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Introduction The proposed FR-CVAE Experimental Setup

Metamaterials are macroscopic composites that contain 1. an encoding network of x, ¢, : X — z, that maps a design x € & to a lower dimension latent space representation Dataset
artificial, thr.ee-dimensional, perioc.lic.(or not) unit-cell z € Z (Z € RP), which can also be expressed as an encoding distribution ga(z|x) = N(p,(X, $a). 07(X, ¢a) - 1), e 61,992 microstructure patterns, where the black pixels
patterns engineered to produce optimized responses to 2. an encoding network of y referred to as ¢4 : y — z, that embeds the functional response y into the same latent space stand for substrate and the white ones are metal mate-
a specific excitation that is unseen in natural materials. % via another encoding distribution gs(zly) = N(u,(y, ¢5), a2(y, ¢3) - 1,), rial, belonging to 30 topology types and their EM re-
. . . y 4
[, 2] Like atoms forming a molecule in natural mate- 3. a decoding network ¢, : z — X, that generates an image X € X fromz € % via a decoding distribution d~(x|z) over sponse curves (over the frequency region of 0.1-30GHz)
rials, metamaterials with various microstructures can the design space % Implementation Details
Ieac{ to different re.spons.e. curves. To be .concrete, for 4. a classifier ¢, : y — p., which shares the network of ¢ 5 except its last layer and utilize a linear layer parameterized by e 80% training set + 20% testing set
: m:crostructure with fau:cltdyf’;opolo]?y X, Its resp:conses ¢ and softmax function to generate the classification probability p-. e Adam optimizer through minibatch gradient descent for
to electromagnetic wave of different frequencies form a : : :
5 : . . The loss function of FR-CVAE is composed of three components. 1,000 epochs with the batch size set to be 256, which
complex response curvey. The laws of physics determine th truction | Z.( ) [ | (x;| )]d (z|x:) (1) takes about fifteen hours by using 2 Nvidia Telsa P100
. oL , e the reconstruction loss LY X)) = — 0 Xi|z z|x;),
that there exists a deterministic function y = f(x) that 88 0 J (X dalialhs

16GB GPU cards
maps the facility topology x to its response curvesy.

L . . : o the classification loss £(B. ;1Y) = Le(B, Y, T, ¥i) + Lriplet (B Ti, i), (2)
Our goal in this study is to learn the inverse mapping func-

o —1(. - : . w. v.) LN o
ton' ( )from 2 collection of triplets (T % Y 3, ethealignmentloss & _ (a, 8;x, yi) = wi - KL(aa (1)1 Im0(-)) + w2 - KL(ga (1% 1as(-ly:))., (3) On a data-driven basis, the proposed novel learning
Leveraging on the quick development of deep neural net-

: : L — framework not only can serve as a comprehensive and
work (DNN) in recent years, DNN-based inverse design Assembling all these components together, WS come up with the following joint loss function:

via variational auto-encoder (VAE) [3] and conditional < (G | {(T;, x;, y,-)}’f’=1) = Z{zx(a, Vi X))+ L8, Y, T, ¥i) + Ly, B X Yi) } (4)
variational auto-encoder (CVAE) [4] has gained great suc- i=1

efficient tool that accelerates the design, characteriza-
tion, and even new discovery in the research domain
of metamaterials, but also has the potential to resolve

cesses in a broad range of applications. other problems with similar structures.

However, available methods for inverse design based on
CVAE assume that the responses are discrete classifica- 1. Numerical evaluation of the proposed model with ¢ 3 being Swin-Transformer. 1-30 represent the topology types, each

tion labels.In this work, we fill in this gap by proposing of which contains samples from the test data set.

a novel CVAE framework with functional responses as

- . e simulations
conditional input (referred to as FR-CVAE). o7e.
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