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A MATHEMATICAL BACKGROUND

Definition A.1 (Group) A group is a set G equipped with an operator ∗ such that:

• (closure) G is closed under ∗; i.e., if a, b ∈ G, then a ∗ b ∈ G
• (identity) There exists an identity element e ∈ G; i.e., for all a ∈ Gwe have a∗e = e∗a = a

• (inverses) Every element a ∈ G has an inverse in G; i.e., for all a ∈ G, there exists an
element a′ ∈ G such that a ∗ a′ = a′ ∗ a = e.

• (associativity) The operator ∗ acts associatively; i.e., for all a, b, c ∈ G, a ∗ (b ∗ c) =
(a ∗ b) ∗ c.

Definition A.2 (Group action) A group action of a groupG on a setA is a map fromG×A −→ A
(written as g.a, for all g ∈ G and a ∈ A) satisfying the following properties:

• g1 � (g2 � a) = (g1 � g2) � a, for all g1, g2 ∈ G, a ∈ A, and
• 1 � a = a, for all a ∈ A

Definition A.3 (Representation of a group) A representation of a group G on a finite dimensional
vector space V is a map, from G to the group of invertible linear operators also called the general
linear group GL(V):

ρ : G −→ GL(V), (4)
which is a homomorphism (Fig. 9 in Appendix C).

GL(V) is the group of symmetries in vector space V and its elements are isomorphisms, i.e. invert-
ible transformations, e.g.: ∀g ∈ G, v ∈ V , the transformation Tg : V −→ V given by Tg(v) = g � v
is a symmetry.

B PROOF OF THEOREM 3.1

Let G be the group of symmetries acting on the world stateW and A a discrete subgroup of G. For
any i ∈ {1, . . . , n}, let’s consider Ψi to be the map (augmentation) that takes x = (x1, . . . , xd)

T ∈
O and returns its image in its corresponding augmented vector space Vi.
According to definition [RT], we denote by (ρ0,V) the representation of the subgroup A0 ⊂ G
containing symmetries of O on the agent’s latent vector space V as discussed in (Fig. 1):

ρ0 : A0 ⊂ G→ GL(V)

Let P (n) be the following statement:

Statement: For any n ∈ N∗, the resulting mapping:

Ψ̃n
.
=

n⊕
i=1

Ψi : O −−−→ O
n⊕
i=1

Vi ∼= Ṽn,

associated with its corresponding representation

ρ̃n : A ⊂ G −→ GL(Ṽn),

is non-decreasing in total symmetry as n increases independent of the quality of the Ψi augmen-
tations being used.

We give a proof of the above statement by induction on n.

Base case: Show that the statement holds for n = 1.

Let’s Ψ1 be the map that takes x ∈ O and returns its corresponding 2D-augmentation in M (1)
d (R):

Ψ1 : O −−−−−−→ M
(1)
d (R)

x 7−−−−−−→ Ψ1(x)
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where,

M
(1)
d (R)=


x1 s

(1)
i,j (x)

. . .
xd

 ; ∀i, j ∈ {1, . . . d} : s
(1)
i,j (x) ∈ R & s

(1)
i,i (x) = xi ∈ O

 .

We relate the mapping Ψ1 to the representation
(
ρ1,M

(1)
d (R)

)
associated with the subgroup A1 of

symmetries of type-I:
ρ1 : A1 ⊂ G→ GL

(
M

(1)
d (R)

)

For any x =

 x1

...
xd

 ∈ O:

Ψ1(x) = Ψ1

 x1

...
xd

 =


x1 s

(1)
i,j (x)

. . .
s

(1)
i,j (x) xd



= x1


1 0 · · · 0
0 0
...

. . .
...

0 0

+ x2


0 0 · · · 0
0 1
...

. . .
...

0 0

+ · · ·+ xd


0 0 · · · 0
0 0
...

. . .
...

0 1



+ s
(1)
1,2(x)


0 1 · · · 0
1 0
...

. . .
...

0 0

+ · · ·+ s
(1)
d−1,d(x)


0 0 · · · 0
0 0 ...... 1
0 1 0



= span




1 0 · · · 0
0 0
...

. . .
...

0 0

 ,


0 0 · · · 0
0 1
...

. . .
...

0 0

 , . . . ,


0 0 · · · 0
0 0
...

. . .
...

0 1




0 1 · · · 0
1 0
...

. . .
...

0 0

 , . . . ,


0 0 · · · 0

0 0
...

... 1
0 1 0




which means ∀x = (x1, . . . , xd)
T ∈ O, the image ofO by Ψ1 can be written in the following form:

Ψ1(O) =



x1

...
xd
s

(1)
1,2
...

s
(1)
d−1,d


∼=

isomorphic
O ⊕ R

(
d2−d

2

)
= O ⊕ V1

Element of O
(1D − TS)

Could lead to the
emergence of sym-
metries of type-1

Since the new augmented vector space Ṽ1
.
= O ⊕ V1 ⊇ O, the corresponding representation of the

group of symmetries A on Ṽ1:

ρ̃1 = ρ0 ⊕ ρ1 : A ⊂ G −−−−−→ GL(Ṽ1)

is non-decreasing in total symmetry independent of the quality of the augmentation Ψ1 being used.
That is, the statement P (1) holds true, establishing the base case.
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Inductive step: Show that for any n ≥ 1, if P (n) holds, then P (n+ 1) also holds.

Assume the induction hypothesis holds, meaning P (n) is true, and let’s verify the statement for
P (n+ 1).

Let Ψ1, . . . ,Ψn+1 be the mappings (augmentations) that take x ∈ O and return their corresponding
2D-augmentation in M (1)

d (R), . . . ,M
(n+1)
d (R) respectively. ∀i ∈ {1, . . . , n + 1}, the image of O

by any augmentation Ψi can be written as:

Ψi(O) =



x1

...
xd

s
(i)
1,2(x)

...
s

(i)
d−1,d(x)


∼=

isomorphic
O ⊕ R

(
d2−d

2

)
= O ⊕ Vi

Element of O
(1D − TS)

Symmetries
of type-i

Since the direct sum of vector spaces is also a vector space then:
n+1⊕
i=1

M
(i)
d (R) = M

(1)
d (R)⊕M (2)

d (R)⊕ . . .⊕M (n)
d (R)⊕M (n+1)

d (R)

∼=
iso

[
O ⊕O ⊕ . . .⊕O

]
⊕ V1 ⊕ V2 ⊕ . . .⊕ Vn ⊕ Vn+1

∼=
iso

O︸︷︷︸
ID−TS

⊕V1 ⊕ V2 ⊕ . . .⊕ Vn ⊕ Vn+1︸ ︷︷ ︸
sym. of type-n+1

since [O ⊕ O ⊕ . . . ⊕ O]
doesn’t add new symmetries

= Ṽn ⊕ Vn+1

O
⊕n

i=1 Vi
.
= Ṽn ⊇ Ṽn−1

(induction hypothesis)

(5)

Since the new augmented vector space Ṽn+1
.
= Ṽn ⊕Vn+1 ⊇ Ṽn, the corresponding representation

of the group of symmetries A on Ṽn+1:

ρ̃n+1
.
=

n+1⊕
i=1

ρi : A ⊂ G −−−−−→ GL(Ṽn+1)

is non-decreasing in total symmetry independent of the quality of the augmentations Ψi being used
for any i ∈ {1, . . . , n+1}. That is, the statement P (n+1) also holds true, establishing the inductive
step.

Conclusion: Since both the base case and the inductive step have been proved as true, by mathe-
matical induction the statement P (n) holds for any n ∈ N∗.

C PROOF OF COROLLARY 3.1

According to (Eq. 5) in the proof of theorem 3.1, we have O ⊆ Ṽ by construction.

Our goal is to proof that the group of symmetries of the augmented vector space Ṽ denoted by
GL(Ṽ) is necessarily larger than the group of symmetries of O denoted by GL(O).

Mathematically, this means that we need to demonstrate that GL(O) is a subgroup of GL(Ṽ), i.e.
that is: GL(O) ⊆ GL(Ṽ).

Let’s consider A ∈ GL(Ṽ) ⊆ End(Ṽ). This inclusion is trivial since the set of endomorphisms
always includes the set of automorphisms.

12



Under review as a conference paper at ICLR 2021

11

ker(j)

GL(O) GL(Ṽ)

H

Im(j)∼=
iso
H

GL(O)
j

H ⊆ GL(Ṽ)

Figure 9: Image of a group homomorphism j.

According to (Eq. 5) and the property of decomposition of endomorphims, we have:

A =


A0 A0→1 · · · A0→n

A1

. . .
An


The endomorphim (matrix) A is a block diagonal matrix and it contains n + 1 diagonal blocks if n
augmentations are being used.

To prove thatGL(O) ⊆ GL(Ṽ), it suffices to consider a sub-group ofGL(Ṽ) namedH and to show
that H is isomorphic to GL(O).

To do so, let’s consider the following group homomorphism j:

j : GL(O) −−−−−→ H ⊂ GL(Ṽ)
AO 7−−−−−→ j(AO)

(6)

where:

j(AO) =


AO 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1


Showing that the homomorphism j is injective guarantees that GL(O)∼=

iso
H ⊂ GL(Ṽ).

Now we will call upon two properties of group homomorphisms:

Proposition C.1 Let G and H be groups and let ϕ : G→ H be a homomorphism.

Im(ϕ), the image of G under ϕ is a subgroup of H and we write:

Im(ϕ) ∼=
iso

H

ker(ϕ)

where ker(ϕ) denotes the kernel of ϕ.

Definition C.1 Ifϕ is a homomorphismϕ : G→ H , the kernel ofϕ is the set {g ∈ G | ϕ(g) = 1H}
and will be denoted by kerϕ. So the kernel is the set of elements in G which map to the identity of
H , i.e., is the fiber over the identity of H .

Proposition C.2 If the kernel of a group homomorphism ϕ : G → H is set to be equal to the
identity ker(ϕ) = 1G, then ϕ is injective.

Now going back to the group homomorphism defined in (Eq. 6):

By proposition C.1:

Im(j)∼=
iso

H

ker(j)
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Additionally, the only one way to get Im(j) = 1H is when AO is the identity (AO = 1), which by
proposition C.2 implies that j is injective.

Considering the two proposition C.1 and C.2 together, we have:

j(AO) ∈ Im(j)∼=
iso

H

ker(j)
∼=
iso
H ⊂ GL(Ṽ)

i.e.
j
(
GL(O)

)
∼=
iso
H ⊂ GL(Ṽ)

Thus, by considering the augmented representation ρISSA, we have proved that we necessarily have
more symmetries in the augmented vector space Ṽ compared to O. This allows the RL agent to
perform at least as good when using the original 1D − TS representation ρ0.

D DATASET, SETUP, AND POLICY DEPLOYMENT

D.1 DATASET

Figure 10: Evolution of stock prices.

The data comes from the Quandl finance database that has daily data. Our dataset includes January
1st 2013 up to December 31st 2013, resulting in 252 trading days (Fig. 10). The RL agents rebalance
the portfolio on a daily basis and are evaluated on a portfolio consisting of the following ten selected
securities: American Tower Corp. (AMT), American Express Company (AXP), Boeing Company
(BA), Chevron Corporation (CVX), Johnson & Johnson (JNJ), Coca-Cola Co (KO), McDonald’s
Corp. (MCD), Microsoft Corporation (MSFT), AT&T Inc. (T) and Walmart Inc (WMT). To promote
the diversification of the portfolio, these stocks were selected from different sectors of the S&P 500,
so that they are uncorrelated as much as possible as shown in Fig. 10 above.

It shoud be noted that for noisy dynamical systems, the test sets are commonly much smaller than
the training sets compared to static data because errors accumulate over longer test windows. For
our experiments we used 200 samples for training and 50 samples for testing with a testing window
of 10 samples (2 weeks). We found two weeks to be the largest practical testing window.

D.2 SETUP

Experiments were run on a 24-core machine with 33GB of memory. All algorithms were im-
plemented in Python using Keras and Tensorflow libraries. Each method is executed in an asyn-
chronously parallel set up of 2 GPUs, that is, it can evaluate multiple models in parallel, with each
model on a single GPU. When the evaluation of one model finishes, the methods can incorporate
the result and immediately re-deploy the next job without waiting for the others to finish. We use 2
NVIDIA Quadro P5000 (16GB) GPUs.
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D.3 POLICY DEPLOYMENT

In our experiments, the investment decisions are made daily and each input signal represents a
multidimensional tensor that aggregates historical open, low, high, close prices and volume. Our
deep RL models are trained and tested using a sliding window allowing the agents to adapt to new
market conditions. The models are trained and tested using 5 successive rounds with a shift of 10
days between rounds. Each round consists of a training period of 200 days followed by a 10 day
testing period. We found a 10 day testing window to be the largest window size appropriate for daily
frequency data. In fact, the volatility of the market is a major concern in most ML-based trading
systems. It should be noted that our training and testing include the transaction costs (TC). We
used the typical cost due to bid-ask spread and market impact that is 0.25%. We believe these are
reasonable transaction costs for the portfolio trades.

D.3.1 PERSISTENCE DIAGRAMS

(a) PD 1D-TS (AMT) (b) PD GAF (AMT) (c) PD MTF (AMT) (d) PD RP (AMT)

(e) PD 1D-TS (AXP) (f) PD GAF (AXP) (g) PD MTF (AXP) (h) PD RP (AXP)

(i) PD 1D-TS (BA) (j) PD GAF (BA) (k) PD MTF (BA) (l) PD RP (BA)

(m) PD 1D-TS (CVX) (n) PD GAF (CVX) (o) PD MTF (CVX) (p) PD RP (CVX)
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(q) PD 1D-TS (JNJ) (r) PD GAF (JNJ) (s) PD MTF (JNJ) (t) PD RP (JNJ)

(u) PD 1D-TS (KO) (v) PD GAF (KO) (w) PD MTF (KO) (x) PD RP (KO)

(y) PD 1D-TS (MCD) (z) PD GAF (MCD) (aa) PD MTF (MCD) (ab) PD RP (MCD)

(ac) PD 1D-TS (MSFT) (ad) PD GAF (MSFT) (ae) PD MTF (MSFT) (af) PD RP (MSFT)

(ag) PD 1D-TS (T) (ah) PD GAF (T) (ai) PD MTF (T) (aj) PD RP (T)

(ak) PD 1D-TS (WMT) (al) PD GAF (WMT) (am) PD MTF (WMT) (an) PD RP (WMT)

Figure 11: Persistence diagrams for the 10 stocks in our portfolio
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D.4 HYPERPARAMETERS

Table 4: Range of hyperparameters for the CNN-RL case study

Parameters Search space Type

Learning rate 10−5 - 5.10−1 Discrete

Window 10 - 30 Discrete

Number of filters 2 - 52 Discrete

Kernel Strides 2 - 10 Discrete

Number of units per layer 50 - 1000 Discrete

Optimizer
0 : Adam

1 : Adadelta
2 : Adagrad

Categorical

Table 5: Convolution and dense layers for the supervised learning case study

Layer (type) Output Shape Param #

conv2d 192 (Conv2D) (None, 126, 126, 32) 608

batch norm 1 (BatchNormaliza) (None, 126, 126, 32) 128

leaky re lu 192 (LeakyReLU) (None, 126, 126, 32) 0

max pooling2d 192 (MaxPoolin) (None, 63, 63, 32) 0

conv2d 193 (Conv2D) (None, 61, 61, 32) 9248

batch norm 2 (BatchNormaliza) (None, 61, 61, 32) 128

leaky re lu 193 (LeakyReLU) (None, 61, 61, 32) 0

max pooling2d 193 (MaxPoolin (None, 30, 30, 32) 0

flatten 96 (Flatten) (None, 28800) 0

dense 192 (Dense) (None, 128) 3686528

dense 193 (Dense) (None, 3) 387

D.5 SAMPLE EFFICIENCY GAINS DUE TO SYMMETRY AUGMENTATIONS (FIG.5)

Table 6: Summary of results of the best DPG model with various augmentations.

Agent performance Cumulative
return

Average
value

STD
value

Max
value

Min
value

dpg dense 1D-TS 3.0473 2.3418 0.9230 4.0716 1.0

dpg dense GAF 3.4016 2.3762 1.0052 4.4262 1.0

dpg dense MTF 3.6808 2.5853 1.1141 4.7137 1.0

dpg dense GAF+MTF 3.9046 2.6046 1.1462 4.9305 1.0

Table 7: Summary of results of the second best DPG model with various augmentations.

Agent performance Cumulative
return

Average
value

STD
value

Max
value

Min
value

dpg dense 1D-TS 2.8217 2.2454 0.8495 3.8649 1.0

dpg dense GAF 3.0157 2.2975 0.9172 4.0572 1.0

dpg dense MTF 3.0317 2.3356 0.9211 4.0691 0.9997

dpg dense GAF+MTF 3.3846 2.4666 1.0206 4.4131 1.0
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Table 8: Summary of results of the best PPO model with various augmentations.

Agent performance Cumulative
return

Average
value

STD
value

Max
value

Min
value

ppo dense 1D-TS 0.0939 1.0674 0.0445 1.1301 0.9720

ppo dense GAF 0.2385 1.1636 0.0786 1.2696 1.0

ppo dense MTF 0.6713 1.3960 0.2221 1.7004 1.0

ppo dense GAF+MTF 0.8898 1.4595 0.2703 1.9183 1.0

Table 9: Summary of results of the second best PPO model with various augmentations.

Agent performance Cumulative
return

Average
value

STD
value

Max
value

Min
value

ppo dense 1D-TS 0.0473 1.0391 0.0319 1.0906 0.9721

ppo dense GAF 0.0757 1.0582 0.0346 1.1154 0.9841

ppo dense MTF 0.0810 1.0651 0.0376 1.1238 0.9896

ppo dense GAF+MTF 0.2158 1.1120 0.0670 1.2314 0.9854

D.6 TESTING DEMONSTRATES GENERALIZATION WITH POTENTIAL OVERFITTING (FIG.6)

Table 10: Summary of DPG training results with various augmentations.

Agent performance Cumulative
return

Average
value

STD
value

Max
value

Min
value

dpg dense 1D-TS −0.0359 0.9971 0.0219 1.0293 0.9366

dpg RP+GAF+MTF 0.0413 1.0404 0.0267 1.0858 0.9765

dpg dense RP+GAF+MTF 0.6363 1.2785 0.1948 1.6401 0.9930

Table 11: Summary of DPG testing results with various augmentations.

Agent performance Cumulative
return

Average
value

STD
value

Max
value

Min
value

dpg dense 1D-TS 0.0181 1.0098 0.0110 1.0231 0.9879

dpg RP+GAF+MTF 0.0209 1.0109 0.0114 1.0236 0.9884

dpg dense RP+GAF+MTF 0.0304 1.0073 0.0133 1.0304 0.9857

Table 12: Summary of PPO training results with various augmentations

Agent performance Cumulative
return

Average
value

STD
value

Max
value

Min
value

ppo dense 1D-TS −0.1662 0.9274 0.0499 1.0222 0.8188

ppo RP+GAF+MTF 0.0477 1.0450 0.0279 1.0918 0.9810

ppo dense RP+GAF+MTF 0.0739 1.1046 0.0673 1.2201 0.9618
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Table 13: Summary of PPO testing results with various augmentations

Agent performance Cumulative
return

Average
value

STD
value

Max
value

Min
value

ppo dense 1D-TS −0.0193 0.9946 0.0122 1.0236 0.9806

ppo RP+GAF+MTF 0.0217 1.0112 0.0116 1.0235 0.9884

ppo dense RP+GAF+MTF 0.0128 1.0132 0.0195 1.0429 0.9819

E ACCURACY FOR CBF

Table 14: Test accuracy for CBF with various augmentations.

Trials RP MTF GAF RP+MTF RP+GAF MTF+GAF RP+MTF+GAF

1 0.8144 0.3311 0.3766 0.9011 0.8933 0.5966 0.9433

2 0.4755 0.3311 0.4811 0.8122 0.9288 0.5411 0.9244

3 0.5600 0.3311 0.5922 0.9077 0.7444 0.6177 0.9355

4 0.8033 0.3466 0.4666 0.6377 0.8333 0.4 0.8133

5 0.8066 0.3311 0.4355 0.7233 0.8988 0.37 0.8944

6 0.7988 0.3377 0.3477 0.8077 0.8199 0.4088 0.8588

7 0.8566 0.6511 0.3855 0.7588 0.7144 0.4477 0.9344

8 0.5099 0.5166 0.6455 0.8088 0.8222 0.7411 0.8566

9 0.9377 0.5899 0.9222 0.9333 0.9255 0.9533 0.9522

10 0.7655 0.5677 0.8944 0.9355 0.9077 0.8799 0.9499

Average 0.7492 0.4686 0.5891 0.8313 0.8574 0.6282 0.9112
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