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A Experiment Details

A.1 Perception

We use a single top-down RealSense D435i camera to capture color and depth images of the
workspace (Figure 1). The color image is segmented using state-of-the-art detection and segmen-
tation models, Grounding DINO [7] and Segment Anything Model (SAM) [5]. Given a prompt,
Grounding DINO generates a bounding box for the corresponding objects in the image. To mini-
mize detection errors, we implement specific thresholds for confidence and bounding box area for
different prompts. The resulting bounding box coordinates are then utilized by SAM to produce an
instance mask for the corresponding object. The mask, along with the depth image, camera intrinsics
and extrinsics, are used to calculate the position of all segmented points in the global frame.

A.2 PWA Functions

We test our sparsification algorithm on recovering simple PWA functions, with two arguments and
four affine pieces. The training data contains 1.6 x 10° transition pairs uniformly sampled within
the input space with the ground truth function.

Our sparsification method starts with a Multi-Layer Perceptron (MLP) with [96, 192,192, 96] units
in each layer and aggressively sparsifies into a compact model with only 2 ReLU units. We train
using an Adam optimizer [4] with a learning rate of 1 x 10~% until convergence, then finetune for
6 x 102 epochs in each sparsification round to obtain the final model.

A.3 Object Pushing

We provide a task-specific prompt “letter t” to the perception module along with confidence and
bounding box thresholds to retrieve the bounding box around the T-shaped object (Figure 2a). After
obtaining the segmentation mask of the object within the bounding box from SAM, we apply the
mask to the depth image captured by the top-down camera to select only the subset of the pointcloud
on the object. The position and orientation of the T-shaped object is determined by registering the
captured pointcloud against a reference pointcloud sampled from a mesh model, using the Iterative
Closest Points method [1].

The goal of the object pushing task is to position and orient a T-shaped object to align with a ran-
domly sampled configuration within the workspace. Each action is a straight push from a start
position to an end position. The state of the object at each time step is described with an ordered list
of the coordinates of four selected keypoints. The dataset contains 5 x 10* transition pairs collected
using the Pymunk simulator [2] (Figure 3a). To train our dynamics model, we concatenate the cur-
rent keypoint state with the action, and pass through a three-layer MLP with 256 hidden units in
each layer. We supervise the training with the mean squared error between the predicted next state
y and the ground truth state y from executing the given action in the current state in the simulator,
accompanied with an L; and L, weight regularization term and both ReLU and ID regularization
terms as described in Section 3.4 of the main paper.
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Figure 1: Robot hardware experiments setup. Robot experiments setup with a Franka Emika 7-DOF Panda
robot arm and a top-down RealSense D435i RGB-D camera.
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Figure 2: Object and keypoint detection examples from our perception pipeline. (a) Bounding box and de-
tected keypoints positions. (b) Instance bounding boxes and detected object color. (c) Evenly spaced keypoints
detected on the rope segment.

The full loss is defined as
L =MSE(y,9) + Aretvm" + A7 + Areg (R, + Rr,), 1

where Arery = 2 X 1072, \p = 1 x 1074, and Areg = 3 X 10~* are constants balancing between
the loss terms, selected for each task based on empirical performance on dynamics prediction. The
sparsification process starts with the full model with 768 ReLUs and gradually reduces to 0 ReLUs
(linear model), trained with an Adam optimizer [4] with a learning rate of 5 x 10™%. We train the
full model until convergence, then train each of the sparsified models for 400 epochs.

We formulate the closed-loop feedback control problem with the sparsified models following Section
3.5, and optimize for the objective to minimize the squared Lo distance between the predicted state
¢ by the dynamics model and the goal state y*.

Our dynamics models are trained with one NVIDIA GeForce RTX 2080 Ti or one NVIDIA TITAN
RTX GPU, followed by closed-loop control optimization using Gurobi [3] on an Intel i7-7700K
4.2 GHz CPU.
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Figure 3: Simulation environments used for data collection. (a) The T-shaped object (pink) and the pusher
(black) implemented in Pymunk for the object pushing task. (b) Objects of different colors interacting with the
pusher (black) for the object sorting task. (c) The rope (pink) and the pusher (yellow) for the rope manipulation
task, implemented with PyFleX [6].

A4 Object Sorting

In the object sorting task, we initialize the environment with two or more randomly placed objects of
two to three different colors. The goal is to collect objects of the same color near a distinctive goal
region for each color. We experiment with six task variations, with two colors, one to four objects
each color, or three colors, one or two objects each. The actions are specified by the start and end
locations, similar to the object pushing task.

For perception, we prompt Grounding DINO with “blocks”, then use the returned bounding boxes
to obtain instance segmentation masks from SAM (Figure 2b). The position of each object is calcu-
lated as the centroid of the positions of all points captured by the segmentation mask. The color of
each object is determined based on the average color of all pixels captured by the mask.

To demonstrate the applicability of our method on more complex neural dynamics models, and due
to the permutation-invariant nature of the task, we choose graph neural networks as the function
class. We adapt a model architecture similar to what was employed by Sanchez-Gonzalez et al.
[8] with 64 hidden units per layer, and train with an Adam optimizer [4] using a learning rate of
1 x 1073, The loss function is the mean squared error between the predicted next state for all
objects and the ground truth state, coupled with regularization terms as described in Equation 1,
with AgeLyu = 3 X 10™%, A\p = 3 x 107°, and Arg = 1 X 10~%. The full model with 512 ReLUs is
trained until convergence on a dataset with 1.5 x 107 transitions involving random interactions with
only two objects collected in Pymunk [2] (Figure 3b), and each sparsified model is trained for 100
epochs.

The closed-loop control optimization is formulated using the same sparsified model for all task vari-
ations. We calculated the squared L distance between each object and the goal of the corresponding
color, and use the summation of all individual object-goal distances as the optimization objective.

A.5 Rope Manipulation

We use a prompt of “rope” for the rope manipulation task. Detecting the pose of keypoints on the
deformable rope requires an additional step in the perception module. After generating a segmenta-
tion mask using SAM, we use Singular Value Decomposition to find the vector that approximately
divides the rope mask into two segments of equal length, then recursively bisects each segment until
we obtain eight segments of similar lengths. The keypoints are calculated as the mean of all points
on the segmentation mask in each rope segment (Figure 2c).

The rope manipulation task requires deforming a rope segment to match a desired goal shape speci-
fied by eight keypoints evenly spaced on the rope. Leveraging the PyFleX simulator [6], we collected
6 x 10* transition pairs generated through random interaction as the dataset (Figure 3c). We adopt
a similar formulation as in the object pushing task, using a three-layer MLP with 256 hidden units
in each layer for the dynamics model, trained with the mean squared error loss between the pre-
dicted state and the ground truth state at the next time step. For the regularization terms, we follow



Equation 1 with AgeLy = 2 x 1073, Ap = 5 x 1075, and Ay = 1 x 10~*. We optimize the full
model with an Adam optimizer [4] with a learning rate of 5 x 10~% until convergence, then train
each subsequent sparsified model for 500 epochs.
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