proofs from Section 5
	Further Empirical Evaluation

