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1 Potential Negative Societal Impacts

Our method leads to two potential negative societal impacts.

Firstly, our method is used to generate data to train a model for human intelligence. In this case, people
may heavily rely on predictions of the model, while the model may have inexplicable prediction
failures, especially wrong predictions in some crucial situations.

Secondly, in the machine learning community, collecting and labeling data is a labor-intensive project.
The automatic augmentation in our method may lead to a biased model.

2 Detailed Proof of Proposition 1

W = [w1, · · · ,wn] is the classifier, and wj is the weight for the j-th classifier. zj,i is the augmented
feature for the j-th class. The loss function of infinite augmentation is

L∞(W ) =
1

n

n∑
j=1

Ei

[
− log

exp
(
− dc(zj,i,wj)

)∑
j′ exp

(
− dc(zj,i,wj′)

)] . (1)

Computing Eq. (1) is infeasible and difficult. Alternatively, we derive an upper bound L∞(W ) of
the loss function L∞(W ) for efficient augmentation, as shown in Proposition 1.

Proposition 1. Given infinite augmented data zj,i ∼ Pj(c,pj ,µj ,Σj), an upper bound of the loss
function L∞ in Eq. (1) is given by

L∞(W ) =
1

n

∑n

j=1
− log

exp
(
w⊤

j (p̂j + µi)
)∑n

j′=1 exp
(
w⊤

j′(p̂j + µi) + (w⊤
j′wj′ −w⊤

j wj) +
1
2 (wj′ −wj)⊤Σj(wj′ −wj)

) ,
(2)

where pj = expmc
0(p̂j). We note that p̂j can be directly computed in the tangent space at the origin.
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Proof. The loss function of the infinite data augmentation is

L∞(W ) =
1

n

n∑
j=1

Ei

− log

( exp
(
− dc(zj,i,wj)

)
∑n

j′=1 exp
(
− dc(zj,i,wj′)

))


=
1

n

n∑
j=1

Ei

log(∑n
j′=1 exp

(
− dc(zj,i,wj′)

)
exp

(
− dc(zj,i,wj)

) )
=

1

n

n∑
j=1

Ei

log( n∑
j′=1

exp
(
− dc(zj,i,wj′)

)
exp

(
− dc(zj,i,wj)

) )
=

1

n

n∑
j=1

Ei

log( n∑
j′=1

exp
(
dc(zj,i,wj)− dc(zj,i,wj′)

))
≤ 1

n

n∑
j=1

log
( n∑

j′=1

Ei

[
exp

(
dc(zj,i,wj)− dc(zj,i,wj′)

)] )
,

(3)

where the derivation of ‘≤’ in Eq. (3) follows from the Jensen’s inequality E[log(X)] ≤ logE[X].

Recall that the hyperbolic distance is

dc(x,y) =
1√
|c|

cosh−1

(
1 + 2c

∥x− y∥2

(1− c∥x∥2)(1− c∥y∥2)

)
. (4)

We define a function D = dc(x,y)− ∥x− y∥2, and denote e = ∥x− y∥2. The function D can be
rewritten as

D =
1√
|c|

cosh−1

(
1 + 2c

e

(1− c∥x∥2)(1− c∥y∥2)

)
− e. (5)

The derivative of D is given by

∂D

∂e
=

1√
|c|

· q√
q2e2 + 2qe

− 1, (6)

where q = 2c
(1−c∥x∥2)(1−c∥y∥2) . Let ∂D

∂e > 0, and we obtain e <

√
1+|c|−

√
|c|√

|c|
. Thus, given

e1 < e2 <

√
1+|c|−

√
|c|√

|c|
, we have dc1 − e1 < dc2 − e2 and dc1 − dc2 < e1 − e2. Here, we can

reasonably assume ∥zj,i −wj∥2 < ∥zj,i −wj′∥2, since wj is the weight of the ground-truth class

of zj,i. Thus, if we enforce ∥zj,i −wj′∥2 <

√
1+|c|−

√
|c|√

|c|
, we have ∥zj,i,wj∥2 − ∥zj,i,wj′∥2 >

dc(zj,i,wj)− dc(zj,i,wj′), and Eq. (3) can be rewritten as

L∞(W ) ≤ 1

n

n∑
j=1

log
( n∑

j′=1

Ei

[
exp

(
dc(zj,i,wj)− dc(zj,i,wj′)

)] )
≤ 1

n

n∑
j=1

log
( n∑

j′=1

Ei

[
exp

(
∥zj,i,wj∥2 − ∥zj,i,wj′∥2

)] )
=

1

n

n∑
j=1

log
( n∑

j′=1

Ei

[
exp

(
2(wj′ −wj)

⊤zj,i + (w⊤
j′wj′ −w⊤

j wj)
)] )

.

(7)
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We would replace zj,i with the augmentation process using the parallel transport and exponential
map, that is

zj,i = expmc
pj
(vj,i) = expmc

pj
(PTc

0→pj
(v̂j,i)) = expmc

pj

( 2

λc
pj

v̂j,i

)

= pj⊕c

tanh(√|c|
λc
pj
∥ 2
λc
pj

v̂j,i∥

2
)

2
λc
pj

v̂j,i√
|c|∥ 2

λc
pj

v̂j,i∥

 = pj⊕c

[
tanh(

√
|c|∥v̂j,i∥)√

|c|∥v̂j,i∥
v̂j,i

]
= pj⊕c [bv̂j,i]

=
(1− 2c⟨pj , bv̂j,i⟩ − c∥bv̂j,i∥2)pj + (1 + c∥pj∥2)bv̂j,i

1− 2c⟨pj , bv̂j,i⟩+ c2∥pj∥2∥bv̂j,i∥2
,

(8)

where b =
tanh(

√
|c|∥v̂j,i∥)√

|c|∥v̂j,i∥
, and v̂j,i is a Gaussian vector in the tangent space at the origin,

v̂j,i ∼ N (µj ,Σj). Here, we consider that pj can be computed using the exponential map that
projects a Euclidean vector p̂j from the tangent space to the manifold, that is pj = expmc

0(p̂j) =
tanh(

√
|c|∥p̂j∥)√

|c|∥p̂j∥
p̂j . We denote a =

tanh(
√

|c|∥p̂j∥)√
|c|∥p̂j∥

and pj = ap̂j . We substitute pj = ap̂j into

Eq. (8) and have

zj,i =
(a− 2ca2b⟨p̂j , v̂j,i⟩ − cab2∥v̂j,i∥2)p̂j + (b+ ca2b∥p̂j∥2)v̂j,i

1− 2cab⟨p̂j , v̂j,i⟩+ c2a2b2∥v̂j,i∥2∥p̂j∥2
. (9)

We substitute Eq. (9) into Eq. (7) and have

L∞(W ) ≤ 1

n

n∑
j=1

log
( n∑

j′=1

Ei

[
exp

(
2(wj′ −wj)

⊤zj,i + (w⊤
j′wj′ −w⊤

j wj)
)] )

=
1

n

n∑
j=1

log

(
n∑

j′=1

Ei

[
exp

(
2(wj′ −wj)

⊤
( (a− 2ca2b⟨p̂j , v̂j,i⟩ − cab2∥v̂j,i∥2)p̂j + (b+ ca2b∥p̂j∥2)v̂j,i

1− 2cab⟨p̂j , v̂j,i⟩+ c2a2b2∥v̂j,i∥2∥p̂j∥2
)

+ (w⊤
j′wj′ −w⊤

j wj)
)])

=
1

n

n∑
j=1

log

(
n∑

j′=1

Ei

[
exp

(
(wj′ −wj)

⊤
( 2(a− 2ca2b⟨p̂j , v̂j,i⟩ − cab2∥v̂j,i∥2)
1− 2cab⟨p̂j , v̂j,i⟩+ c2a2b2∥v̂j,i∥2∥p̂j∥2

p̂j

+
2(b+ ca2b∥p̂j∥2)

1− 2cab⟨p̂j , v̂j,i⟩+ c2a2b2∥v̂j,i∥2∥p̂j∥2
v̂j,i

)
+ (w⊤

j′wj′ −w⊤
j wj)

)])
(10)

Since wj is the weight of the ground-truth class of zj,i, (wj′ − wj)
⊤p̂j < 0 and (wj′ −

wj)
⊤v̂j,i < 0 are usually satisfied. If we add some constrains to c, p̂j , and v̂j,i, such that

2(a−2ca2b⟨p̂j ,v̂j,i⟩−cab2∥v̂j,i∥2)

1−2cab⟨p̂j ,v̂j,i⟩+c2a2b2∥v̂j,i∥2∥p̂j∥2 > 1 and 2(b+ca2b∥p̂j∥
2)

1−2cab⟨p̂j ,v̂j,i⟩+c2a2b2∥v̂j,i∥2∥p̂j∥2 > 1, we can remove
the two terms and rewrite Eq. (10) as

L∞(W ) ≤ 1

n

n∑
j=1

log

(
n∑

j′=1

Ei

[
exp

(
(wj′ −wj)

⊤
( 2(a− 2ca2b⟨p̂j , v̂j,i⟩ − cab2∥v̂j,i∥2)
1− 2cab⟨p̂j , v̂j,i⟩+ c2a2b2∥v̂j,i∥2∥p̂j∥2

p̂j

+
2(b+ ca2b∥p̂j∥2)

1− 2cab⟨p̂j , v̂j,i⟩+ c2a2b2∥v̂j,i∥2∥p̂j∥2
v̂j,i

)
+ (w⊤

j′wj′ −w⊤
j wj)

)])

≤ 1

n

n∑
j=1

log

 n∑
j′=1

Ei

[
exp

(
(wj′ −wj)

⊤(p̂j + v̂j,i) + (w⊤
j′wj′ −w⊤

j wj)
)] .

(11)

3



Considering v̂j,i ∼ N (µj ,Σj), the term (wj′ −wj)
⊤(p̂j + v̂j,i) + (w⊤

j′wj′ −w⊤
j wj) in Eq. (11)

is a Gaussian vector as well,

(wj′ −wj)
⊤(p̂j + v̂j,i) + (w⊤

j′wj′ −w⊤
j wj)

∼N
(
(wj′ −wj)

⊤(p̂j + µj) + (w⊤
j′wj′ −w⊤

j wj), (wj′ −wj)
⊤Σj(wj′ −wj)

)
.

(12)

Based on the moment-generating function, E[exp(x)] = exp(µ + 1
2Σ), x ∼ N (µ,Σ), we can

rewrite Eq. (11) as

L∞(W ) ≤ 1

n

n∑
j=1

log

 n∑
j′=1

Ei

[
exp

(
(wj′ −wj)

⊤(p̂j + v̂j,i) + (w⊤
j′wj′ −w⊤

j wj)
)]

=
1

n

n∑
j=1

log

 n∑
j′=1

exp
(
(wj′ −wj)

⊤(p̂j + µj) + (w⊤
j′wj′ −w⊤

j wj) +
1

2
(wj′ −wj)

⊤Σj(wj′ −wj)
)

=
1

n

n∑
j=1

− log
exp

(
wj(p̂j + µj)

)
exp

(
wj′(p̂j + µj) + (w⊤

j′wj′ −w⊤
j wj) +

1
2 (wj′ −wj)⊤Σj(wj′ −wj)

)
= L∞(W ).

(13)

Assumption. In this derivation, we have two assumptions, that is, (1) ∥zj,i − wj∥2 <

∥zj,i − wj′∥2 <

√
1+|c|−

√
|c|√

|c|
in Eq. (7), and (2) 2(a−2ca2b⟨p̂j ,v̂j,i⟩−cab2∥v̂j,i∥2)

1−2cab⟨p̂j ,v̂j,i⟩+c2a2b2∥v̂j,i∥2∥p̂j∥2 > 1 and

2(b+ca2b∥p̂j∥
2)

1−2cab⟨p̂j ,v̂j,i⟩+c2a2b2∥v̂j,i∥2∥p̂j∥2 > 1 in Eq. (11).

For the assumption (1), we initialize the weight of the classifier as wj = pj to help ∥zj,i −wj∥2 <

∥zj,i −wj′∥2. zj,i is obtained by zj,i =
(a−2ca2b⟨p̂j ,v̂j,i⟩−cab2∥v̂j,i∥2)p̂j+(b+ca2b∥p̂j∥

2)v̂j,i

1−2cab⟨p̂j ,v̂j,i⟩+c2a2b2∥v̂j,i∥2∥p̂j∥2 , and wj

is obtained by wj =
tanh(

√
|c|∥p̂j∥)√

|c|∥p̂j∥
p̂j = ap̂j . ∥zj,i −wj′∥2 <

√
1+|c|−

√
|c|√

|c|
can be achieved by

enforcing
∥zj,i∥2 <

(
(a− 2ca2b⟨p̂j , v̂j,i⟩ − cab2∥v̂j,i∥2)∥p̂j∥+ (b+ ca2b∥p̂j∥2)∥v̂j,i∥

1− 2cab⟨p̂j , v̂j,i⟩+ c2a2b2∥v̂j,i∥2∥p̂j∥2

)2

<

√
1 + |c| −

√
|c|

4
√

|c|

∥wj∥2 = a2∥p̂j∥2 <

√
1 + |c| −

√
|c|

4
√
|c|

.

(14)
When we enforce ∥p̂j∥ < 0.25 and ∥µj∥ < 0.25, and curvature is generated in the range of [−0.5, 0],
Eq. (14) can be satisfied. Meanwhile, the constraints of p̂j , µj , and c make

√
|c|∥p̂j∥ < 0.2,√

|c|∥v̂j,i∥ < 0.2, a > 0.98, and b > 0.98, through which the assumption (2) is also satisfied, i.e.,
2(a−2ca2b⟨p̂j ,v̂j,i⟩−cab2∥v̂j,i∥2)

1−2cab⟨p̂j ,v̂j,i⟩+c2a2b2∥v̂j,i∥2∥p̂j∥2 > 1, and 2(b+ca2b∥p̂j∥
2)

1−2cab⟨p̂j ,v̂j,i⟩+c2a2b2∥v̂j,i∥2∥p̂j∥2 > 1.

3 Experimental Details

3.1 Few-shot Learning

Dataset. We conduct experiments on four popular datasets, namely mini-ImageNet [1], tiered-
ImageNet [2], CUB [3], and CIFAR-FS dataset [4]. The mini-ImageNet dataset contains 100 classes
from the ImageNet dataset, and each class has 600 images. We split the 100 classes into 64, 16, and
20 classes for training, validation, and testing, respectively. The tiered-ImageNet dataset has 779165
images from 608 classes totally, where 351, 97, and 160 classes are used for training, validation,
and testing, respectively. The CUB dataset is a fine-grained image dataset that contains 200 bird
classes and 11788 images totally. Following the protocol of [5], we utilize 100, 50, and 50 classes
for training, validation, and testing, respectively. We crop bird regions from images with the given
bounding boxes before training. CIFAR-FS is a few-shot learning dataset derived from CIFAR-100.
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Figure 1: The overview of the proposed HFA method in the continual learning task.

It contains 100 classes, where 64, 16, and 20 classes are used for training, validation, and testing,
respectively. Each class has 600 images. When the ResNet12 backbone is used, the image size for the
mini-ImageNet, tiered-ImageNet, and CUB datasets is 84× 84, and the image size for the CIFAR-FS
dataset is 32 × 32. When the ResNet18 backbone is used, the image size for the mini-ImageNet,
tiered-ImageNet, CUB, and CIFAR-FS datasets is 224× 224.

Model details. We regard features from the backbones are located in the tangent space of the
hyperbolic space at the origin. We add an exponential map on the top of the backbone to project
features from the tangent space to the hyperbolic space. The two backbones are pre-trained on the
training set, using the cross-entropy loss. Then, the two backbones are fixed in our meta-learning
process.

Hyperaparameter. In the pre-training stage, we train the two backbones over 120 epochs with the
SGD optimizer. We set the learning rate was as 0.01 in the pre-training stage, decay the learning
rate per 40 epochs, and the decay rate is set as 0.1. We remove the last fully-connected layer and
the softmax layer of the pre-trained model, and the rest layers are used in our feature extractor. In
the meta-learning stage, we train the three gradient flow networks over 4000 episodes. We use the
Adam optimizer in the meta-training stage, where the learning rate is 0.001. We decay the learning
rate per 2000 episodes in the meta-training stage, and the decay rate is 0.1. We set the weight decay
as 0.0005 for the feature extractor.

In the few-shot learning experiment, the ratio of Dt to Dv follows the standard protocol. In the 1-shot
setting, the ratio is 1 : 15, that is, we sample one sample as the training data and 15 samples as the
validation data in each task. In the 5-shot setting, the ratio is 1 : 3, that is, we sample 5 sample as the
training data and 15 samples as the validation data in each task.

The initial value of the curvature c is set as 0.

3.2 Continual Learning

Dataset. We use the CIFAR-100 dataset with 100 classes for the continual learning task, where the
image size is 32× 32. We evaluate HFA on two settings: 50 + 5× 10 and 50 + 10× 5. For example,
50 + 5× 10 means that the first task contains 50 classes, and there are 10 following tasks with each
one having 5 classes.
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Model details. The overview of HFA in the continual learning task is shown in Figure 1. Our model
contains four modules: a hyperbolic feature extractor f(·), a hyperbolic classifier C(·) using the
hyperbolic distance, a memory module, and a hyperbolic feature augmentation algorithm with three
gradient flow networks F1, F2, and F3. In the continual learning task, we apply ResNet18 as the
feature extractor. Similar to the few-shot learning task, we regard features extracted from ResNet18
are located in the tangent space at the origin. We then use an exponential map to project features to the
hyperbolic space. The hyperbolic classifier is a distance-based classifier. For the memory module, we
save 20 samples for each class, following existing reply-based continual learning methods [6, 7, 8].

Training details. In continual learning, sequence of the t+1 task are given with data D0, D1, · · · , Dt.
The training process of HFA in continual learning has three stages.

(1) In the first stage, the first task is given with data D0. We use D0 to train the hyperbolic feature
extractor f(·) and the hyperbolic classifier C(·), using the cross-entropy loss,

L0
c = EI0∈D0

− n∑
j=1

1y=j log
exp

(
C(f(I0))

)∑n
j′=1 exp

(
C(f(I0))

)
 . (15)

where I0 ∈ D0 is the image belonging to the first task, and y is its label.

(2) Based on the trained hyperbolic feature extractor, we train the three gradient flow networks via
meta-learning with a bi-level optimization process. In each inner-loop, D0 is regard as the base data,
and we randomly sample several data from D0 as the training data D0

t , and randomly select some
data from D0 as the validation data D0

v. We initialize the classifier as the mean of D0
t , and update

it by the derived upper bound L∞ of the augmentation loss. In the outer-loop, we update the three
gradient flow networks by minimizing the classification loss of the update classifier on the validation
data D0

v .

(3) In the third stage, we train the model in the following 1 − t tasks. We train the hyperbolic
feature extractor and the hyperbolic classifier by minimizing the classification loss Lc on data of the
current task, a distillation loss Ld on data of the current task, and the derived upper bound L∞ of the
augmentation loss on data of previous tasks stored in the memory module. The classification loss is
given by

Lc = EIt∈Dt

− n∑
j=1

1y=j log
exp

(
C(f(It))

)∑n
j′=1 exp

(
C(f(It))

)
 . (16)

Note that, the distillation loss is defined in the hyperbolic space. We denote the feature extractor of
the previous task as f ′(·), the current feature extractor as f(·), and the memory module as B. The
distillation loss is

Ld = EI∈B[d
c(f ′(I), f(I))]. (17)

In summary, the loss function in the third stage is given by,

J = Lc + α1L∞ + α2Ld, (18)

where α1 and α2 are the trade-off parameters. The whole training process of continual learning is
summarized in Algorithm 1.

Hyperparameter. We use the SGD optimizer in the three training stage. We train the model over 100
epochs in the first stage, 100 epoch in the second stage, and 5 epochs in the third stage. The learning
rate is 0.001 in the first stage, 0.01 in the second stage, and 0.0003 in the third stage. The weight
decay for the backbone is 0.0005. We save 20 samples for each class in the memory module. In the
second stage, we sample 32 samples as the training data, and 32 samples as the validation data. In the
third stage, we sample 5 samples for each class in the memory module to estimate the distribution.
We set α1 = 10 and α2 = 10 in the third stage.

In the continual learning task, the ratio of Dt to Dv is 1 : 1.

The initial value of the curvature c is set as 0.
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Algorithm 1 Our training process in continual learning.

Input: Sequence of tasks with data D0, D1, · · · , Dt.
Output: A model for continual learning, which has a hyperbolic feature extractor f(·), a hyperbolic

classifier C(·), and three gradient flow networks F1, F2, and F3.
1: while not converged do
2: We train the f(·) and C(·) by minimizing the classification loss in Eq. (15) on D0.
3: end while
4: while not converged do
5: Randomly select few training data D0

t from D0, and randomly select some data from D0 as
the validation data D0

v .
6: Estimate the distribution for each class in D0

t by using F1, F2, and F3.
7: while not converged do
8: Train the hyperbolic classifier C(·) using the estimated distribution by minimizing L.
9: end while

10: Update F1, F2, and F3 by minimizing the classification loss of the updated classifier using the
validation data D0

v .
11: end while
12: Randomly select data from D0 and store them in B.
13: for s = 1 to t do
14: while not converged do
15: We train the f(·) and C(·) by minimizing the loss function in Eq. (18) on Ds.
16: end while
17: Randomly select data from Ds and store them in B
18: end for

3.3 Reverse mapping algorithm

Inspired by the work [9], we utilize a reverse mapping algorithm to convert augmented features to
images. The overview of the reverse mapping algorithm is shown in Figure 2.

This algorithm has two networks: a pre-trained image generator G to generate fake images, and a
pre-trained feature extractor network f to extract hyperbolic features of images. In our experiments,
we visualize images for the mini-ImageNet dataset, and thus we utilize the image generator from
the work [10] as G, which is pre-trained on ImageNet, and we pre-train f on the mini-ImageNet
dataset. We use z ∈ Rd to denote a random noize vector, and use I to denote a real image from the
mini-ImageNet dataset. The reverse mapping algorithm has three steps.

(1) We feed z into G to generate a fake image G(z). Then, we feed G(z) and the real image I into f
to extract their hyperbolic features f(G(z)) and f(I), respectively. Here, we update the noize z to
find its optimal value that corresponds to the real image I by minimizing the following loss function,

z∗ = argmin
z

dc
(
f(I)− f(G(z))

)
+ α∥I − G(z)∥2, (19)

where α is the trade-off hyparameter, and we obtain the optimal value z∗.

(2) We perform our augmentation algorithm on f(I) and obtain the augmented feature f̂(I). We
initialize a new vector z = z∗, and update z to find the optimal value that corresponds to the
augmented feature f̂(I) by minimizing the following loss function,

z∗′
= argmin

z
dc
(
f(G(z)), f̂(I)

)
. (20)

After the optimization, we obtain z∗′
.

(3) We generate images that corresponds to the augmented feature f̂(I) by

Î = G(z∗′
). (21)

3.4 Experimental configuration

We use an Inter(R) Core(TM) i9-10900X 3.7GHz CPU, a GeForce RTX 3090 GPU, and 128GB
RAM to conduct experiments. We use CUDA 11.3, Python 3.6, and Pytorch 1.10.
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Figure 2: The overview of the reverse mapping algorithm.

3.5 Analysis of the Bi-level Optimization

In the bi-level optimization process, hyper-parameters include the learning rate in the two loops, the
choice of the optimizer in the two loops, and the number of iterative steps in the two loops. The
inner-loop optimization plays an important role in efficiently solving the bi-level optimization. An
advanced optimizer and a large number of iteration steps in the inner-loop may lead to a good inner-
loop solution, benefiting the outer-loop solution. However, this may increase resource consumption
and cause instabilities in the gradient (exploding gradient issue). Using a simpler optimizer and a
small number of iteration steps can reduce the resource consumption, but it may lead to a biased
solution of the inner-loop, resulting in poor performance.

In the implementation, we recommend using a simple gradient descent optimizer in the inner loop
to reduce computational complexity, and using the Adam optimizer in the outer-loop to reduce the
bias of optimization. As for the number of iterative steps, we empirically observe that changing the
number of iterations of the inner loop in the range [5, 20] does not deteriorate the performance, and
setting the number of iterations in the outer-loop larger than 1000 make the model converge. In terms
of learning rates of the two loops, we change them in the range [0.001, 0.0001], and all get good
performance. This shows the robustness of our method to hyper-parameters if they are chosen within
a suitable interval.

4 Extra Experimental Results

4.1 Loss Curves

We draw a loss curve in the few-shot learning task to show the overfitting problem when limited data
is given. We use the mini-ImageNet dataset, and experiments are conducted on the 5-shot 5-way
task. We first draw the loss curves of ‘not augmentation’, where the hyperbolic model is trained by
using the original given data, and the training and test losses are denoted by ‘Original Train’ and
‘Original Test’. Then, we draw the loss curves of using infinite augmentation via the derived upper
bound, where the training and test losses are denoted by ‘Ours Train’ and ‘Ours Test’. Here, we draw
the curves in 5 optimization steps. Results are shown in Figure 3. The loss curves are the mean of
losses over 1000 tasks. We have the following two conclusions. (1) Using the limited data to train
a hyperbolic model actually results in the overfitting problem. After the 5 optimization steps, the
training loss is about 1.43, while the test loss is about 1.56. (2) Our method solves the overfitting
problem by data augmentation. After 5 optimization steps, our training loss is about 1.37, and our
test loss is about 1.39.

4.2 Graph Node Classification

We add an experiment on the graph node classification task using the DISEASE [11], CORA [12],
and PUBMED [13] datasets. Concretely, we use HGCN [14] as the baseline. We add HFA between
the graph convolutional network and the node classifier, and perform augmentation for node features.
We train the gradient flow networks to estimate data distributions of node features, and use augmented
features to train the node classifier. We report the average F1-score (%) with the standard deviation
on 10 random experiments. Results are shown in Table 1. This experiment shows that our method
leads to improvements for graph data as well. For example, on the DISEASE dataset, the F1 score of
HGCN is 74.5%. In contrast, HGCN+HFA achieves 78.0%, 3.5% higher than HGCN.
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Figure 3: Loss curves of using original data and our infinite augmented data in the mini-ImageNet
dataset. For the original data, 5 images are given in each class.

Table 1: Node Classification Results.
Method DISEASE CORA PUBMED

HGCN [14] 74.5± 0.9 79.9± 0.6 80.3± 0.3
HGCN + HFA 78.0± 0.7 81.1± 0.7 81.5± 0.2

4.3 Evaluation of Estimated Distribution

We conduct a toy experiment to evaluate the capability of neural ODE, where we train a neural
ODE module to estimate Gaussian distributions in the Euclidean space. We randomly generate some
vectors and matrices as the means and covariance matrices of Gaussian distributions, and sample
few data from these distributions to simulate the setting of low data regime. Then, the neural ODE
is trained to estimate the means and covariance matrices based on the sampled data. Concretely,
we generate 5 samples from each distribution and use the MSE loss to train the neural ODE. We
compare the neural ODE with directly computing mean and covariance matrices from given data,
where the framework is presented in Figure 4. Results are evaluated over 1000 distributions, as shown
in Table 2. Using the neural-ODE module leads to a more precise distribution estimation in the low
data regime. For estimating the mean, the error of using neural ODE is 2.96× 104 that is one percent
of the error of directly computing. For estimating the covariance matrix, the error of using neural
ODE is 5.23× 102, far less than the error of direct computing, which is 2.83× 1011.

We further conduct an experiment to demonstrate this point. We randomly generate some hyperbolic
wrapped normal distributions, and sample few data from them (samples from each distribution),
where the label of a sample is set by its corresponding distribution. Then we train the gradient flow
networks via the bi-level optimization. Finally, we use the gradient flow networks to recover unseen
hyperbolic wrapped normal distributions. Results are shown in Table 3. Results are that the MSE

Randomly generated 
Gaussian distributions

Sample Neural ODE

Covariance 
matrix

MeanMean

Estimated Gaussian 
distributions

Neural ODE

Neural ODE

Sample

Sample

Covariance 
matrix

Mean

MSE loss

(a) Evaluating our neural ODE module.

Randomly generated 
Gaussian distributions

Sample
Directly 

Computing

Covariance 
matrix

MeanMean

Estimated Gaussian 
distributions

Sample

Sample

Covariance 
matrix

Mean

MSE loss

Directly 
Computing

Directly 
Computing

(b) Evaluating directly computing.

Figure 4: Framework of a toy experiment for evaluation of estimated distributions.
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Table 2: MSE between the estimated distribution and ground truth over 1000 Gaussian distributions.
Method Loss of Mean Loss of Covariance

Directly computing 2.41× 106 2.83× 1011

Neural ODE 2.96× 104 5.23× 102

Table 3: MSE between the estimated distribution and ground truth over 1000 hyperbolic wrapped
normal distributions.

Method Loss of Mean Loss of Covariance Loss of Curvature
Directly computing 9.08× 103 5.12×5 9.05

Neural ODE 41.69 5.17× 103 0.42

errors of directly computing distribution parameters from given data are 9.08 × 103, 5.12×5, and
9.05 for the mean, covariance matrix, and curvature, respectively. In contrast, the MSE errors of
using the trained gradient flow networks are 41.69, 5.17× 103, and 0.42 for the mean, covariance
matrix, and curvature, respectively. These results show that the trained gradient flow networks are
capable of generalizing to unseen data in the scarce data setting.

4.4 Efficiency

In this section, we conduct an ablation experiment in the few-shot learning task to show the efficiency
of the derived upper bound of the original augmentation loss. We evaluate the wall-clock time of
training the hyperbolic classifier using the derived upper bound with implicitly augmented features
and the original augmentation loss with explicitly augmented features. Results are shown in Table 4,
where L∞ means using the upper bound. L,m = 5 means using the original augmentation loss
to train the classifier, and 5 features are generated for each class. The time is evaluated over 1000
1-shot 5-way and 1000 5-shot 5-way tasks. The derived upper bound significantly reduces the
time consumption of augmentation and leads to better performance, making an efficient hyperbolic
augmentation algorithm. This is because it does not need to explicitly generate features, and avoid
complex hyperbolic operations.

Table 4: Time (seconds) and accuracy (%) of feature augmentation on the mini-ImageNet dataset.
Method 1-shot time 1-shot time 1-shot accuracy 1-shot time
L,m = 5 85 86 65.54± 0.46 80.96± 0.31
L,m = 10 98 101 65.60± 0.44 81.11± 0.20
L,m = 20 103 110 65.75± 0.44 81.20± 0.31
L,m = 50 111 114 65.95± 0.46 81.29± 0.30

L∞ 28 36 66.87± 0.44 82.08± 0.31

4.5 More Visualization Results

4.5.1 Distribution Visualization

We draw the estimated distribution in the mini-ImageNet dataset by sampling augmented features,
where the MDS and t-SNE dimensionality reduction methods are used. Results are shown in
Figure 5, 6, 7, 8, 9, 10, 11, 12, 13, 14. From the figures, we have two conclusions. (1) By generating
more features, our model has larger inter-class distances and smaller intra-class distances. (2) When
training data is biased, our method well approximates the real distribution, helping building a robust
decision boundary.

4.5.2 Corresponding Images of Generated Features

We search images corresponding to the augmented features by the reverse mapping algorithm. Results
are shown in Figure 15, 16, 17, 18, 19, 20, 21, 22, 23, 24. We can conclude that the generated features
have much diversities. For example, in Figure 23, generated images of dogs have different postures
and backgrounds.
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Figure 5: An example of feature distributions of one few-shot task.
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Figure 6: An example of feature distributions of one few-shot task.
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Figure 7: An example of feature distributions of one few-shot task.
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Figure 8: An example of feature distributions of one few-shot task.
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Figure 9: An example of feature distributions of one few-shot task.
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Figure 10: An example of feature distributions of one few-shot task.
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Figure 11: An example of feature distributions of one few-shot task.
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Figure 12: An example of feature distributions of one few-shot task.
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Figure 13: An example of feature distributions of one few-shot task.
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Figure 14: An example of feature distributions of one few-shot task.
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Figure 15: Given data and augmented data in the linnet class.
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Figure 16: Given data and augmented data in the dugong class.
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Figure 17: Given data and augmented data in the white fox class.
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Figure 18: Given data and augmented data in the triceratops class.
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Figure 19: Given data and augmented data in the green mamba class.
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Figure 20: Given data and augmented data in the harvestman class.
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Figure 21: Given data and augmented data in the toucan class.
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Figure 22: Given data and augmented data in the goose class.
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Figure 23: Given data and augmented data in the king crab class.
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Figure 24: Given data and augmented data in the golden retriever class.
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