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A OVERVIEW

In our supplementary material, we present additional experimen-
tal results in Appendix B. Specifically, we present visualizations
on multi-view X-ray image synthesis in Appendix B.1. To further
illustrate the effectiveness of our method, we provide additional
qualitative comparisons in Appendix B.2. Finally, we present the
limitations of current study and future work in Appendix C.

B ADDITIONAL EXPERIMENTS

B.1 Results on Multi-view X-ray Image
Synthesis

In this section, we evaluate the performance of multi-view image
synthesis by the proposed model. In detail, we randomly selected
several volume datas from the CTSpinelK dataset and synthesize
seven views with uniformly distributed camera poses for each vol-
ume. The multi-view synthesis results are presented in Figure 1.
As shown in the Figure, our method can synthesize X-ray images
from different view angles.

B.2 OQualitative Comparisons on X-ray Image
Synthesis

We provide more qualitative results in this section. Figure 2 il-
lustrates more qualitative comparisons of our method with other
state-of-the-art 3D-aware generation methods, including 7-GAN
and EG3D. From left to right of the Figure, we show multi-view
results from —90° to 90°. For each method, we provide X-ray syn-
thesis results from volumes obtained from two patients.

C FAILURE CASES

Recent studies have shown that it is fundamentally impossible to
fully disentangle features [1, 2]. Therefore, the use of unpaired X-
ray image style information extracted by the style decoupling en-
coder would unavoidably introduce structural information from
the X-ray image and impose an influence on the performance of
our model. Despite adding supervised constraints during training,
this approach still results in inaccuracies for faulty structures. For
instance, as shown in the top row of Figure 3, the model fails to
generate bone structures in the correct positions. Furthermore, our
model lacks distance perception. In the training dataset, as CT Vol-
umes occupy various physical positions in space, the resulting DRR
images exhibit varying scales, which the model erroneously inter-
prets as style cues, leading to inaccurately scaled generated out-
puts, illustrated in the bottom row of Figure 3. Exploring gener-
ative models with better structural constraints and awareness of
distance would further improve the performance of our model.
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Figure 1: Illustrated results of multi-view image synthesis. From top to bottom: results using different volumes as input. From
left to right: results from —90° to 90° with an interval of 30°.
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Figure 2: More comparison results between ours and state-of-the-art 3D aware generation methods, including 7-GAN and
EG3D. As shown in the figure, our model can effectively maintain the anatomical structures and propel the style of the results
more similar to real X-ray images.
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Figure 3: Illustration of failed cases. The top row shows wrongly generated structures. The bottom row shows wrongly scaled
results. The model fails to generate bones in the correct position due to insufficient structural constraints and the absence of
distance awareness. Exploring models with better capability for capturing structure information and distance information
would further improve performance.
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