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CODE AVAILABILITY

All the code that was used in this project is available following the anonymous link https://
osf.io/bybdk/?view_only=5688cba77b13d44479f76e13e01d28d75

A RELATED WORK

A recent work [Schreiber et al.|(2022) independently proposed a similar approach where classical
surrogate methods approximate VQCs. The difference with this work is the necessity of having
access to all €2, the totality of the frequencies of the VQC considered, without sampling from them.

Indeed, if © is known, the coefficients a,, and b,, of the VQC function (see Eq can be easily
fitted by solving the classical least square problem. Namely, one determines w* such that

M
. 1 T 2 2
w —argvinlnﬂzl\w d(xi) = yil* + Aol[wl| 2

| cos(wx)
where ¢(z) = [sm(wx)
section, with a dataset of M points, this can be solved exactly using matrix inversion in O(M |Q|% +
|2]3) operations if M > 2|Q|. If the inequality is not fulfilled or if |Q2|? is too big, one would use

stochastic gradient descent instead of matrix inversion.

] , and )\ is the regularisation parameter. As explained in the previous
weN

However, this method assumes that €2, and is not too large, which will usually be the case as we
shown in section One should also be able to enumerate all individual frequencies w € .
Moreover, as we will show the redundancy of some frequencies in {2 has a key importance, which is
not captured by such a method.

For completeness, we note from the seminal work|Schuld|(2021)) that the author briefly mentions the
idea of approximating kernels with RFF. Similarly, in a more recent work [Peters & Schuld| (2022),
the authors mention RFF as a sampling strategy on VQCs with shift invariant kernels, without further
details.

B PRELIMINARIES ON VARIATIONAL QUANTUM CIRCUIT FOR MACHINE
LEARNING

B.1 DEFINITIONS

We consider a standard ML task where a function f, named model, must be optimized to map data
points to their target values. The data used of the training is made of M points = (z1,...,24) in
X = R? along with their target values y in )V = R. We define a quantum model as the family of
parametrized functions f : (X,©) — ), such that

f(@;0) = (0|U(x;0)TOU (x;6)|0) 3)

where U (z; 0) is a unitary that represents the parametrized quantum circuits, 6 represents the train-
able parameters from a space ©, and O is an observable. We can always describe the parametrized
quantum circuit as a series of two alternating layers. The first are called encoding layers as they
only depend on input data values, whereas the trainable layers depend on internal parameters that
are optimized during training. A typical instance of a layer is illustrated in figure 2} Note that an
actual layer structure is not mandatory, since any circuit can be sliced into alternating sequences of
encoding and training blocks (even if containing a single gate).

Any quantum unitary implements the evolution of a quantum system under a Hamiltonian. Thus,
we choose to write the £*" encoding gates as exp(—ix;Hy), where x; is one of the d components
of z, and H; is a Hamiltonian matrix of size 2” if p is the number of qubits this gates acts on. We
will note L the number of encoding gates for each dimension of z (the same for each dimension, for
notation simplicity).
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In this framework, the aim is to find the optimal mapping between data points and their target values.
This is done by optimizing the parameters 6 to find the best guess f* such that

M
fr :argemin]\z;l(f(%;e)’yﬁ )

where [ is a cost function adapted to the task. For a standard regression tasks, we can choose
l(z,y) = |z —y|%

B.2 QUANTUM MODELS ARE LARGE FOURIER SERIES

We know since [Schuld et al. (2021) that the family of quantum models defined in Eq.(3) can be
rewritten as a Fourier series:

fla;0) = cpe™” )

weN

where the spectrum €2 of frequencies is determined by the ensemble of eigenvalues of the encoding
Hamiltonians and the coefficients c,, depend on the parametrized ansatz, as pictured in figure

In order to familiarize the reader with the structure of the spectrum, we explicitly build €2 in the
case of a one dimensional data input (X = R) and with a variational circuit containing only L
encoding gates. The accessible frequency spectrum 2 is the ensemble of all the differences between
all possible sums of the eigenvalues of the encoding gates as shown in figure [2]

We note ¥ the k' eigenvalue of the " encoding Hamiltonian H,. We use the multi-index i =
(i1, . ..,1r) indicating which eigenvalue is taken from each encoding Hamiltonian. We define A; as

Ag =N+ N (6)

Finally, we can express the set of frequencies as:

Q:{Ai—Aj,i,je{O,l}L}, @)

The simplest case is called Pauli encoding, when all encoding Hamiltonians are in fact Pauli matrices
(e.g. encoding gates Ry (x) = e*i%"z) as in|Schuld et al.|(2021)); (Caro et al.|(2021). In this case, all
the eigenvalues are A = 4-1/2, and therefore, the A; are all integers (or half-integers, if L is odd) in
[-L/2,L/2]. 1t follows that the set of distinct values in € is simply the set of integers in [—L, L].
Indeed, in this case, there are many redundant frequencies, due to the fact that all Pauli eigenvalues
are the same. As shown in figure[2] various eigenvalues would create more distinct frequencies in
the end. In the rest of the paper, {2 will denote the set of unique frequencies, without redundancy.

Note that in section[d] we observe an unexpected phenomenon: it seems that redundant frequencies
are likely to have high coefficients (for both random and trained VQCs). Unique frequencies might
often have in contrast small coefficients, reducing the potential expressivity of the VQC. We see
that the redundancy might therefore play an important role in the expressivity of VQCs, and leave
theoretical proof for future work.

These arguments give some intuition on why one should use encoding gates from Hamiltonians with
rich and various eigenvalues, by taking complex interactions over many qubits. A global Hamilto-
nian over n qubits, hard to implement, could potentially have 2" distinct eigenvalues, thus enlarging
) and avoid redundancy. Another approach from |Shin et al.| (2022)) consists in adding scaling fac-
tors in the Pauli encoding gate to modify their eigenvalues and avoid redundancy. It results in an
exponential number of integer frequencies, with respect to L, with many very high frequencies.

We can now generalize, if we now suppose that X = RY, such that we encode a vector x =
(21,...,24) in our quantum model, then 2 becomes the following d—dimensional Cartesian prod-
uct 2 = Q7 x Qg x -+ x Qy, where each 2, is defined as in Eq on its own set of Hamiltonians.
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In this context, note that the frequencies w are now vectors in R and there are d different trees to
build 2 (see figure 2). Note that for notation simplicity, we assumed that L gates were applied on
each input’s component, but it can be generalized to any number of gates per dimension.

We therefore see that the size of the spectrum |2 can potentially grow exponentially with the number
of encoding gates and the dimension of the input data. For instance, consider a d-dimensional vector
x and L Pauli-encoding gates for each dimension in such a way that there are Ld encoding gates in
the VQC. The size of the spectrum €2 would scale as O(L?), which becomes quickly intractable as
d increases.

As an example, the spectrum associated to a VQC with L = 20 encoding gates and d = 16 would
require more than one hundred times the world’s storage data capacity available in 2007 to be stored
Hilbert & Lopez| (2011). We therefore wonder if it is possible to build a classical approximator

f(z) = Z ¢,€™", such that  is of tractable size and sup, . y Hf(:z:) — f(z) H <e.
weQ

B.3 QUANTUM MODELS ARE SHIFT-INVARIANT KERNEL METHODS

As the quantum model is a real-valued function, it follows that w € €2 implies —w €  and ¢,, =
c* - We express the Fourier series of the quantum model as a sum of trigonometric functions by
defining for every w € 2

' =Cy+c_y, €ER ()
1

b, 1= E(Cw —c_,)ER 9

such that

f@:0) = > o™ 4oyt

weNy

Z ay, cos(wz) + by, sin(wz)

wey

(10)

where (2 contains only half of the frequencies from (2. Considering only Pauli matrices, if d = 1,
we simply have ) = [—L, L] and 2, = [0, L]. In dimension d, we have 2 = [~ L, L]¢ and Q is
built by keeping half of the frequencies (after removing those of opposite sign), plus the null vector.
In the end, we have

2L+ 1) -1
|Q+|:L+1 (11)

With a more general encoding scheme, if there is a different number of distinct positive frequencies
per dimension, the formula is different but is built similarly.
In the following parts, we will focus solely on €2 and conveniently drop the + subscript.

Given this formulation of the quantum model, we define the feature map of the quantum model as
f@:0) = (¥(x:0)[Ol(w;0)) = w(6) ¢(x) (12)

where ¢(x) is the feature vector, the mapping of the initial input into a larger feature space, where
the new distribution of the data is supposed to make the classification (or regression) solvable with
only a linear model. This linear model is in fact the inner product between ¢(z) and a trainable
weight vector w. In the case of VQCs, we can explicitly express them as:

cos(wT'x) ay,
o(x) = —— [sn@T2) | w() = | b (13)

weN Cdwe



Under review as a conference paper at ICLR 2023

If the spectrum €2 is known and accessible, one can fit the quantum model by retrieving the co-
efficients ay,, b,, associated to each frequency w. This can be done by using general linear ridge
regression techniques. Interestingly, there exists a dual formulation of the linear ridge regression
that depends entirely on the kernel function associated to the modelBishop & Nasrabadi| (2006).
The related kernel function is defined by:

k(z,2') = (¢(z), ¢(z))

1
=— cos(wz) cos(wz’) + sin(wx) sin(wz’)
i g;z (14)
1 /
= 9] Z cos(w(z — z'))
we

which is a shift-invariant kernel, meaning that k(z, 2’) = k(x — /).

It is known that quantum models from VQCs are equivalent to kernel methods|Schuld| (2021)), which
means that it is equally possible to fit the quantum model by approximating the related kernel func-
tion. These kernels are high dimensional (since the frequencies in 2 can be numerous) which makes
it hard to simulate classically in practice. But due to their shift-invariance, we propose to study
their classical approximation using Random Fourier Features (RFF), a seminal method known to be
powerful approximator of high-dimensional kernels|Rahimi & Recht| (2009).

C DEFINITIONS OF LINEAR RIDGE REGRESSION (LRR) AND KERNEL
RIDGE REGRESSION (KRR)

We present in this section the Linear Ridge Regression (LRR) and Kernel Ridge Regression (KRR)
problem|Bishop & Nasrabadi (2006). The problem of regression is to predict continuous label values
from feature vectors. We are given a dataset {(2;,;),7 € [1, M]z; € R% y; € R}, and to each data
point = an associated feature vector ¢(x) € RP. The goal of LRR is to construct a parameterized
model f such that f(z) = y. The model is parameterized by a weight vector w of size p such that
f(x;w) = wl¢(z). Training the model consists of finding the vector wx that minimizes the loss
function
LM
w' = argmin 2 3 (W' o(:) — il” + Awl[? 1)

i=1

1
= arg min M||<I>W*y||2+>\||w|\2 (16)
(17)

where ® is a matrix of size M x p with each row i corresponds to ¢(z;)T and y is the vector of
all the labels y;. The first term of the loss is the Mean Square Error (MSE) and corresponds to the
difference between the prediction and the ground truth. The second term is the ridge regularization,
and prevents the weights from exploding. The magnitude of the regularization is controlled by the
hyperparameter A > 0.

When p < M, an analytic solution to this problem is given by w* = (®7® + MAI,)~1®Ty.

As a consequence, to make the LRR possible and have a single solution, the number of training
points must be larger than the number of features in the feature space (¢(z)). Otherwise, one can
perform a gradient descent.

The dual formulation of this problem is given by expressing w as a linear combination of the data
points w = ®” . The minimization on w become a minimization on @ and can be expressed as

1
a” :argminMHQ‘I’Ta—yHQ—i-)\aT(INI)Ta (18)
[
(19)

The solution of this problem is a« = (®®7 + M) y.
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Note that the dual solution only depends on the matrix of scalar products between feature vectors
®®”. One can then replace this matrix by a kernel matrix K and the obtained model is a Kernel
Ridge Regression.

D APPROXIMATION RESULTS FOR RANDOM FOURIER FEATURES

We give here two useful results about the bounds of the error of the RFF method. RFFs are supposed
to approximate a certain kernel k by using fewer features. Intuitively, not enough features would lead
to imprecise solutions. The following theorems Rahimi & Recht| (2009); [Sutherland & Schneider
(2015) bounds the error obtained when comparing the kernel k(z,y) by the RFF approximator

#(x)" ¢(y) using D samples.

We recall that the condition on the kernel & is for it to be expressed as
k(5) = / p(w)efin‘sdw (20)
weX

where p(w) is the distribution of the frequencies w.
Theorem 2. Let X be a compact set of R, and e > 0.

P( sup [k(z —y) — ¢(z) d(y)| > €) <

z,yeX (21)
op|X| De?
66(——)?exp(—————=
(@ pesp(-
with o2 = Ep(w”w), the variance of the frequencies’ distribution, and | X| = maxy o ex ||z —2'||)

the diameter of X.

The following theorem |Sutherland & Schneider] (2015) bounds the actual prediction error when
using RFF compared to the KRR estimate. The formula in the original reference contains a sign
error and we correct it here.

Theorem 3. Let X be a compact set of RY, and € > 0. We consider a training set D{(z;,y;)},.
Let f be the KRR model obtained with the true kernel k and regularization A\ = M \g for Ay > 0,
and f the KRR model obtained with the approximate kernel and the same regularization. Then we
can guarantee |f(x) — f(m)| < e with probability 1 — 6 for a number D of samples given by:

2
D=Q (d(W) {log(ap|2(|) + log% - log&]) (22)
o€ 0€

with O'J = M Zl L y? and o, | X| being defined in theorem We recall that in Eq!the notation
Q stands for the computational complexity ”Big-§)” notation.

E APPROXIMATION RESULTS FOR RFF IN THE CONTEXT OF VQCS

E.1 DISTINCT SAMPLING IN THE PAULI ENCODING CASE

In the case of Pauli encoding only, we know that Q@ = [—L, L]% (considered here to be the full
spectrum, not {24 defined in section [B.3] ﬂ Wthh would have been equivalent). In one dimension,
we simply have o), = 1/L %", _ L. . In dimension d, a frequency w is given by its

values on each dimension (j1, - - - ,]d) with j, e [| — L, L|]. We similarly have

op = 2L+ ZJ1+ T+ i (23)

Note that Y-, jf + -+ jg is d(2L 4 1)*~" times the sum of all squares,

d(2L 4 1)41 XL: , d 2L(L+1)2L+1)

7?7 L+ 1) 2L +1 6 (24)

= O(dL?) = O(d|Q*?)
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The expression is then obtained by replacing the value of o, in theorem 3]

We note that we can generalize this results to scaled Pauli encoding, as done in |Shin et al.| (2022),
by replacing L by a term growing as c” where c is a constant. D would grow linearly in L and not
logarithmically anymore.

E.2 GRID SAMPLING WITH A GENERAL HAMILTONIAN

We provide here a bound on the minimum of samples required to achieve a certain error between the
RFF model and the complete model in the case of a general encoding in the gird sampling strategy.
The proof and details for this theorem is shown in Appendix section

Theorem 4. Let X be a compact set of R%, and € > 0. We consider a training set D{(z;,v;)}M .
Let f be a VQC model with any hamiltonian encoding, with a maximum individual frequency wax,
trained with a regularization \. Let 05 = ﬁ Zf\il y? and |X| the diameter of X. Let f be the RFF
model with D samples in the grid strategy trained on the same dataset and the same regularization.
Let C = |f|oo|X| and s the sampling rate defined in the grid sampling strategy. Then we can

guarantee | f(z) — f(z)| < efor0 < s < & with probability 1 — § for a number D of samples given
dcC
D=0 —L__ log(wmax|X]) + log
(e — 2 €

by:
Cy
5O —0 logé]) (25)

with Cy and Cy being constants depending on o, d(X) and \. We recall that in Eq.|2__5] the notation
Q stands for the computational complexity ”Big-§)” notation.

Proof. The following theorem bounds the approximation between a function defined by its Fourier
series and another function with frequencies distant by at most a constant s of the original frequen-
cies.

Let X a compact set of R? with diameter |X| and  a finite subset of X. Let f(z) =

Z apcos(wlx) + bysin(wTz). Let Q' a subset of X and s > 0 such that Vw € Q, 3w €

weN
Q, |w—uw' <s.

Let For = { Z agcos(wtz) + bwsin(wa), ag,, bw € R}.
we
Theorem 5. It exists f* € Fq such that
sup | f'(z) — f(z)] < sC (26)

reX

with C' = | X||f] o

Proof. Foreachw € Q let b(w) € be such that |w — b( )] < s. Such element exists by definition

but is not necessarily unique. Let f'(x Z awcos(b(w)Tx) + bysin(b(w)Tx). The b(w)s are
weN
not necessarily different therefore there might be less frequencies in f’ than in f.

w — w T
@) — F@)] =2 3 sin(0@) ) @

wEeN 2

T T
[bwsin(wx) — awcos(wx)] (28)
<2 Z | —— |\x| |bew| + |aw]] (29)

we
< sfal Z bl + la (30)
weN

< sl floo €1y
]
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We shall here extend the proof where we sample from the grid described above. Let us note fs the
RFF model with the whole grid and f the RFF model with D samples from the grid below. For all
z € X we have

|f(z) = f(@)] < |f(2) = fsl + |fs — f(@)| (32)
< |f(z) = fsl + sC (33)
Then
P(|f(z) — f(x)| > €) <P(|f(z) — fs| > € — sC) (34)
fors < ¢/C.

In this case || = (wWmax/s)? Using the expression of section we can guarantee that |f(z) —
f(x)| < e with probability 1 — & if

1 1
D=0 <d(e—sc’)2 {log(wmax/s) + loge —sC — l096:|> (35)

F LIMITATIONS OF RFF FOR APPROXIMATING VQCSs

In section ?? have seen the theoretical power of Random Fourier Features and three different adapta-
tions to approximate VQCs in practice. Since many parameters are to be taken into account (size and
structure of 2, number of qubits, circuit depth, number of training points, input dimension, encod-
ing Hamiltonians, etc.), it is natural to ask ourselves in which of the three strategy is recommended
given a use case, and are there any use cases for which none of them work.

As seen in section we know the lower bound on the number of samples to draw in RFF, to reach
a specific error. This bound grows linearly with the input dimension d, and logarithmically with
the size of () (itself depending exponentially on L?). Nonetheless, in practice, we could see very
large spectrum to be harder to approximate, simply because it would require much more samples.
This scaling will be judged once such VQCs will be actually implemented on large enough quantum
computers (with enough qubits and/or long coherence).

Q) increases as well when the encoding Hamiltonians have distinct eigenvalues and are acting on
many qubits. Therefore, quantum computers allowing for many qubits and various high locality
Hamiltonians would be a plus for enlarging the spectrum.

As the Hamiltonians become larger and their eigenvalues complex, we could reach a limit where it
becomes impossible to diagonalize them. In such a case, without sampling access to 2, the Distinct
and Tree sampling strategies would be unavailable. The Grid sampling scheme would suffice until
suffering from the high dimensionality or other factors detailed above.

Finally, having a small dataset would limit the trainability of our classical RFF methods. Note that
this would probably constrain the training of the VQC as well.

Overall, some limits for our classical methods can be guessed and observed already, but the main
ones remain to be measured on real and larger scale quantum computers. We leave this research
for future work. On another hand, one could want to understand better the relation between the
available frequencies and their amplitude in practice, to find potential singularities that could help,
or not, the VQCs.

Finally, we want to insist on the fact that the assumptions on VQCs are crucial on the whole con-
struction that we propose, and that some of them could be questioned, especially concerning the
encoding. For instance, when encoding vectors © = (x1,--- ,x4), not having encoding gates ex-
pressed as exp(—ax; H ) could potentially change the expression of f(x; 6) (Eq[5) and therefore could
change the fact that the associated kernel would be easily expressed as a Fourier series, with shift-
invariance. For instance, in|[Kyriienko et al.|(2021), the authors use exp(—arcsin(x;)H) to encode
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data, resulting in f being expressed in the Chebyshev basis instead of the Fourier one. More gener-
ally, understanding what happens with encodings of the form exp(—g(z;)H ), and whether we can
still use our classical approximation methods, remain an open question. Similar questions arise if
we use simultaneous components encoding exp(—x;x; H), or other alternative schemes.

G NUMERICAL SIMULATIONS: ADDITIONAL DETAILS

G.1 METHODS AND DEFINITIONS

As shown in figure[6] a typical random VQC instance is built from a list of general encoding Hamil-
tonians { Hy, - - - , Hy }, applied to randomly selected qubits according to their locality. The number
of qubits is fixed to 5 in all the experiments (Note that the number of qubits has no impact on the
expressivity a priori).

[4h)
>

pelly)

Figure 6: Random instance of a VQC. In this example, three encoding Hamiltonians { H1, Ho, H3 }
are randomly assigned over four qubits, and load a 1-dimensional vector z. Following each encoding
gate H;, an ansatz with trainable parameters and a ladder of CNOTs is applied, /; times in a row.

G.2 RFFS APPROXIMATION ON OTHER TYPES OF RANDOM VQCS

We introduce this section by adding some details on the experimental framework described in sec-
tion 1] The random VQCs follow the structure shown in figure [f] The training dataset we use is
{Xgrid, Ygria}» with X ;4 being a set of d-dimensional data points spaced uniformly on the interval

Hle [0, Zpnaz, | and Yy,.;q the evaluation of the quantum circuit on the input dataset X g,.;q.

We note that the number of data points in X,;q needed to efficiently learn the quantum function

is N > H?Zl M This choice is basically related to the Shannon criterion for effective
sampling in order to reconstruct the full function covering all of its frequencies. Moreover, it is
better for the solution to be unique and hence for the least square problem introduced in Eq[2|to be
well defined, we choose N to be bigger than the number of features in the regression problem (these
two criteria coincide in the case of Pauli encoding).

G.2.1 PAULI ENCODING

We first consider a quantum model with L Pauli encoding gates per feature resulting in an integer-
frequency spectrum (half of [| — L : L|]%). In this case, the corresponding quantum model is a
periodic function of period T' = (27r)d and thus, we choose 4, = 27 for Xg,;4 construction.

In figure[7] we implement VQCs with L=200 Pauli encoding gates, for a 1-dimensional input. We
observe that our classical approximation methods are indeed able to reproduce such VQCs. On
average, the RFF training error for Distinct and Grid sampling is a linear function of the number
D of samples taken from (2. On the other hand, the error using Tree sampling exhibits a faster
decreasing trend, reaching relatively low errors with only 20% of the spectrum size. Indeed, the
redundancy of Pauli encoding is extremely high, since with L = 200 gates, {2 can potentially have
3200 frequency, but only have 200 distinct ones, concentrated in the lower part.

We conjecture that the efficiency of Tree sampling is closely related to the redundancy in the discrete
frequency distribution over 2. In fact, as shown in figure [/} Fourier coefficients of the VQC are, on
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average, correlated to the frequency redundancy in the empirical quantum spectrum. Frequencies
above a certain threshold wegfective are merely redundant for this particular encoding scheme, and we
observe that they are cut from the quantum model empirical spectrum. The effective spectrum of the
VQC is therefore smaller than what the theory predicts. Consequently, the fast decreasing trend of
the Tree sampling stems from the fact that we sample accordingly to the redundancy, therefore re-
quiring less frequency samples. We see that 0.2 x |€2| samples are sufficient to sample approximately
all frequencies in [|0, Weffective| -

0 1500 —— Theoretical frequencies 'um? 0.125 e --=-- Distinct sampling

S —— Empirical frequencies =7 S, Tree sampling

2 s

%’ 1000 > g 0.100 LS ::- Grid sampling - s=0.1

8 & 5000 g 0.075 .

5 E g S

2 s00 32500 £ 0050 -

3 .

8 kA £ 0.025 S
il 0 50 100 =

0 0.000
0 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0

Frequencies

(a) Average Fourier Transform of the VQC’s quan-
tum models. The frequencies with high coefficients
are the ones with high redundancy in €2 (seen in the
inner red histogram). Frequencies over 100 have
negligible coefficients and redundancy, and there-
fore are not shown.

Number of sampled frequencies (fraction of |Q])

(b) Evolution of RFF train loss as a function of the
relative number of frequencies sampled. The Tree
sampling strategy takes advantage of the high redun-
dancy to sample less frequencies to reach a good ap-
proximation.

Figure 7: Random 1d VQCs with L=200 Pauli encoding gates, averaged over 10 different random
initialization.

In figure[8] we show a similar simulations with a d-dimensional input (d = 4) and L = 5 Pauli gates
per dimension. According to Eq[TT] the theoretical number of distinct positive frequencies is 7321.
In this case in the tree sampling procedure, we can sample both a frequency and its opposite without
removing one of them. Therefore the scheme is a bit less performant than in dimension 1.

5.." 0.15 ihh‘ --s-- Distinct sampling

= hlg{.,_‘_‘. Tree sampling

2010 ng Wown, = Grid sampling - s=0.1

© ' ‘ll\ il
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Number of samples (fraction of |Q|)

Figure 8: RFF performance for L = 5, d = 4, to approximate random VQCs with Pauli encoding.

G.2.2 MORE COMPLEX HAMILTONIAN ENCODINGS

For Pauli encoding, we have seen that Tree sampling is highly effective for approximating the quan-
tum model. Consequently, we designed VQCs with different spectrum distributions to study the
RFF approximation performance in these cases.

As explained in section [I} we consider encoding gates of the form exp(—iz; H) for each dimen-
sion 7. One way to alter the spectrum distribution is the use of more general Hamiltonians H. To
obtain exotic Hamiltonians while maintaining their physical feasibility (involving only two-bodies
interactions), we use the generic expression

Hxyz = Z i Xi X+ BiYiYs +vij ZiZj + Z@‘Pz’
(i, @

(36)

with the first term describing the interactions: (i, j) indicates a pair of connected particles and the
second term describing a single particle’s energy (P; = {X,, Y; or Z;}).
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Figure 9: Random 1d VQCs with 4 scaled Paulis and and a 3-qubits H xy z Hamiltonian

Infi gure@, we construct VQCs mixing both such Hamiltonianﬂ and scaled Paulﬂ as encoding gates,
on 1-dimensional inputs. In these cases, the corresponding quantum model is no longer 27-periodic,
thus we have to find empirically a good value for x,,,, (by increasing it until the performance
reaches a limit).

With such complex encoding, we witness a different behavior for the Distinct sampling method, in
comparison to the previous basic Pauli encoding scenario. Essentially, Distinct sampling has a faster
than linear scaling, showing a clear and unexpected efficiency of RFFs in this case. We also notice
that the Tree sampling method as a similar scaling. This observation points to the fact that, with
the chosen encoding strategies, the frequencies in the spectrum €2 are concentrated in many packets
or groups. This behavior is displayed with the concentrated red lines in figure ??. Therefore, even
though the frequencies in 2 have a low redundancy (545 distinct frequencies out of 2017), sampling
just one of the many frequencies in a narrow packet is enough for the RFF to approximate it all. To
put it differently, we can consider that there is a Qefreciive Where each packet can be replaced by its
main frequency, and the RFF manage to approximate it with fewer samples than the actual size of
Q. To conclude, many distinct frequencies is not a guarantee of high expressivity.

As for Grid sampling, the choice of s seemed too high for this solution to work in this case, in line
with the theoretical bounds for this sampling method given in Theorem|[I]

G.2.3 EXPONENTIAL PAULI ENCODING

In order to obtain VQCs with a large number of frequencies, but low redundancy and no concen-
trated packets, we exploit the exponential encoding scheme proposed in |Shin et al.|(2022)), resulting
in a non degenerate quantum spectrum with zero redundancies and thus a uniform probability dis-
tribution over integers. In this encoding strategy, encoding Pauli gates are enhanced with a scaling
coefficient 3,,, for the n'" Pauli rotation gate encoding the component x,,. This gives us a total
of 34 positive and negative frequencies. These frequencies can be all distinct with the particular
choice of 3,,, = 3", resulting in an exponentially large and uniform 2. Note however that €2 is
analytically known and contain only integer frequency, mostly very high frequencies for which the
usefulness in practice remain to be studied.

We have tested our classical RFF approximation, shown in figure[T0] and obtain again the confirma-
tion that RFF can approximate such an exponential feature space with a fraction of |$2|. This fraction
might however be too large in practice. We also observe as expected that all three strategies have a
linear scaling, in line with the absence of redundancy and frequency packets.

lin ﬁgure@ we used a 3-qubits Hamiltonian defined by: Hxyz = 7TXoX1 + 7X1 X0 + 0.11 X0 X2 +
0.1X2Xo + 8[Y1Y2 + Yo Y1 + ZoZ2 + Z2Z0)
2Scaling factors are [26.4309, 34.4309, 22.4309, 0.4309]
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Figure 10: Random VQCs with exponentially large Spectrum, using scaled Pauli encoding as in
Shin et al.| (2022)).

G.3 ARTIFICIAL TARGET FUNCTION

‘We add here the training curve obtained during the training of the VQC with L = 200 Pauli encoding
gates, on the artificial function s(z) = }_,,c (4 10,60} €0S(w®) + sin(wz). Despite the potential large
number of frequencies available in 2, we have observed that the effective maximal frequency of the
VQC was lower than 60, making it impossible for it to fit the high frequency of the target function.
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Figure 11: Predictions of the target function s(z) = 410,60y c0S(wz) + sin(wz) with the
quantum model and its corresponding RFF classical approximator using Distinct sampling.

G.4 REAL DATASETS

For the binary classification task, we used the PyTorch Fashion MNIST dataset with the classes
coat and dress (3 and 4). We divided the 12000 input data points into train and test datasets with
Nirgin = 9600 and N;.s¢ = 2400. For the pre-processing, we downscaled the input dataset by
first rescaling the flattened input images between 0 and 1 and subtracting the mean then performing
a d = 5 PCA transformation fitted on the train data and applied on the test data. Finally, the 5-
dimensional input vectors are rescaled between —m and 7. The final VQC predictions are obtained
after 60 epochs using Adam optimizer with learning rate = 0.01 . For Tree sampling RFF training,
for each fixed number of sampled frequencies p, we perform the regression on the corresponding
fourier features using a PyTorch logistic regression model (linear layer + sigmoid layer, loss : binary
cross entropy with logits, metric : accuracy) trained for 2000 epochs with early stopping using
Adam optimizer with learning rate = 0.05. The final accuracy for the fixed number of samples p is

the average score over 10 different such trained models with different random seeds for frequency
sampling.
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For the regression task, we used the Scikit-learn California housing dataset and kept only the first
5 features. We chose Ny,.qir, = 5000 and Ny.s; = 1000 and we scaled the 5-dimensional dataset
between —7 and 7. The final VQC predictions are obtained after 100 epochs using Adam optimizer
with learning rate = 0.01. For Tree sampling RFF training, the same steps as in the case of the Fash-
ion MNIST dataset are performed with a PyTorch regression model (linear layer, loss and metric:
mean squared error).

G.5 NUMBER OF SAMPLES AND SIZE OF {2
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(a) Experimental bounds for different values of L, d. (b) Theoretical bound for different values of L, d.

Figure 12: Evolution of D as a function of input dimension d and of L encoding gates per di-
mension, and theoretical bounds. In agreement with the theoretical bound, the number of samples
D given as a fraction of |Q)| decreases with the growth of the data input dimension and the number
of encoding gates.

In this section, we test the theoretical bound provided by the theorem f] Given a spectrum Q =
[0, L]¢, a Fourier series model trained on a specific dataset, the theorem bounds the necessary
number of samples for a RFF model to approximate the original model with an e error. This is an
approximation to the Pauli encoding VQCs where the spectrum is Q = [—L, L]¢. For fixed values
of L, d, and a spectrum 2 = [0, L], we implement the following protocol to test this bound:

* Generate a dataset of 10° points sampled uniformly from [0, l]d and a labels coming from

a Fourier series on  with coefficients chosen uniformly from [0, 1/+/|€2|]. Split in a train
set and a test set with respective fractions .9 and .1

* For each value of D in {1, k|| /10 for k£ € [1,10]}, sample D frequencies from 2 with-
out replacement, and train a linear ridge regression with A = 107° on the train set. We
performed the training with a Adam optimizer, a learning rate of .001, and between 50 and
200 epochs depending on teh size of the dataset. Compute the output on the test set.

* Compute the mean absolute error between the output of the trained model with all the
frequencies and the output of all other model. Select the model with the lowest number of
samples that has an error below €

The results of the application of this protocol are shown figure For the values of |€)| between
10* and 10°, one can see a significant reduction to the number of samples needed to approximate
the whole model. For ¢ = .05, one can expect to need only half of the spectrum, whereas for ¢ = .5,
one only need about 10% of the spectrum. The trend does not continue above || = 107.

There are several limitations to this experiment. The main one is the limited training of the models.
For the biggest values of || we limit ourselves to 50 epochs, which may be not enough to reach the
optimal parameters, and thus blur the interpretation. Furthermore although the theorem is valid for
every number of data points, the overparameterized regime where there are much more parameters
than data points is known to exhibit unusual effects in linear regression (Hastie et al., [2022).

Given the choices of A and e, the theoretical bounds are very high for the regimes we experimentally
tested, so they are not relevant. The effect that is quantified by the theory appears from || = 1030, e.g
one need approximately D = 103° samples to approximate a 10%° frequency. That is still unfeasible
on classical computer, so only standard benchmarks will state on the usefulness of the RFF methods.
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