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Introduction
Metamaterials are macroscopic composites that contain
artificial, three-dimensional, periodic (or not) unit-cell
patterns engineered to produce optimized responses to
a specific excitation that is unseen in natural materials.
[1, 2] Like atoms forming a molecule in natural mate-
rials, metamaterials with various microstructures can
lead to different response curves. To be concrete, for
a microstructure with facility topology x, its responses
to electromagnetic wave of different frequencies form a
complex response curve y. The laws of physics determine
that there exists a deterministic function y = f(x) that
maps the facility topology x to its response curves y.
Our goal in this study is to learn the inversemapping func-
tion f−1(·) from a collection of triplets {(τi, xi, yi)}n

i=1.
Leveraging on the quick development of deep neural net-
work (DNN) in recent years, DNN-based inverse design
via variational auto-encoder (VAE) [3] and conditional
variational auto-encoder (CVAE) [4] has gained great suc-
cesses in a broad range of applications.
However, available methods for inverse design based on
CVAE assume that the responses are discrete classifica-
tion labels.In this work, we fill in this gap by proposing
a novel CVAE framework with functional responses as
conditional input (referred to as FR-CVAE).

Method
Figure 1 demonstrates a typical microstructure of the I-
shape and the corresponding response curves composed
of four channels (twomagnitude channels and two phase
channels). For a collection of design points x1, .., xn ∈ X ,
let τi be the topology type of xi (e.g., I-shape, hexagon-
shape and so on), and yi = f(xi) being the corresponding
response curves obtained via FEM simulation.

The proposed FR-CVAE

1. an encoding network of x, ϕ𝛼 : x→ z, that maps a design x ∈ X to a lower dimension latent space representation
z ∈ Z (Z ∈ R p), which can also be expressed as an encoding distribution q𝛼(z|x) = N(𝜇z(x, ϕ𝛼), σ2z (x, ϕ𝛼) · Ip),

2. an encoding network of y referred to as ϕ𝛽 : y→ z, that embeds the functional response y into the same latent space
Z via another encoding distribution q𝛽(z|y) = N(𝜇z(y, ϕ𝛽), σ2z (y, ϕ𝛽) · Ip),

3. a decoding network ϕ𝛾 : z→ x, that generates an image x̂ ∈ X from z ∈ Z via a decoding distribution q𝛾(x|z) over
the design spaceX ,

4. a classifier ϕ𝜓 : y→ pτ, which shares the network of ϕ𝛽 except its last layer and utilize a linear layer parameterized by
ψ and softmax function to generate the classification probability pτ.

The loss function of FR-CVAE is composed of three components.
• the reconstruction loss Lx(𝛼,𝛾; xi) = −

∫︁ [︁
log q𝛾(xi|z)

]︁
dq𝛼(z|xi), (1)

• the classification loss Ly(𝛽,𝜓; τi, yi) = LCE(𝛽,𝜓; τi, yi) + LTriplet(𝛽; τi, yi), (2)

• the alignment loss Lx∼y(𝛼,𝛽; xi, yi) = w1 · KL
(︀
q𝛼(·|xi)||π0(·)

)︀
+ w2 · KL

(︀
q𝛼(·|xi)||q𝛽(·|yi)

)︀
, (3)

Assembling all these components together, we come up with the following joint loss function:

L
(︁
Θ | {(τi, xi, yi)}n

i=1

)︁
=

n∑︁
i=1

{Lx(𝛼,𝛾; xi) + Ly(𝛽,𝜓; τi, yi) + Lx∼y(𝛼,𝛽; xi, yi)}. (4)

Important Result

1.Numerical evaluation of the proposed model with ϕ𝛽 being Swin-Transformer. 1-30 represent the topology types, each
of which contains samples from the test data set.

2.On-demand inverse design. The two insets are the ground-truth design patterns (up) whose response curves are solid
blue and retrieved design patterns (down) whose response curves are dashed yellow.

Experimental Setup

Dataset
• 61,992 microstructure patterns, where the black pixels
stand for substrate and the white ones are metal mate-
rial, belonging to 30 topology types and their EM re-
sponse curves (over the frequency region of 0.1-30GHz)

Implementation Details
• 80% training set + 20% testing set
• Adam optimizer throughminibatch gradient descent for
1,000 epochs with the batch size set to be 256, which
takes about fifteen hours by using 2 Nvidia Telsa P100
16GB GPU cards

Conclusion
On a data-driven basis, the proposed novel learning
framework not only can serve as a comprehensive and
efficient tool that accelerates the design, characteriza-
tion, and even new discovery in the research domain
of metamaterials, but also has the potential to resolve
other problems with similar structures.
• Solving the data problems of complex microstructures
and complex responses
• Avoiding the time-consuming case-by-case numerical
simulations
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