
A Properties of Different Layers

Table 5: Parameters (Params), floating point operations (FLOPs), Sequential Operations, and Maxi-
mum Path Length for different layer types. Assume that the input data is a sequence of length l and
depth d. k is the kernel size for 1D convolution and local self-attention, n is the query length, and
inf stands for infinity.

Layer Type Params FLOPs
Sequential
Operations

Maximum
Path Length

Linear (d + 1)d 2d2l O(1) O(inf)
1D Convolution (kd + 1)d 2d2lk O(1) O(n/k)
Self-Attention 4(d + 1)d 8d2l + 4dl2 + 3l2 O(1) O(1)

Local Self-Attention 4(d + 1)d 8d2l + 4dlk + 3ld O(1) O(n/k)
Cross-Attention 4(d + 1)d 4d2l+ (4dl+ 2d2 + 3l)n O(1) O(1)

We adopt 1D convolution as the local operator that is more efficient and parameter friendly, and the
improved transformer structure owns a constant number of sequentially executed operations and O(1)
maximum path length between any two positions.

B Analysis of the Local Ratio

Proposition 3. The numbers of global and local branches in the i− th mixed attention layer (MAi)
is d1 and d2. For the i − th input sequence F i ∈ Rl×d, the parameter of MAi is minimum when
d1 = d2 = d/2, where l and d are sequence length and dimension, respectively.

Proof. Given the F i ∈ Rl×d and MAi with d1 and d2, the overall parameters Paramsi = 4(d1 +
1)d1 + (d2 + 1)d2 + (kd2 + 1)d2 according to Table 5 (k is the kernel size), and it is factorized as
follows:

Paramsi = 4(d1 + 1)d1 + (d2 + 1)d2 + (kd2 + 1)d2

= 4d1
2 + (k + 1)d2

2 + 4d1 + 2d2
(13)

Based on d1 + d2 = d, we have

Paramsi = (5 + k)d2
2 − (8d + 2)d2 + 4d2 + 4d (14)

Applying the minimum value formula of a quadratic function to the equation 14, we can obtain the
minimum value 2d2 + 3d + 1/8, where d1 = d/2 − 1/8 and d2 = d/2 + 1/8. Given that d1 and
d2 are integers, we make d1 = d2 = d/2. Therefore, the minimum value of equation 14 becomes
2d2 +3d that is nearly half of the original self-attention layer, i.e., 4d2 +4d, according to Table 5.

Proposition 4. The numbers of global and local branches in the i− th mixed attention layer (MAi)
is d1 and d2. For the i − th input sequence F i ∈ Rl×d, the FLOPs of MAi is minimum when
d1 = d/2 + l/8, d2 = d/2− l/8, where l and d are sequence length and dimension, respectively.

Proof. Given the F i ∈ Rl×d and MAi with d1 and d2, the overall FLOPs FLOPsi = 8d1
2l +

4d1l
2 +3l2 +2d2

2l+2d2
2lk according to Table 5 (k is the kernel size), and it is factorized as follows:

FLOPsi = 8d1
2l + 4d1l

2 + 3l2 + 2d2
2l + 2d2

2lk

= (8d1
2 + 4d1l + 3l + 2d2

2 + 2d2
2k)l

(15)

Based on d1 + d2 = d, we have

FLOPsi = [(10 + 2k)d2
2 − (16d + 4l)d2 + 8d2 + 4dl + 3l]l (16)

Applying the minimum value formula of a quadratic function to the equation 16, we can obtain the
minimum value (4d2 + 2ld− l2/4 + 3l)l, where d1 = d/2− l/8 and d2 = d/2 + l/8. Given that d1
and d2 are integers and l is usually much smaller than d in practice, we make d1 = d2 = d/2 that
is consistent with the above proposition 1. Therefore, the minimum value of equation 16 becomes
(4d2 + 2ld + 3l)l that is nearly half of the original self-attention layer according to Table 5, i.e.,
(8d2 + 4ld + 3l)l.
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C Visualization of Hilbert SFC
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Figure 8: Visualization of Hilbert SFC in 2D and 3D format under different image bits.

We visualize the SFC of Hilbert for a more intuitive understanding in Figure 8.

D Variants of EAT
Table 6: Detailed settings of our EAT variants.

Model Emb.
Dim.

H. in
MSA Layers Head

Layers
FFN
Ratio

Local
Ope.

Local
Ratio

Kernel
Size

SFC
Mode

Image
Size Params.

EAT-Ti 192 2 12 2 4 1D Conv 3 0.5 SIS 2242 5.7M
EAT-S 384 3 12 2 4 1D Conv 3 0.5 SIS 2242 22.1M
EAT-M 576 4 12 2 4 1D Conv 3 0.5 SIS 2242 49.0M
EAT-B 768 6 12 2 4 1D Conv 3 0.5 SIS 2242 86.6M

Table 6 shows detailed settings of our proposed four EAT variants.

E Visualization of Attention Map in Task-Related Head

Taking the classification Head as an example, we visualize the attention map in the Head to intuitively
explain why the model works. Specifically, we choose EAT-S here, which contains two layers
for the classification Head, and each Head contains eight heads in the inner cross-attention layer.
Here, capital Head indicates task-related Head, while lowercase head represents multi-head in the
cross-attention. As shown in Figure 9, we normalize values of attention maps to [0, 1] and draw them
on the right side of the image. Results show that different heads focus on different regions in the
image, and the deeper Head2 integrates features of Head1 to form the final vector for classification
that focuses on a broader area.
Furthermore, we average eight attention maps of each head layer and use it as the global attention
map that represents which parts of the image the corresponding head layer is focusing on, as shown
in Figure 11. Also, Grad-CAM [58] is applied to produce a coarse localization map highlighting the
crucial regions in the image. By analyzing results, we find that both visualization methods focus
more on the subjects in the image, demonstrating the effectiveness of our proposed Head module.

F Visualization of Attention Map in Middle Layers

We also visualize some attention maps for middle layers, taking the heads in the fourth and sixth
layers as an example. As shown in Figure 10, compared with DeiT without local modeling, our
EAT pays more attention to global information fusion, where more significant values are found at
off-diagonal locations. We analyze the reason for this phenomenon that the parallel local path takes
responsibility for some of the local modelings that would have been the responsibility of the MSA.
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Figure 9: Visualization of Attention Maps in the classification head. We display two head layers for
each image and eight attention maps for eight heads in each head layer.

DeiTL4 DeiTL6 EATL4 EATL6Input

Figure 10: Visualization of attention maps for the fourth and sixth middle layers. The first column
shows the input images; the second and third columns are visualized attention maps for DeiT, while
the fourth and fifth columns for our EAT-S.
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Figure 11: Visualization of overall attention for different head layers and Grad-CAM results.
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