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ABSTRACT

Out-of-distribution (OOD) detection empowers the model trained on the closed
image set to identify unknown data in the open world. Though many prior tech-
niques have yielded considerable improvements in this research direction, two
crucial obstacles still remain. Firstly, a unified perspective has yet to be presented
to view the developed arts with individual designs, which is vital for providing
insights into future work. Secondly, we expect sufficient natural OOD supervision
to promote the generation of compact boundaries between the in-distribution (ID)
and OOD data without collecting explicit OOD samples. To tackle these issues, we
propose a general probabilistic framework to interpret many existing methods and
an OOD-data-free model, namely Self-supervised Sampling for OOD Detection
(SSOD). SSOD efficiently exploits natural OOD signals from the ID data based
on the local property of convolution. With these supervisions, it jointly optimizes
the OOD detection and conventional ID classification in an end-to-end manner.
Extensive experiments reveal that SSOD establishes competitive state-of-the-art
performance on many large-scale benchmarks, outperforming the best previous
method by a large margin, e.g., reporting -6.28 % FPROS5 and +0.77% AUROC on
ImageNet, -19.01% FPR95 and +3.04% AUROC on CIFAR-10, and top-ranked

performance on hard OOD datasets, i.e., ImageNet-O and Openlmage-O.

1 INTRODUCTION

Identifying the out-of-distribution (OOD) samples is vi-
tal for practical applications since the deployed systems
can not handle these unknown data in a human-like
fashion, e.g., performing rejection. Based on research
in animal behavior, such as Tierney & Jane (1986)
and Shettleworth (2001), these abilities demonstrated
by humans are rooted in experience, which means we
earn them from interactions with environments. For
instance, the adults will not reach their fingers towards
the flames in case of burning, while the children may
take this risky action due to their limited cognitive abil-
ity. This principle reveals that the failure encountered
by the well-trained classification models in detecting
OOD examples results from the lack of interactions
with OOD data. Consequently, acquiring sufficient and
diversified OOD signals from the in-distribution (ID)
data has become a promising direction, which helps
mitigate the gap between classification and OOD detec-
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Figure 1: Feature visualization of the ID
and OOD images. The green/orange dots
are surrogate ID/OOD features generated
by SSOD. The blue/gray dots are natural
ID/OOD features of ImageNet/iNaturalist.

tion. Fig. 1 provides an intuitive illustration of natural supervision’s importance in OOD detection.
In particular, we employ the pre-trained ResNet-50 (He et al., 2016) as the backbone and ImageNet
(Russakovsky et al., 2015) as the ID data. The OOD samples are from iNaturalist (Horn et al., 2018).
The blue points are pooled features from ImageNet, i.e., the natural ID features. The green/orange
points indicate the ID/OOD signals generated by our SSOD, i.e., the ID/OOD proxy. We can see that
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the OOD signals sampled by SSOD build a defensive wall between the real ID and OOD data, which
can serve as the proxy of authentic OOD images to supervise the training procedure.

Recall other existing OOD detection methods that primarily rely on the perspective of statistical
difference, i.e., observing distinctions of the pre-trained features between ID and OOD samples.
These methods use heuristic rules to filter out OOD data in a two-stage manner, i.e., pre-training
and post-processing, which suffer from the following drawbacks. Firstly, the frozen model weights
are obtained on the ID classification task with limited OOD supervision. Therefore, the extracted
features inherently carry bias, which is not distinguishable enough for identifying OOD data (cf. Fig.
4). Secondly, the two-stage design yields poor scalability and efficiency since it is unsuitable for
scenarios without pre-trained models, e.g., given insufficient training data, a two-stage model may
fail to obtain high-quality weights, thus encountering the performance drop in detecting OOD data.

To tackle the issues above, this paper interprets the OOD detection task with a unified probabilistic
framework, which can widely include many previous individual designs. Concretely, our framework
starts from Bayes’ rule and divides the robust classification problem into two tasks: conventional ID
classification and OOD detection. According to our theoretical analysis, the deficiency encountered by
traditional neural networks in identifying OOD data arises from the absence of a critical component,
i.e., an OOD factor that estimates the likelihood of images belonging to the in-distribution. Further-
more, sailing from this general foundation, we present Self-supervised Sampling for OOD Detection
(SSOD), an end-to-end trainable framework w/o resorting to explicit OOD annotations. In contrast to
the observed paths that hug synthetic OOD features, SSOD directly samples natural OOD supervision
from the background of ID images, i.e., self-supervised, getting rid of the constraints resulting from
the lack of labeled OOD data and the deviation introduced within the OOD feature syntheses stage.
Extensive experiments demonstrate that the joint end-to-end training significantly improves the OOD
detection performance and guides the model to focus more on the object-discriminative characters
instead of the meaningless background information (cf. Fig. 2). The major contributions of this paper
are summarized as follows:

* We establish a general probabilistic framework to interpret the OOD detection, where various OOD
methods can be analyzed, with main differences and key limitations clearly identified.

* To promote ID/OOD features being more distinguishable, we design an end-to-end trainable model,
namely Self-supervised Sampling for OOD Detection (SSOD), to sample natural OOD signals
from the ID images. SSOD avoids the labor-intensive work of labeling sufficient OOD images.

e SSOD is evaluated across various benchmarks and model architectures for OOD detection, where
it outperforms current state-of-the-art approaches by a large margin, e.g., improving KNN (Sun
et al., 2022) w/ and w/o contrastive learning with -20.23% and -38.17 % FPR95 on Places (Zhou
et al., 2018), and Energy (Liu et al., 2020) with -30.74% FPR95 and +8.44% AUROC on SUN
(Xiao et al., 2010), to name a few. The scalability and superiority of SSOD promise its potential to
be a starting point for solving the OOD detection problem.

2  METHODS

We introduce the unified probabilistic OOD framework, present the detailed interpretation of existing
OOD detection methods from our unified view, and formulate the SSOD finally.

2.1 PROBABILISTIC OOD DETECTION

We formalize the OOD detection task as a binary classification problem. Concretely, we consider two
disjoint distributions on the data and label space, denoted as Syp X Vip and Sgop X Yoob, representing
the ID/OOD distribution. We note that Vip and Ygop have no overlap, i.e., Vip N Yoon = &. OOD
detection aims to train a model that can effectively distinguish the source distribution of a given
image x. Moreover, for z X y € Sip X Vip, the classifier f(-) should correctly predict its category.

Supposing that we have M known classes within the ID data, depicting as {wy, wa, ..., was }. We
don’t distinguish the categories of OOD data. Thus, the images sampled from unknown classes are
depicted as the wjs41 no matter their categories or domains. Given an image x, we aim to learn a
classifier f(-) that reports the posterior probability of = belonging to each category, which is P(w;|z)
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(a) Locality of ResNet-50. (b) Locality of SSOD. (c) Samplers of ResNet-50. (d) Samplers of SSOD.

Figure 2: (a): The image patches in blue are recognized as penguins with over 40% confidence
by the vanilla ResNet-50. (b): The SSOD counterpart of (a). We can see that SSOD focuses on
more discriminative characters, reducing the false negatives. (c¢): The image patches in green/red
are sampled as ID/OOD supervision with over 95% confidence by ResNet-50. (d): The SSOD
counterpart of (c), we notice that SSOD identifies more background as OOD data. SSOD is motivated
by the local property of conventional networks as illustrated in (a), and the results depicted in (b)
reveal that the joint training enhances the local property. The confidence is manually selected.

fori € {1,2,..., M}. Noting that P(wps41]z) =1 — Zf\il P(w;|z). We first consider M binary
classification problems, and correspondingly, we have M discriminative functions to verify whether
the input image « belongs to category w;. Taking g;(x) = —s; + T as the score function, where s; is
learnable with respect to the classifier and T is the bias term. Greater g;(z) yields higher confidence
of z belonging to category w;. To make the confidence meet intuition, we employ o(+) function to
map the logits g;(-) in the form of probability, saying P®(w;|z) = o(gi(x)), where the superscript b
indicates the binary classifier. With these auxiliary notations, we have the following formula:

1
PP(wilz) = o(gi(x)) = = Q)

Based on the DS evidence theory (Dempster, 1967), i.e., DST, we calculate the posterior probability
of = belonging to any ID category w; as follows:

M
1
P(w;|xz) = 7 PP (w;|z) - H (1 — P’(w;|x)) 2)
j=1,j#1i

where Z is a normalization factor. Based on the equation that P(wps41|2) = 1 — Zf‘il P(w;|x),
we can obtain the expression of Z as follows:

M M M
Z =Y [P'(wilz)- ] (1= Pwjla)]+ [~ P"(w;lz)) 3)
= j=1i#i =1
ID Confidence OOD Confidence

In the equation above, the first term of Z indicates the sum of probability that = belongs to any known
classes, while the last term represents that of = is OOD data. We substitute the expression of Z into
Eq 2 for simplification. The obtained results are depicted as follows:
() = —
P(w;|lz) = (@]
1+ Z]J\; e—sitT

We assume that 7" is s, 1 since they are both trainable. Concerning that e=*™+1+7 = ¢0 = 1 then,
Eq 4 can be transformed as:

—Si-'rT e—Si
P(wi|x) = M+1

= 5
> e stT ZMJlrle % ©
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The above expression of P(w;|x) is in the form of softmax classification, except the denominator
contains an extra term, i.e., e *M+1, With simple post-processing transformation, Eq 5 can be
depicted as follows:
e~ Si e Si Zj\il e Si
Plwilr) = =57 =y v S— v ST R (©)
Zj:l e Zj:l e Zj:l e

ID Classification ~ OOD Detection

Clearly, the first factor of Eq 6 is the conditional probability that « belongs to category w; assuming
z is sampled from ID data simultaneously. The second factor of the above equation indicates
the probability that x is ID images. Recall that Syp and Sggp are the sets of in-distribution and
out-of-distribution data, thus, Eq 6 tells us a conclusion that:

. Mo
e % Z_j:le ’

Yihie Xihe

P(w;|z) = £ P(w;|z € S, x) - P(z € Sppl7) @)

ID factor OOD factor

Since the output of conventional neural networks activated by Softmax is P(w;|z € Sip, x), we
focus on formulating the second term (OOD factor), i.e., P(z € Sip|x).

2.2  REVISIT OOD DETECTION METHODS FROM THE PROBABILISTIC VIEW

We interpret several classic OOD detection techniques from the perspective of our proposed proba-
bilistic framework and find that most OOD detection methods hold P(w;|z € Sip, z) = fi(z), i.e.,
the i-th dimension of the classifier’s output activated by Softmax function. Thus, the crucial point is
how to compute the OOD factor P(z € Sipl|z).

Methods based on logits, e.g., Max-Softmax Probability (MSP) (Hendrycks, 2017), which directly
employs the Softmax output of classifiers as the ID/OOD score, aiming to distinguish them with
classification confidence. Concretely, given image x, MSP uses the following expressions to depict
the procedure of OOD detection:

z € Sopop, maxf(:v) <7
= /)= {x € Sp, maxf(x)>7y’ ®)

MSP expects the classifier f(-) to assign higher confidence, i.e., max f(z), to ID samples while
lower of that to the OOD. Obviously, for MSP, the OOD factor is built as:

P(z € Siplz) = P(max f(x) > 7). )

Methods based on features try to distinguish ID/OOD data based on their deep features extracted by
the backbone h(-), such as ReAct (Sun et al., 2021), BAL (Pei et al., 2022), VOS (Du et al., 2022),
and KNN (Sun et al., 2022), etc. Taking ReAct (Sun et al., 2021) as an example, it builds the OOD
factor P(z € Spp|x) in a hard threshold manner with linear projection, depicted as:

P(x € Sp|z) = P(W "ReAct(h(z),c) +b > ~), (10)
where W' and b are the weight matrix and bias vector, ReAct(h(z),c) = min{h(x),c} is an
element-wise truncation function dominated by the threshold ¢, and + is a hard threshold. Instead of
the OOD-syntheses-free schemes like ReAct (Sun et al., 2021) and KNN (Sun et al., 2022), BAL (Pei
et al., 2022) and VOS (Du et al., 2022) generate ID/OOD supervision in the feature space to optimize
the ID/OOD classifier with P(z € Sip|z) = o(d(h(x)), where d(+) is a discriminator that expect to
assign higher confidence for ID features.

In summary, most OOD methods approximate the OOD factor P(z € Sip|x) by P(f(x) € f(Sm)|z)
as MSP (Hendrycks, 2017), or P(h(x) € h(Smp)|z) like ReAct (Sun et al., 2021), BAL (Pei et al.,
2022), VOS (Du et al., 2022), and KNN (Sun et al., 2022). We note here that f(z) is the Softmax
output, and h(z) is the feature extracted by the backbone. Nevertheless, there is a significant bias
introduced by f(-) and h(-) since they are trained for the ID classification. It adversely affects the
discrimination of ID and OOD data. Furthermore, the generated OOD signals in feature space, e.g.,
BAL (Pei et al., 2022) and VOS (Du et al., 2022), do not necessarily lead to the existence of a
corresponding natural OOD image. Consequently, its effectiveness in open world scenarios may be
limited. To remove these obstacles, we propose to sample OOD supervision from the ID images and
optimize the OOD factor directly.
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Figure 3: Self-supervised Sampling for Out-of-distribution Detection (SSOD). We adopt a self-
supervised sampling scheme to train the OOD discrimination branch, i.e., the OOD head with the
supervised signals injected by the CLS head. The image patches in green/red/gray are ID/OOD/invalid
signals identified by the CLS head. SSOD jointly trains these two branches.

2.3  SELF-SUPERVISED SAMPLING FOR OOD DETECTION

Inspiration of SSOD. In Fig. 1, we notice and verify that the image background is a good proxy for
OOD data. Thus, we expect to extract the background information from the feature maps, which can
be regarded as the natural OOD supervision. Prior studies, e.g., Redmon et al. (2016) and Carion et al.
(2020), have demonstrated that traditional neural networks are capable of retaining spatial information,
i.e., a position of the feature map reflects the corresponding position in the input image. With these
foundations, we aim to design an OOD patch sampler to collect background information from the
feature maps. In Fig. 2 (a), the ResNet-50 (He et al., 2016) trained on ImageNet (Russakovsky et al.,
2015) downsamples the input image and yields a corresponding feature map (R *W > where
each image patch is projected to a feature vector (R) located at the corresponding position. The
classification head reports the category for each feature vector. We highlight the correctly classified
patches in Fig. 2 (a) and (b). The results suggest that the confidence scores are much higher for
patches contained in the main objects while lower for the backgrounds.

Formulation of SSOD. For a feature map within RE*#*W (j ¢, the channel, height, and width)
produced by the neural networks, we can apply the classifier along spatial axes and obtain a confidence
score map within RM*H>W "where M is the number of categories in ID data. The patches with
a low confidence score, e.g., lower than 5% on the ground-truth category, are recognized as OOD
samples as highlighted in red in Fig. 2 (c) and (d). Symmetrically, an ID patch sampler selects some
image patches with high confidence scores, e.g., greater than 95%, as the ID samples (cf. Fig. 2, the
green patches), helping to balance the positive (ID) and negative (OOD) samples.

Formally, we use h(-), fos(), and fo0q(+) to denote the backbone removing the classification head,
the multi-category classification head, and the binary ID/OOD discrimination head, respectively.
Given an input image = with label y, X ¢*#*W — h(z) is the feature map. The prediction result of
the classification model is:

§ = fus(GAP(h(2))) = fus(GAP(XOH*W)), (11)

where GAP is the global average pooling over the spatial dimensions. Similarly, when applying
f cls ]gevon each patch of X ©*#*W without pooling operation, we can get the confidence score map

fers (XEXHEXWY within RM>HXW Moreover, we pick the confidence along the target
ax1s e.g., if the target label of z is 7, then we collect the confidence along the j-th axis of M, yielding
a target confidence map within R7?*W i, 47" We use the ID/OOD sampler to select patches with
high/low scores on the target label as the ID/OOD supervision. Concretely, for i € {1,2,3,..., HW},
we obtain the following self-supervised OOD labels from the classification head:

07 gz <17’Y
gt =91, gHv >4
N/A, 1—y<gf" <y

(12)

3

where " indicates the predicted confidence of each image patch belonging to the target category,
and ~y is a confidence threshold, e.g., 95%. Remind that the image patches assigned with the positive
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Figure 4: The t-SNE visualizations of deep features for the ImageNet (ID) and iNaturalist (OOD). (a):
features extracted by the conventional ResNet-50 (He et al., 2016), and the FPRO5 is 54.99%. (b):
features extracted by our SSOD, and the FPR95 is 14.80%. The green/red dots represent ID/OOD
features, i.e., the ImageNet/iNaturalist. SSOD improves the ID/OOD discriminability notably. The
overlap of ID/OOD features reflects the false positive rate (FPR95).

label are highlighted as green in Fig. 2, and the negative patches are marked in red. We drop the left
image patches (i.e., the non-highlighted patches in Fig. 2, the invalid patches in Fig. 3, and N/A in
Eq 12), and therefore, they provide no ID/OOD supervisions during the training. With the OOD head,
we obtain the ID/OOD prediction (4°°%):

QOOd _ food(XCXHXW)~ (13)

Since only a part of the image blocks is selected as ID/OOD supervision in Eq 12, consequently, the
loss is performed on the corresponding predicted results in Eq 12 and Eq 13. The overall objective of
SSOD is formulated with the cross entropy loss (CE):

L = CE(g,y) + aCE(g?,y*%), (14)
where « is a balance parameter, 7j°°¢ € R2*H*W and yo°? ¢ R¥*W  During the training/inference

phase, the OOD factor of input images can be calculated as follows:

P(x € Sp|z) = Sigmoid(fooq(GAP(X > H>XWY))), (15)

ood

where Sigmoid function is used to predict the probability of input image belonging to the ID data.
With the proposed SSOD above, we can train the OOD detection branch end-to-end with natural
OOD supervisions sampled from the patches of ID background as illustrated in Fig. 3.

3 EXPERIMENTS

This section addresses the following problems: 1) How does SSOD perform on OOD detection
benchmarks? 2) Whether SSOD is stable under different hyper-parameter settings? 3) Whether
SSOD is generalizable across different backbones?

3.1 EXPERIMENTAL SETUP

Benchmarks. We employ large-scale benchmarks in OOD detection, including ImageNet (Rus-
sakovsky et al., 2015) groups, CIFAR-10 (Krizhevsky et al., 2009) groups, and hard OOD groups.
In ImageNet groups, we set four OOD datasets, which are iNaturalist (Horn et al., 2018), SUN
(Xiao et al., 2010), Places (Zhou et al., 2018), and Texture (Cimpoi et al., 2014). In CIFAR-10
groups, we set five OOD datasets, which are SVHN (Netzer et al., 2011), LSUN (Yu et al., 2015),
iSUN (Xu et al., 2015), Texture (Cimpoi et al., 2014), and Places (Zhou et al., 2018). Under hard
OOD setting, the ImageNet is employed as ID data while ImageNet-O (Huang & Li, 2021) and
Openlmage-O (Wang et al., 2022) are selected as OOD data. The detailed information of these
datasets and training/evaluation protocol is attached in Appendix A.3 and A 4.
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Table 1: OOD detection results on ImageNet. | indicates lower is better, T means greater is better.
We highlight the best and second results using bold and underlining. We use (w/) and (w/o) to
indicate using and without using supervised contrastive learning. If not specified, all methods employ
ResNet-50 pre-trained on ImageNet-1k as the backbone. F and R indicate FPR95 and AUROC.

iNaturalist SUN Places Texture Average
Method

JE TA JF 1tA [|F TA JE TA JFE TA
MSP 5499 87.74 70.83 80.86 73.99 79.76 68.00 79.61 6695 81.99

MSP (CLIP-B) 40.89 88.63 65.81 81.24 67.90 80.14 6496 78.16 59.89 82.04
MSP (CLIP-L) 3454 92.62 61.18 83.68 59.86 84.10 59.27 82.31 53.71 85.68

MabDist 97.00 52.65 98.50 4241 98.40 41.79 5580 85.01 87.43 55.47
ODIN 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41
GODIN 61.91 8540 60.83 85.60 63.70 83.81 77.85 73.27 70.43 82.02
KLM 27.36 93.00 67.52 78.72 72.61 76.49 49.70 87.07 54.30 83.82
Energy 55.72 89.95 59.26 85.89 64.92 8286 53.72 8599 58.41 86.17
KNN (w/o) 59.08 86.20 69.53 80.10 77.09 74.87 11.56 97.18 54.32 84.59
KNN (w/) 30.18 94.89 48.99 88.63 59.15 84.71 16.97 94.45 38.82 90.67
MOS 9.28 98.15 40.63 92.01 49.54 89.06 60.43 81.23 3997 90.11

Fort (ViT-B) 1507 96.64 54.12 8637 57.99 8524 5332 84.77 45.12 88.25
Fort (ViT-L) 15.74 96.51 5234 87.32 55.14 8648 51.38 8554 43.65 88.96
MCM (CLIP-B) 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 4274 90.77
MCM (CLIP-L) 2838 9495 29.00 94.14 35.42 92.00 59.88 84.88 38.17 91.49
SSOD (Ours)  14.80 9691 28.52 9433 38.92 90.78 4532 87.02 31.89 92.26

Comparable methods. We choose both the classic and latest OOD detection methods for comparison.
With regard to the classic schemes, we select the MSP (Hendrycks, 2017), MaDist (Lee et al., 2018b),
ODIN (Liang et al., 2018), KL Matching (KLM) (Hendrycks et al., 2019), MaxLogit (MaxL)
(Hendrycks et al., 2019), GODIN (Hsu et al., 2020), CSI (Tack et al., 2020), and MOS (Huang &
Li, 2021). Besides, we also use the Energy (Liu et al., 2020), which is the representative of the
score-based calibration method, and the KNN (Sun et al., 2022), which is one of the latest schemes,
as our comparable methods. ResNet-18 and ResNet-50 (He et al., 2016) are chosen as the backbone
for CIFAR-10 and ImageNet. KNN (Sun et al., 2022) has two different versions, i.e., w/ and w/o
contrastive learning. For a fair comparison with other methods, we employ no contrastive learning
for all comparable techniques. Except for the above traditional methods, we also provide the results
of large vision-language models, such as MCM (Ming et al., 2022), FLYP (Goyal et al., 2022), and
Fort (Fort et al., 2021). The detailed information about them is attached in Appendix A.2.

3.2 COMPARISON WITH STATE-OF-THE-ARTS

OOD detection on ImageNet. We use iNaturalist, SUN, Places, and Texture as the OOD data.
Following Sun et al. (2022), we randomly select 10,000 OOD images from each dataset for evaluation
and keep the quantity of ID and OOD data the same for reliable FPR95. The KNN (Sun et al.,
2022) methods have two versions, i.e., using and w/o using contrastive learning. We provide both
results for comparison and mark the contrastive version with (w/). MSP, Fort, and MCM employ
strong backbones to improve the detection performance, such as CLIP (Radford et al., 2021) and
ViT (Dosovitskiy et al., 2021). We annotate these backbones in the wake of each method. If not
specified, all left methods use no contrastive learning and employ ResNet-50 as the backbone. We
evaluate the performance of each method based on its averaged FPR95 and AUROC on the above four
datasets. The technique yielding the best detection performance is highlighted using boldface, while
the closely following one is underlined. From the results depicted in Table 1, we notice that SSOD
yields competitive state-of-the-art performance on iNaturalist, SUN, and Places. Specifically, on
iNaturalist, SSOD and MOS report comparable detection FPR95 as 14.80% and 9.28%. In contrast,
other complicated methods such as ViT (Dosovitskiy et al., 2021) based Fort and CLIP (Radford
et al., 2021) based MCM only achieve a FPR95 of 15.74% and 28.38%. Moreover, on SUN and
Places, SSOD consistently establishes the top detection results (FPR95) as 28.52% and 38.92%,
outperforming other techniques with a simple ResNet-50 backbone. On Texture, most methods
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Table 2: OOD detection results on CIFAR-10. | indicates lower is better, 1 means greater is better.
We highlight the best and second results using bold and underlining. All values are percentages.

Methods
MSP MaDist ODIN GODIN Energy CSI KNN SSOD

JFPR9S  59.66  9.24 20.93 15.51 5441 3738 2453 212

OOD Metrics

SVHN T AUROC 91.25 97.80 9555  96.60 91.22 94.69 9596 99.44
LSUN JFPROS 4521 67.73 7.26 4.90 10.19 588 2529 442
1 AUROC 9380 73.61 9853  99.07 98.05 98.86 95.69 99.11
iSUN J FPR95 54.57  6.02 33.17  34.03 27.52 1036 25.55 10.06
7 AUROC 9212  98.63 94.65 9494 95.59 98.01 9526 98.16
Toxture J FPR95 66.45 2321 5640 4691 55.23 2885 27.57 191
7 AUROC 8850 9291  86.21 89.69 89.37 94.87 94.71 99.59
Places J FPR95 6246 8350 63.04 62.63 4277 3831 5090 7.44

T AUROC 88.64 83.50  86.57 87.31 91.02 93.04 89.14 98.42

J FPR95 57.67 3794 36.16 32.80 38.02 24.20 30.80 5.19
Average 1 AUROC 9090 89.29 9230  93.52 93.05 9590 94.15 98.94
71D ACC 9421 9421 94.21 93.96 94.21 9438 9421 94.17

fail to identify the OOD images and demonstrate high FPR95. Nevertheless, SSOD detects most
outliers of Texture and reports a FPR9S5 of 45.32%, which is better than all methods except for KNN
(Sun et al., 2022). This failure case is caused by the overlap between ImageNet-1k and Texture (cf.
Appendix A.5). Overall, SSOD obtains the FPR95 and AUROC as 31.89% and 92.26% on the four
above large-scale datasets, surpassing the closely following method with -6.28 % FPR95 and +0.77 %
AUROC. Besides, we also demonstrate the confidence distribution of ID/OOD images in Appendix
Fig. 6, evidencing that SSOD significantly reduces the overlap between ID and OOD confidence
distributions, promising a much better performance in detecting OOD examples.

0O0D detection on CIFAR-10. Following previous methods, we adopt SVHN, LSUN, iSUN, Texture,
and Places as the OOD data. All comparable techniques take ResNet-18 as the backbone. SSOD
resorts to no pre-trained weights and trains the classifier from scratch. CIFAR-10 and other OOD
samples are resized to 224 x 224 to obtain sufficient background information from the images. The
detailed results are depicted in Table 2. On iSUN, the detection performance of SSOD is marginally
lower than MaDist, while on the left four datasets, SSOD consistently outperforms other methods by
a significant margin. In particular, on Places and Texture, SSOD reduces the FPR95 of 30.87% and
21.30% compared to the closely following one, evidencing its effectiveness. From an overall view,
on the above OOD datasets, SSOD improves the detection ability of ResNet-18 by -19.01% FPR95
and +3.04% AUROC on average, which can be established as one of the state-of-the-arts.

Hard OOD detection. ImageNet-O (Huang & Li, 2021) and Openlmage-O (Wang et al., 2022) are
employed as hard OOD examples for ImageNet, since they have similar natural scenes to those in
ImageNet. All methods use ResNet-50d (He et al., 2016), a variant of ResNet-50, as the backbone.
As shown in Table 3, SSOD achieves top-ranked performance on Openlmage-O (Wang et al., 2022).
Since the ImageNet-O mainly contains adversarial images, leading to the classifier’s wrong prediction,
SSOD reports higher FPR95 compared to the best previous methods. Overall, SSOD still achieves
comparable state-of-the-art performance, yielding 4.38% higher FPR95 compared to ViM (Wang
et al., 2022) and 1.15% lower AUROC compared to ReAct (Sun et al., 2021).

3.3 ABLATION STUDY

Ablations on hyper-parameter «. Recall that o controls the importance of loss generated by the
OOD head, balancing classifiers’ classification performance and OOD detection ability. We employ
CIFAR-10 (Krizhevsky et al., 2009) and Places (Zhou et al., 2018) as the ID and OOD data to validate
the stability of a. SSOD uses ResNet-18 as the backbone. From the ablations depicted in Table
4, we notice that the classifier detects OOD input better with increasing «, while the ID ACC is
gradually descending. We expect to boost the robustness of classifiers while not affecting the model’s
performance. Therefore, we set a to 1.0 throughout the experiments.
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Table 3: Hard OOD detection results. Table 6: OOD detection with different back-

bones. We highlight the best and second re-

sults using bold and underlining. ¢ indicates
JF tA |F 1A |F 1A the SSOD counterpart.

MSP  93.85 56.13 63.53 84.50 78.69 70.32

Method ImageNet-O Openlmage-O  Average

Energy 90.10 53.95 76.83 7595 83.47 64.95 Method iNaturalist Places Average
ODIN 93.25 52.87 64.49 81.53 78.87 67.20 F A F A F A
MaxL 92.65 54.39 65.50 81.50 79.08 67.95 v T v T + T

KLM 8850 67.00 60.58 87.31 74.54 77.16 ~ R-18  60.00 86.32 76.96 76.86 67.42 81.65
ReAct 72.85 81.15 60.79 8530 66.82 8323  R-18% 19.96 95.21 46.48 88.31 33.22 91.76
MaDist 78.45 68.02 55.91 89.52 67.18 78.77

VIM 7600 7480 5045 90.76 6323 8278 N or, 5788 86.4475.96 78.16 Zg'zi ii'gg
SSOD 79.80 74.43 5541 89.73 67.61 8208 R34 15.88 9628 43.44 87.33 29.66 91.

R-50  54.99 87.74 73.99 79.76 64.49 83.75
Table 4: Ablations on the hyper-parameter a. R-50* 14.80 96.91 38.92 90.78 26.86 93.85

o 0.5 0.7 1.0 1.2 1.5 R-101 56.58 86.08 70.78 80.18 63.68 83.13

LFPR95  11.64 944 744 856 10.80 R-101* 18.78 95.56 42.72 87.84 30.75 91.70
1+ AUROC 97.33 97.74 98.42 98.19 97.49

1IDACC 9425 94.17 94.17 92.53 91.36 D-121 59.44 86.79 69.88 80.12 64.66 83.46
D-121* 21.64 94.84 44.88 85.51 33.26 90.18

Table 5: Ablations of balance schemes. RegN  54.96 87.74 70.28 80.03 62.62 83.89

Scheme LW DR LWB RegN* 16.36 96.05 35.80 89.79 26.08 92.92
J FPR95 10.72 8.48 7.44

+ AUROC 97.66 98.05 98.42 MobN 52.52 88.19 73.36 79.41 62.94 83.80
11D ACC 93.97 94.11 94.17 MobN* 24.76 94.47 42.52 88.38 33.64 91.43

Imbalance issue between ID/OOD features. During the training of the OOD head, we obtain much
more background features since the objects only occupy a small part of the image. To promote training
stability, we design three ways to tackle this issue, which are Loss Weighting (LW), Data Resampling
(DR), and Loss-Wise Balance (LWB). LW multiplies a balance factor on the loss generated by the
background features, DR randomly samples equivalent ID/OOD features within each image, and
LWB calculates the cross entropy generated by the ID/OOD features separately and picks their mean
value as the loss objective. CIFAR-10 and Places are the ID and OOD data. Based on the ablations
depicted in Table 5, SSOD employs LWB for data balancing.

OOD detection across different model architectures. To validate the transfer ability of SSOD on
different model architectures, we select ImageNet as the ID data, iNaturalist, and Places as the OOD
data. Considering the deployment on portable devices, we test both the conventional and lite models,
such as ResNet (He et al., 2016) series, DenseNet-121 (Huang et al., 2017), RegNet (Y-800MF)
(Radosavovic et al., 2020), and MobileNet (V3-Large) (Howard et al., 2019). Table 6 uses | F and
1 A to indicate the FPR95 and AUROC. R-18/34/50/101 are ResNet-18/34/50/101. D-121, RegN,
and MobN are DenseNet-121, RegNet, and MobileNet. Compared to Table 1, methods (#) shown in
Table 6 achieve state-of-the-art performance, evidencing the scalability of SSOD. The improvements
between the vanilla classifier and its improved SSOD version (#) are also significant, e.g., -37.63 %
FPRO5 on ResNet and -36.54% FPR95 on RegNet.

4 CONCLUSIONS

This paper proposes a probabilistic framework that divides the robust classification into ID and OOD
factors. This provides a comprehensive overview of existing OOD methods and highlights the critical
constraint of relying on pre-trained features. To address this limitation, we introduce an end-to-end
scheme called SSOD, which optimizes the OOD detection jointly with the ID classification. This
approach leverages OOD supervision from the background information of ID images, eliminating
the data-collecting need. Extensive experiments have validated that SSOD achieves competitive
performance in detecting OOD data, which can be a starting point for future research.
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A APPENDIX

A.1 RELATED WORK

Score-based posterior calibration. This line of research aims to find differences between the ID and
OOD data, thus designing model-specific discriminative functions to identify the OOD samples. The
related work includes ODIN (Liang et al., 2018), LogitNorm (Wei et al., 2022), GradNorm (Huang
etal., 2021), ReAct (Sun et al., 2021), Energy (Liu et al., 2020), and CIDER (Ming et al., 2023), to
name a few. Generally, these methods are usually pre- or post-processing schemes that demonstrate
no need for retraining the neural networks. Although these methods above report considerable
performance improvements and sometimes are training efficient, they do not necessarily lead to
significant generalization ability. For example, ReAct (Sun et al., 2021) investigates the distinct
behaviors of ID and OOD data after ReLU function, and therefore, it fails to perform on architectures
adopting other activations, such as GELU, Sigmoid, and Tanh, efc. Similarly, the ODIN (Liang et al.,
2018) investigates post-processing schemes specially designed for Softmax, i.e., the temperature
scaling. These specific designs promote OOD detection but limit the model’s scalability. In contrast,
our SSOD doesn’t suffer from this limitation as it addresses the OOD detection directed by Bayes’
theorem, which widely holds in general scenarios.

Auxiliary supervision from synthetic OOD data. The lack of OOD supervision is a critical factor
leading to unsatisfactory performance in OOD detection. Thus, significant interest has been raised in
generating synthetic OOD data. Existing approaches tackling this issue can be roughly divided into
two manners, which are feature and image generation. The former samples OOD features from the
ID boundary, such as VOS (Du et al., 2022), or generates them using GAN, such as BAL (Pei et al.,
2022). In contrast, the image generation yields more training tax since it directly generates the OOD
images, such as Conf (Lee et al., 2018a), SBO (Moller et al., 2021), MG-GAN (Dendorfer et al.,
2021), NAS-OOD (Bai et al., 2021), CODEs (Tang et al., 2021), and VITA (Chen et al., 2022b). In
summary, these methods either introduce bias as they only consider the approximated feature space
or are costly due to the image generation. Unlike the above methods, SSOD avoids feature bias and
training tax by utilizing the universal local property of neural networks, extracting realistic OOD
supervision from the ID images without generation cost.

A.2 OOD DETECTION VIA VISION-LANGUAGE PRE-TRAINING.

Recently, vision-language pre-training and large language models (LLMs) have become a trend to
include various downstream tasks, such as text-image retrieval (Radford et al., 2021), VQA (Chen
et al., 2022a), objects segmentation (Kirillov et al., 2023), and image captioning (Li et al., 2023), to
name a few. Empowered by the massive amount of training data and model parameters, we expect to
see blossom in detecting OOD data with these cross-modal models. For instance, MCM (Ming et al.,
2022) and Fort (Fort et al., 2021) resort to the two-tower architectures, i.e., CLIP (Radford et al.,
2021), for matching the text descriptions within a closed set and open images. The matching score is
used for ruling out the OOD data. Except for designing matching rules along the CLIP paradigm,
FLYP (Goyal et al., 2022) notices that vison-language fine-tuning also plays a decisive role in the
final OOD detection performance.

A.3 BENCHMARKS

We perform experiments on ImageNet (Russakovsky et al., 2015) and CIFAR-10 (Krizhevsky et al.,
2009). For ImageNet, we follow the settings from Sun et al. (2022) and employ ImageNet-O (Huang
& Li, 2021), Openlmage-O (Wang et al., 2022), iNaturalist (Horn et al., 2018), SUN (Xiao et al.,
2010), Places (Zhou et al., 2018), and Texture (Cimpoi et al., 2014) as the OOD images. For CIFAR-
10, we select SVHN (Netzer et al., 2011), LSUN (Yu et al., 2015), iSUN (Xu et al., 2015), Places
(Zhou et al., 2018), and Texture (Cimpoi et al., 2014) as the OOD images. Images in CIFAR-10 and
ImageNet are resized and cropped to 224 x 224. All OOD images enjoy the identical pre-processing
method. The detailed information of all employed datasets is presented as follows.

ImageNet. ImageNet (Russakovsky et al., 2015) is well known in image classification problems,
containing 1,000 classes from the natural scene such as tiger, goldfish, and house, to name a few.
This dataset is used as the ID data, expecting to get higher confidence from the classifier, i.e., higher
OOD factor (cf. Eq 7).
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CIFAR-10. CIFAR-10 (Krizhevsky et al., 2009) is smaller compared to the ImageNet. It consists of
tiny images within 10 classes, such as airplane, bird, dog, etc. All images contained in CIFAR-10
are in the shape of 32 x 32. Our experiments treat CIFAR-10 as the in-distribution data and resize
images into 224 x 224 to get bigger feature maps. The above operation marginally influences the
classification performance since up-sampling these tiny images yields no information gain.

SVHN. This dataset (Netzer et al., 2011) indicates the street view house number, consisting of digit
numbers from the natural street view. Following Sun et al. (2022), we randomly select 10,000 images
from this dataset to serve as the OOD data. All pictures from OOD data are expected to get lower
confidence from the classifier.

LSUN. This dataset is used for visual recognition, which was presented in Yu et al. (2015). It consists
of over one million labeled images, including 10 scene and 20 object categories. Following Sun et al.
(2022), 10,000 images from LSUN are treated as the OOD data.

iNaturalist. The existing dataset in the image classification problem usually has a uniform distribution
across different objects and categories. However, in the real world, the images could be heavily
imbalanced. To bridge this gap between experimental and practical settings, iNaturalist (Horn et al.,
2018), consisting of over 859,000 images within about 5,000 species (i.e., planets and animals), is
presented. We randomly selected 10,000 images from this dataset as OOD pictures.

iSUN. This dataset is constructed based on the SUN (Xiao et al., 2010). iSUN (Xu et al., 2015) is a
standard dataset for scene understanding, containing over 20,000 images from SUN database. We use
10,000 iSUN images as the OOD data.

Texture. This dataset consists of images carrying vital characters, i.e., patterns and textures of natural
objects. Presented in Cimpoi et al. (2014), Texture aims at supporting the analytical dimension in
image understanding. In our experiments, we treat Texture as the OOD data. Data cleaning has been
performed in Sun et al. (2022).

Places. This dataset is used for scene recognition, which was presented by Zhou et al. (2018),
including over 10 million images such as badlands, bamboo forest, and canal, etc. Following Sun
et al. (2022), we use 10,000 of these images to play the role of OOD data.

ImageNet-O. This dataset is released in MOS (Huang & Li, 2021), which is built as hard adversarial
OOD data for ImageNet, consisting of 2,000 images.

Openlmage-O. This dataset is presented in ViM (Wang et al., 2022), which follows natural class
statistics and is manually labeled at the image level. The whole dataset contains 17,632 images.

A.4 TRAINING AND EVALUATION.

All images used in our experiments are resized to 224 x 224. We use AdamW as the optimizer. The
learning rate starts from le-4 and halves every 30 epochs. The experiment runs on 8 NVIDIA Telsa
V100 GPUs. The batch size is set to 256, i.e., 328, each GPU is allocated with 32 images. We
store the checkpoints yielding the best FPR95 performance. About the evaluation, we report the false
positive rate of the OOD dataset when the true positive rate of ID images is 95%, i.e., FPR95. We also
compare the area under the receiver operating characteristic curve (AUROC) and the classification
accuracy of ID images (ID ACC). We keep the quantity of ID and OOD data consistent following
Hendrycks (2017).

A.5 FALIURE CASE ANALYSES

Recall that SSOD extracts OOD information from the background of training images and employs
them as the proxy of OOD characters, revealing the potential of suffering limited diversity of the
OOD supervision if the training images are not diverse. This phenomenon will be perceived if the
OOD data differs in domains from the training images. For example, the training images are natural
scenes, while the testing OOD data is synthetic color blocks or textures. To check this issue, We train
the SSOD on ImageNet (Russakovsky et al., 2015) while testing it on Texture (Cimpoi et al., 2014).
From the results depicted in Table 1, though SSOD achieves top-ranked performance, it is worse than
KNN (Sun et al., 2022), increasing the FPR95 by about 33.76 % . The overlap between ImageNet
and Textures causes this issue. Concretely, many images in the Texture (Cimpoi et al., 2014) carry
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Figure 5: Confidence of OOD images assigned by SSOD. Successful cases: (a), (b), (c), and (d).
These images are randomly sampled from several OOD datasets and assigned nominal ID confidence
by the SSOD. Faliure cases: (e) and (f). These images carry vital symbols of objects appearing in
ImageNet, e.g., (e) is the braided and (f) is cobwebbed, which are similar with the knot and spider in
ImageNet. This phenomenon indicates the importance of data cleaning during the evaluation phase.

vital symbols of objects included in ImageNet (cf. Fig. 5). These overlaps lead to the inefficiency of
SSOD during the comparison with KNN (Sun et al., 2022) on Texture dataset in Table 1.

A.6 VISUALIZATION RESULTS
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Figure 6: Confidence distribution of images from ImageNet (ID) and other OOD datasets. The curve
in orange indicates the confidence distribution of ImageNet, while the curves in blue are that of OOD
images, including iNaturalist, SUN, Places, and Texture from left to right. In the figures above, the
z-label and y-label are the confidence of images belonging to ID data and their overall density. Top:
MSP yields a bigger overlap between the ID and OOD confidence distribution, which means a higher
FPR95. Bottom: SSOD assigns higher confidence to ID images, and the overlap between ID/OOD
confidence is relatively small, corresponding to the low FPR95.

In the figure above, the curves in orange are the confidence distribution of pictures in ImageNet, while
the blue curves are that of OOD data, including iNaturalist, SUN, Places, and Texture. As clearly
depicted in Fig. 6, MSP (top) yields greater overlap between the two distributions, which means
more ID/OOD images are confused. In contrast, SSOD (bottom) significantly reduces the overlap
between ID and OOD confidence distributions, promising a much better performance in detecting
OOD examples.
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Feature Map

(a) The local receptive field of convolution. (b) Patch-wise classification results using ResNet-50.

Figure 7: Illustration of the spatial correspondence between the image and its feature. (a): Convolu-
tional neural networks project the image patch to a feature point within the feature map. The pooled
feature map is then fed into the linear classifier to determine its category. The representation scope
(i.e., receptive field) of each feature point is dominated by the model’s down-sampling rate. (b): The
trained classification head of ResNet-50 (He et al., 2016) can correctly identify the feature point
carrying significant characters. Concretely, we feed the model with a Great Pyrenees image, and
the outputted feature map is directly used for classification without pooling. We mark the correctly
predicted image patch as red and otherwise lime green. It is clear that the neural network can correctly
identify the determinative parts within the image. The number in the right panel indicates the index
of the image patch, and we only demonstrate a part of the image for saving space.
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