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A MSE minimization is equivalent to log-loss minimization

We use the same notations as in section 4]

Denote e, as a one-hot row vector of the true label, we define the hypothesis set that genie is allowed
to choose from as

P = (o) = e {55 (- stalo) 1"} n

The genie chooses the learner from the hypothesis set that minimizes the log-loss. Let x,, € RM*!
be the n-th data with the label ¢,, € {1,2,...,C}, y, be arow vector where y,,.,, is its ¢, element.
We show that the log-loss minimizer of this hypothesis set is equal to the MSE minimizer:
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We know that the training set label are one-hot vector y,, = e.,, such that y,., = 1:
N
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which is the MSE minimization objective we defined in section 4]

B Single layer NN pNML regret simulation

We simulate the response of the pNML regret for two classes (C=2) and divide it by log C' to have
the regret bounded between 0 and 1. Figure|T] shows the regret behaviour for different p; (the ERM
probability assignment of class 1) as a function of = g.

For an ERM model that is certain on the prediction (p; = 0.99 that is represented by the purple
curve), a slight variation of z " g causes a large response of the regret comparing to p; that equals
0.55 and 0.85. All curves converging to the maximal regret for = | g greater than 6.
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Figure 1: The pNML regret for a two class predictor. p; is the ERM prediction of class c;.
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Figure 2: The spectrum of the training embeddings.

C The spectrum of real dataset

We provide a visualization of the training data spectrum when propagated to the last layer of a DNN.

We feed the training data through the model up to the last layer to create the training embeddings. Next,
we compute the correlation matrix of the training embeddings and perform an SVD decomposition.
We plot the eigenvalues for different training sets in figure 2]

Figure [2af shows the eigenvalues of DenseNet-BC-100 model when ordered from the largest to
smallest. For the SVHN training set, most of the energy is located in the first 50 eigenvalues and then
there is a significant decrease of approximately 103. The same phenomenon is also seen in ﬁgure
that shows the eigenvalues of ResNet-40 model. In our derived regret, if the test sample is located in
the subspace that is associated with small eigenvalues (for example indices 50 or above for DenseNet
trained with SVHN) then = " g is large and so is the pNML regret.

For both DensNet and ResNet models, the values of the eigenvalues of CIFAR-100 seem to be spread
more evenly compared to CIFAR-10, and the CIFAR-10 are more uniform than the SVHN. How
much the eigenvalues are spread can indicate the variability of the set: SVHN is a set of digits that is
much more constrained than CIFAR-100 which has 100 different classes.

D Gram vs. Gram+pNML

We further explore the benefit of the pPNML regret in detecting OOD samples over the Gram approach.
We focus on the DenseNet model with CIFAR-100 as the training set and LSUN (C) as the OOD set.

Figure [3a] shows the 2D histogram of the IND set based on the pPNML regret values and Gram scores.
In addition, we plotted the best threshold for separating the IND and OOD of these sets. pPNML regret
values less than 0.0024 and Gram scores below 0.0017 qualify as IND samples by both the pNML
and Gram scores. Gram and Gram+pNML do not succeed to classify 1205 and 891 out of a total
10,000 IND samples respectively.

Figure [3b] presents the 2D histogram of the LSUN (C) as OOD set. For regret values greater than
0.0024 and Gram score lower than 0.0017, the pNML succeeds to classify as IND but the Gram fails:
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Figure 3: 2D histogram of the pNML regret and the Gram score of a DenseNet model trained with
CIFAR-100 as IND set and LSUN (C) as OOD.

Table 1: DenseNet-BC-100 model TNR at TPR95% comparison. The compared methods are
Baseline (Hendrycks and Gimpel, [2017), ODIN (Liang et al.,[2018), Gram (Sastry and Oore} 2020),
and OECC (Papadopoulos et al., |2021)

IND OOD Baseline/+pNML ~ ODIN/+pNML  Gram/+pNML  OECC/+pNML

iSUN 14.8/81.2 37.4/82.8 95.8/97.9 97.5/99.2

LSUN (R) 16.4/82.7 41.6/84.5 97.1/98.7 98.4/99.6

LSUN (C) 28.3/65.7 58.2/65.4 65.3/76.3 74.6/83.4

CIFAR-100 Imagenet (R) 17.3/86.4 43.0/87.9 95.6/98.0 96.5/99.0
Imagenet (C) 243/1717.2 52.5/78.6 88.8/93.8 92.6/96.9

Uniform 0.0/100 0.0/100 100/ 100 100/ 100

Gaussian 0.0/100 0.0/100 100 /100 100 /100

SVHN 26.2/179.2 56.8/79.0 89.3/93.7 89.0/90.7

iSUN 63.3/93.2 94.0/94.3 99.1/99.8 99.7 /100

LSUN (R) 66.9/94.2 96.2/95.8 99.5/99.9 99.8 /100

LSUN (C) 52.0/79.9 74.6/ 80.2 88.7/94.4 95.7799.6

CIFAR-10 Imagenet (R) 59.4/93.4 92.5/94.6 98.8/99.6 99.3/99.9
Imagenet (C) 57.0/87.1 86.9/88.3 96.8 /98.7 98.6/99.8

Uniform 76.4/100 100/ 100 100 /100 100/100

Gaussian 88.1/100 100/100 100/ 100 100/ 100

SVHN 40.4/92.2 77.0/95.0 96.0/98.2 98.5/99.9

iSUN 78.3/93.6 78.5/96.3 99.6/99.9 100 /100

LSUN (R) 77.1/91.7 77.0/95.2 99.7 /100 100/100

LSUN (C) 73.5/89.7 68.5/90.0 93.4/97.2 99.5/100

Imagenet (R) 79.7193.6 79.0/95.8 99.2/99.8 100 /100

SVHN Imagenet (C) 78.9/92.8 77.6/94.5 98.0/99.3 99.9/100
Uniform 66.1/100 71.7/100 100/ 100 100/ 100

Gaussian 88.7/99.7 95.6/100 100 /100 100 /100

CIFAR-10 69.1/81.0 66.6/ 88.5 75.1/86.8 98.9/100

CIFAR-100 68.7/81.4 65.7/88.5 80.3/90.1 99.1/100
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There are 473 samples that the pNML classifies as OOD but the Gram fails, in contrast to 76 samples
classified as such by the Gram and not by the pNML regret. Most of the pNML improvement is in
assigning a high score to OOD samples while there is not much change in the rank of the IND ones.

E Additional out of distribution metrics

The additional OOD metrics, TNR at 95% FPR and Detection Accuracy, for the DensNet model are

shown in table[T]and table 2] respectively and for the ResNet are presented in table [3]and table @] We

improve the compared methods for all IND-OOD sets except for 6 experiments of ODIN method

with the TNR at 95% metric. We show the TNR vs FPR of these experiments in figure[d] We state

that for most of the TNR values, the pNML regret outperforms the ODIN method, as also shown in

the AUROC metric.



Table 2: DenseNet-BC-100 model Detection Acc. comparison. The compared methods are Base-
line (Hendrycks and Gimpel, |2017), ODIN (Liang et al., 2018), Gram (Sastry and Oorel 2020), and
OECC (Papadopoulos et al.,[2021)

IND 00D Baseline/+pNML  ODIN/+pNML  Gram/+pNML  OECC/+pNML

iSUN 64.0/89.9 76.5/90.3 95.6/97.0 96.5/98.0

LSUN (R) 65.0/90.5 77.7191.0 96.3/97.4 97.2/98.5

LSUN (C) 72.6/85.3 83.4/85.2 83.7/87.5 87.0/90.2

CIFAR-100 Imagenet (R) 65.7/91.6 77.3/92.1 95.5/97.0 96.0/97.8
Imagenet (C) 69.0/89.0 80.8/89.3 92.4/94.5 94.0/96.1

Uniform 64.2 /100 85.0/100 100/ 100 99.9/100

Gaussian 58.8/100 66.9 /100 100 /100 100/100

SVHN 75.5/90.3 86.0/90.3 92.3/94.4 92.1/93.0

iSUN 89.2/94.2 94.6/94.8 98.0/99.0 98.7/99.6

LSUN (R) 90.2/94.7 95.6/95.5 98.6/99.3 98.9/99.7

LSUN (C) 86.9/89.5 89.7/89.4 92.1/94.8 95.5/98.8

CIFAR-10 Imagenet (R) 88.5/94.3 94.0/94.9 97.9/98.8 98.3/99.2
Imagenet (C) 88.0/91.9 92.3/92.2 96.2/97.7 97.4/99.0

Uniform 94.8 /100 99.7 /100 100 /100 100/ 100

Gaussian 95.3 /100 99.8 /100 100/ 100 100/100

SVHN 83.2/94.0 88.1/95.1 95.8/97.3 97.4/99.3

iSUN 89.7/94.6 87.7/95.7 98.3/99.1 99.8 /100

LSUN (R) 89.2/93.8 87.2/95.1 98.6/99.2 99.9/100

LSUN (C) 88.0/92.8 83.6/92.8 94.3/96.4 98.5/99.8

Imagenet (R) 90.2/94.4 88.2/95.5 97.9798.9 99.7 /100

SVHN Imagenet (C) 89.8/94.2 87.6/94.8 96.7/98.1 99.5/100
Uniform 87.9/98.8 85.2/99.4 99.9 /100 100/ 100

Gaussian 93.6/98.4 95.4/99.1 100 /100 100 /100

CIFAR-10 86.5/91.0 83.5/92.7 89.0/92.0 97.4/99.8

CIFAR-100 86.5/91.0 83.1/92.8 90.4/93.2 97.7/99.8

Table 3: ResNet-34 model TNR at TPR95% comparison. The compared methods are Base-
line (Hendrycks and Gimpel, [2017)), ODIN (Liang et al.l |2018)), Gram (Sastry and Oore, [2020)),
and OECC (Papadopoulos et al., 2021)

IND OOD Baseline/+pNML ~ ODIN/+pNML  Gram/+pNML  OECC/+pNML

iSUN 16.6/ 26.1 45.4/44.1 94.7195.7 97.2/98.0

LSUN (R) 18.4/28.4 45.5/44.6 96.6/97.1 98.3/99.0

LSUN (C) 18.2/30.1 44.0/51.2 64.6/72.9 80.3/89.8

CIFAR-100 Imagenet (R) 20.2/31.8 48.7/47.6 94.8/96.2 95.5/95.8
Imagenet (C) 23.9/33.6 44.4/48.1 88.3/91.6 90.6/91.6

Uniform 10.1/89.1 98.4/98.5 100/ 100 100/ 100

Gaussian 0.0/13.7 4.5/66.8 100 /100 100 /100

SVHN 19.9/52.0 63.8/75.0 80.3/89.0 86.8/89.2

iSUN 44.5/178.5 73.0/86.3 99.4/99.9 99.8 /100

LSUN (R) 45.1/79.8 73.5/87.5 99.6/99.9 99.9/100

LSUN (C) 48.0/72.6 63.1/76.1 90.2/95.9 96.3/98.9

CIFAR-10 Imagenet (R) 44.0/72.8 71.8/81.9 98.9/99.6 99.6/99.8
Imagenet (C) 459/71.4 66.5/178.0 97.0/98.8 98.9/99.7

Uniform 71.4/100 100/ 100 100 /100 100 /100

Gaussian 90.2 /100 100/100 100/ 100 100/ 100

SVHN 32.2/69.1 81.9/90.8 97.6/99.2 99.3799.7

iSUN 77.0/85.6 79.1/90.6 99.5799.9 100 /100

LSUN (R) 74.4182.9 76.6/88.3 99.6/99.9 100/100

LSUN (C) 76.1/86.3 78.5/86.4 94.5/98.4 99.3/99.9

Imagenet (R) 79.0/88.0 80.8/92.5 99.4/99.8 100 /100

SVHN Imagenet (C) 80.4/88.4 82.4/91.5 98.6/99.7 99.9/100
Uniform 85.2/95.6 86.1/99.3 100/ 100 100/ 100

Gaussian 84.8/94.9 90.9/99.4 100 /100 100 /100

CIFAR-10 78.3/87.2 79.9/90.4 86.1/97.2 98.4/99.8

CIFAR-100 76.9/85.8 78.5/89.1 87.6/96.9 98.4/99.8




Table 4: ResNet-34 model Detection Acc. comparison. The compared methods are Base-
line (Hendrycks and Gimpel, [2017), ODIN (Liang et al., [2018), Gram (Sastry and Oore, [2020),
and OECC (Papadopoulos et al.| 2021)

IND OOD Baseline/+pNML  ODIN/+pNML  Gram/+pNML  OECC/+pNML
iSUN 70.1/76.0 78.6/79.3 95.0/95.4 96.2/96.9
LSUN (R) 69.8/176.5 78.1/79.8 96.0/96.2 96.9/97.6
LSUN (C) 69.4/176.0 75.7179.9 84.3/87.4 89.3/92.8
CIFAR-100 Imagenet (R) 70.8/76.6 80.2/80.2 95.0/95.7 95.4/95.5
Imagenet (C) 72.5/178.2 78.7/80.2 92.1/93.6 93.2/93.6
Uniform 81.7/93.5 96.7/96.8 100/ 100 100/100
Gaussian 60.5/83.7 81.7/92.2 100/ 100 100/ 100
SVHN 73.2/82.9 88.1/89.0 89.5/92.6 91.8/92.7
iSUN 85.0/90.4 86.9/92.0 98.2/99.1 98.8/99.0
LSUN (R) 85.3/90.8 87.1/92.4 98.7/99.3 99.1/99.2
LSUN (C) 86.2/90.0 87.2/88.7 92.8/95.6 95.7/197.2
CIFAR-10 Imagenet (R) 84.9/89.0 86.3/90.4 97.9/98.8 98.5/98.7
Imagenet (C) 85.3/89.4 86.3/89.9 96.3/97.7 97.5/98.3
Uniform 93.5/98.8 99.3/99.9 100/ 100 100/100
Gaussian 95.5/99.7 99.8 /100 100/ 100 100/100
SVHN 85.1/90.3 89.1/93.0 96.8 /98.1 98.1/98.4
iSUN 89.7/92.8 89.2/93.5 98.2/99.1 99.7/99.9
LSUN (R) 88.9/92.1 88.2/92.7 98.6/99.2 99.8/99.9
LSUN (C) 89.7/92.2 89.2/92.2 94.8/97.3 98.0/98.9
Imagenet (R) 90.4/93.4 90.0/94.2 98.0/99.1 99.5/99.8
SVHN Imagenet (C) 91.0/93.3 90.6/93.8 97.1/98.7 99.2/99.6
Uniform 92.9/95.7 92.3/974 99.9/100 100/100
Gaussian 92.9/95.4 93.0/97.5 100/ 100 100/ 100
CIFAR-10 90.0/93.1 89.4/93.4 92.2/96.2 96.9 /98.5
CIFAR-100 89.6/92.5 89.0/93.1 92.4/96.1 97.0/98.5
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Figure 4: The TNR as a function of the TPR of IND-OOD sets for which the ODIN method is better
than the pNML at TPR of 95%.
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