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The structure of this supplementary material can be summarized
as follows. Section A provides more implementation details. Sec-
tion B discusses the comparison with Animation methods. Section C
presents more explanation and results on the user studies. Section D
discusses the limitations and future work of our Tunnel Try-on.
Moreover, more comprehensive visualization results are displayed
in Section E. Note that all figures in the main text and appendices
have corresponding videos in the supplementary materials.

A IMPLEMENTATION DETAILS

A.1 Focus Tunnel Extraction

We designed a tunnel extraction rule based on the pose map to
ensure stable and accurate extraction of regions centered around the
person while covering the areas requiring try-on. Specifically, we
first used the pose map extracted by DW-Pose [6]. Then, depending
on the reference clothing type (upper or lower), we calculated the
minimum bounding box and expanded it outwardly. For the upper
clothing try-on, we computed the minimum bounding box of the
upper body in the pose map as the initial box. Then, we extended
the bottom boundary of the box to the knee position and the top
boundary by the height distance from the shoulders to the head. For
the lower clothing try-on, we calculated the minimum bounding
box of the lower body in the pose map as the initial box. Then, we
extended the top boundary of the box to the upper third point from
the shoulder to the hip and expanded the bottom boundary by 0.25
times the height. If the relevant points do not exist in the pose map,
the top and bottom boundaries of the box are uniformly expanded
by 0.25 times the height. Then, we adjusted the width to be equal to
the new height. For areas beyond the image, we performed padding
operations.

A.2 Focus Tunnel Smoothing

The tunnel obtained through focus tunnel extraction may introduce
unexpected jitter due to errors in the bounding box prediction
and errors introduced during the outward expansion process. To
address this issue, we propose the focus tunnel smoothing strategy
to eliminate these jitters and achieve a smoother, more stable tunnel.
Specifically, we first smooth the tunnel using a Kalman filter, as
shown in Algorithm 1. Then, we add a low-pass filter in Algorithm 2
to filter outliers. The visualized curves of the center coordinates and
the size of the focus tunnel before and after filtering can be seen
in figure 1. Evidently, after filtering, the jitter in the focus tunnel
disappears, and the transition in the tunnel becomes smoother.

B COMPARISON WITH ANIMATION

Image Animation enables images to move according to a specified
pose sequence, simulating effects similar to real videos. Integrating
image visual try-on methods and image animation methods may
lead to a solution method for video visual try-on.

Algorithm 1: Kalman Filter.
Input: Raw box coordinate x, number of the tunnel boxes N.

Result: Smoothed box coordinate x.
1 Initialize Py = x1,%¢ = x1,Q = 0.001, R = 0.0015,¢ = 1.

2 repeat
3 Project the state ahead %, = %;-1.
4 Project the error covariance ahead P, = Pr—1 + Q.

5 Compute the Kalman Gain K; = P (P; + R)~!
6 Update the estimate X; = X; + K (x; — X, )
7 Update the error covariance Py = P; (1 - K1
8 te—t+1.
o until t > N;

Output: X

Algorithm 2: Low-pass Filter.

Input: The smoothed box coordinate of Kalman Filter X,
number of the tunnel boxes N filter window size L.
Result: Final box coordinate y.
1 Initialize filter window W = %Xq.1,i = 1,r = 0.1.

2 repeat

3 j=1, Wp = x;.

4 repeat

5 Wis1 = Wipr xr+Wj* (1-7).
6 je—j+1.

7 until j > L;

8 yi=WL.

9 i—i+1.

10 until i > N;
Output: y

To implement this integration, we utilize the initial frames gen-
erated by our model as input and feed them into the popular image
animation framework Magic Animate [5]. The resulting generated
video is depicted in figure 2.

It can be observed that directly integrating animation meth-
ods with image try-on methods to generate video try-on results
presents at least two notable shortcomings. Firstly, animation can
only generate static backgrounds due to the lack of background
information from the original video. However, in practical applica-
tions, the movement of individuals and camera angles, or non-static
backgrounds, can lead to continuous changes in the background.
In such cases, the fusion of the animated video try-on results with
the background appears rigid. Secondly, since the temporal control
conditions are solely based on the pose sequence, animation meth-
ods struggle to produce high-fidelity try-on results when there are
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— original_x — original_y.
— Kalman-+lowpass_x — ialman-+lowpass._y

— original_h
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5746, — original w i
—— Kalman+lowpass_w

Figure 1: The effect of focus tunnel smoothing. The horizon-
tal axis represents the frame index, and the vertical axis rep-
resents the corresponding values. It can be observed that the
orange curve (after smoothing) exhibits less jitter compared
to the blue curve (before smoothing), resulting in smoother
transitions.

Figure 2: Results of Magic Animate. The animation method
cannot handle changing backgrounds (third row), and the
fidelity of the generated try-on videos is very low (all rows).

significant movements in the individual or variations in perspec-
tive. These limitations severely restrict the direct application of
animation methods to real-world video try-on scenarios.
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C USER STUDY

This section provides a detailed introduction to the criteria used in
the user study conducted in the main text. Specifically, "Quality”
denotes the image quality, encompassing aspects like artifacts, noise
levels, and distortion. "Fidelity" measures the ability to preserve
details compared to the reference clothing image. "Smoothness"
evaluates the temporal consistency of the generated videos.

In figure 3, we present a typical example from the user study.
While showing some continuity, FW-GAN [2] lags significantly
behind other methods in generation quality and fidelity. PBAFN [3]
accurately warps reference clothing only in close-up shots of the
person, achieving satisfactory try-on effects, but it exhibits notable
warping errors in other scenarios. AnyDoor [1] struggles to gener-
ate detailed clothing items such as letter logos. Stable VITON [4]
generally demonstrates better generation quality and fidelity than
the aforementioned methods. However, AnyDoor and Stable VI-
TON still exhibit significant variations in generated results between
frames, even under fixed random seed conditions, resulting in no-
ticeable temporal inconsistencies. In contrast, our method maintains
consistent, high-quality try-on results during person movements,
showcasing significantly superior generation quality, fidelity, and
smoothness compared to other methods.

D LIMITATIONS AND FUTURE WORK

Our Tunnel Try-on relies on accurate parsing to refine fine-grained
inpainting masks required by the generation model. When parsing
model segmentation results are erroneous, it may lead to leaks,
resulting in generation failure. Therefore, we believe that accurate
parsing results or mask generation methods with less reliance on
parsing can further enhance the performance of our method.

E MORE QUALITATIVE RESULTS

We provide additional qualitative results demonstrating the high
spatio-temporal consistency of our Tunnel Try-on. Figures 4, 5,
and 6 showcase more try-on results involving various types of
video motions. Additionally, Figures 7 and 8 present extra try-on
results featuring various types of reference clothing on our collected
dataset.
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(b) FW-GAN

(c) PBAFN
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(a) Input

Figure 3:

Figure 4:
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More examples of person movements varying in distance from the camera.

(f) Ours

Synthetic Video

More examples of person movements varying in distance from the camera.
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Input Video

Input Video

Reference
Cloth

Figure 5: More examples of person movements parallel to the camera.

Reference
Cloth

Synthetic Video

Synthetic Video

Figure 6: More examples of camera movements.
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Figure 7: Extra results of bottoms try-on.
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Figure 8: Extra results of tops try-on.
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