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A Additional Results1

Metrics: In order to measure the realism of our traffic models, we use a set of metrics which2

evaluate both the traffic models’ ability to match human demonstration data in the nominal scenarios3

and avoid infractions in both nominal and simulated long-tail scenarios.4

• Reconstruction: In nominal scenarios where expert demonstrations exist, we consider a set of5

metrics which evaluate how close a traffic model’s simulation is to the real world conditioned6

on the same initial condition. We measure the final displacement error (FDE) [1], defined as7

the L2 distance between an agent’s position in a simulated scenario vs the ground truth scenario8

after 5s. We also measure the along-track error (ATE) and cross-track error (CTE) of an agent’s9

simulated position projected onto the ground truth trajectory. This decomposition disentangles10

speed variability and lateral deviations respectively.11

• Distributional: While reconstruction metrics compare pairs of real and simulated logs, we can12

compute distributional similarity metrics as an additional method to gauge realism. We compute13

the Jensen-Shannon Divergence (JSD) [2] between histograms of scenario features to compute14

their distributional similarity. Features include agent kinematics like acceleration and speed, pair-15

wise agent interactions like distance to lead vehicle, and map interactions like lateral deviation16

from lane centerline.17

• Infraction Rate: Finally, we measure the rate of traffic infractions made by agents controlled by a18

traffic model. Similar to prior work [3], we measure percentage of agents that end up in collision19

or drive off-road. As this metric does not require ground truth scenarios for pairing or computing20

statistics, it can be used in simulated long-tail scenarios that do not have ground truth.21

Comparison to state-of-the-art: In our main paper, we presented select results from our com-22

parison to state-of-the-art traffic models on both nominal and long-tail scenarios. Here, we include23

additional tradeoff plots for all metrics in Figure 1. We also include a table of detailed metrics for all24

methods in Table 1. Building on our observations in the main paper, we see that RTR outperforms25

and expands the existing Pareto frontier on all metrics and scenario sets. IL methods achieve strong26

reconstruction/distributional realism metrics but suffer from high infraction rates, while RL meth-27

ods attain the opposite. RTR achieves the best of both worlds—a testament to its ability to learn28

human-like driving while avoiding unrealistic traffic infractions.29

Long-Tail Scenarios: In our main paper, we evaluated our approach of using procedurally gener-30

ated long-tail scenarios against the alternative of mining hard scenarios from data. Here, we include31

additional tradeoff plots for all metrics in Figure 2, with the detailed metrics in Table 2. We see that32

training on both nominal and long-tail scenarios outperforms the alternatives in most cases.33

Distributional Realism: In Figure 3, we include additional plots showing the histograms used34

to compute JSD distributional realism metrics on the nominal scenario set. We can see that RL35
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Figure 1: Additional plots comparing infraction / realism tradeoff of RTR compared to baseline
models. We see that RTR outperforms and expands the existing Pareto frontier for all metrics.

Infraction (%) Reconstruction (m) JSD (nats) LT-Inf. (%)
Method Col. Off Rd. FDE ATE CTE Acc. Speed Lat. D. Ld. D. Col.

BC 22.13 58.68 4.50 3.60 1.84 0.34 0.54 0.14 0.20 17.00
IL 0.89 2.48 4.98 4.75 0.66 0.15 0.23 0.14 0.07 12.13
RL 0.23 0.20 56.92 56.91 0.75 0.60 0.46 0.54 0.12 4.26
RL-Shaped 1.50 1.01 21.29 21.17 0.97 0.43 0.43 0.48 0.13 6.95
BC+RL 3.08 1.88 47.30 47.26 1.05 0.62 0.53 0.49 0.15 4.46
RTR 0.38 0.20 5.16 4.97 0.61 0.16 0.33 0.14 0.07 3.61

Table 1: Detailed breakdown of metrics. Metrics on the left (resp. right) are computed on nominal
scenarios (resp. long-tail scenarios). IL methods achieve strong reconstruction/distributional realism
metrics but suffer from high infraction rates, while RL methods attain the opposite. RTR achieves
the best of both worlds, with high reconstruction/distributional realism and low infraction rates.

methods (RL, RL-Shaped, and BC + RL) struggle to capture human-like driving, particularly in36

speed and acceleration JSD where the RL methods tend to brake more often than humans. BC37

exhibits slightly better results overall, but it has worse map interaction reasoning due to distribution38

shift from compounding errors. In contrast, RTR captures human-like driving significantly better,39

closely matching IL in distributional realism while also improving on its infraction rate as seen in40

other results.41

Qualitative Results: We include qualitative results comparing RTR against the baselines Fig-42

ures 4, 5, 6, and 7. Across fork, merge, and long-tail scenarios, we see that RTR exhibits the greatest43

realism of the competing methods.44

B Learning45

B.1 Loss Derivation46

In this section, we will provide more details on the loss derivation using the Lagrangian. Recall that47

we begin with the following optimization problem48

argmin
π

DKL
(
Pπ(τ) ‖ PE(τ)

)
s.t. EPπ [R(τ)] ≥ 0

(1)
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Figure 2: Additional plots showing the tradeoff between infraction rate on the long-tail set and other
realism metrics on the nominal set, for models trained on different scenario sets. We see that for
most metrics, training on both nominal and long-tail scenarios obtain the best tradeoff.

Infraction (%) Reconstruction (m) JSD (nats) LT-Inf. (%)
Training Scenarios Col. Off Rd. FDE ATE CTE Acc. Speed Lat. D Ld. D. Col.

Nominal 0.38 0.49 5.05 4.86 0.65 0.14 0.14 0.33 0.07 9.60
Curated 0.45 0.14 5.34 5.11 0.76 0.15 0.14 0.29 0.08 9.42
Long-tail 0.58 0.48 6.26 6.10 0.56 0.16 0.14 0.25 0.07 4.00
Nom. + Cur 0.38 0.30 5.27 5.06 0.67 0.15 0.14 0.34 0.08 9.04
Nom. + LT (ours) 0.38 0.20 5.16 4.97 0.61 0.16 0.14 0.33 0.07 3.61

Table 2: Detailed breakdown of realism and infraction metrics for training on different scenario sets.

We form the Lagrangian of the optimization problem49

L(π, λ) = DKL
(
Pπ(τ) ‖ PE(τ)

)
+ λEPπ [R(τ)] (2)

= EPπ
[
log

Pπ(τ)

PE(τ)
− λR(τ)

]
(3)

= EPπ
[
− logPE(τ)− λR(τ)

]
−H(π) (4)

where λ is a Lagrangian multiplier and50

H(π) = −EPπ [logPπ(τ)] (5)

= −EPπ
[
ρ0(s0)

T−1∑
t=0

log π(at|st)

]
(6)

under deterministic dynamics is the causal entropy [4]. Using the Lagragian, the optimization prob-51

lem is converted to an unconstrained problem52

π? = argmin
π

max
λ
L(π, λ) (7)

Equation 7 can be optimized in a number of ways, such as iteratively solving the inner maximization53

over λ and outer minimization over π. We take a simplified approximate approach where we simply54

set λfixed ≥ 0 as a hyperparameter, leading to what is ultimately a relaxed constraint or penalty55

method.56

π∗ ≈ argmin
π

EPπ
[
− logPE(τ)− λfixedR(τ)

]
−H(π) (8)

The causal entropy term is included as an entropy regularization term in some learning algorithms57

such as PPO [5]. In practice, we found that it was not necessary to include.58

59
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B.2 Imitation Learning Loss60

Recall that the imitation learning component of the loss is given as61

LIL = EτE∼D
[
Eτ∼Pπ(·|sE0 )

[
D(τE , τ)

]]
(9)

= E(sE0 ,...,s
E
T )∼D

[
T∑
t=1

d(sEt , s̃t)

]
(10)

where62

ãt ∼ π(a|s̃t) (11)
s̃t+1 = s̃t + f(s̃t, ãt)dt (12)

Because the dynamics function f as described in Section B.7 is differentiable, Equation 10 com-63

pletely differentiable using the reparameterization trick [6] when sampling from the policy. To64

compute the inner expectation in Equation 9, we simply sample a single rollout. In practice, we65

found that directly using the mean without sampling is also sufficient.66

B.3 Reward Function67

Sparse reward: Recall that we use the following reward function68

R(i)(s, a(i)) =

{
−1 if an infraction occurs
0 otherwise.

(13)

In our experiments, we consider collisions events and driving off-road as infractions. Collisions are69

computed by checking for overlap between the bounding boxes of agents. Off-road is computed70

by checking if an agent’s bounding box still intersects with the road polygon. Note that when71

optimizing the reward, we apply early termination of the scenario in the event of an infraction.72

Shaped reward: For the RL-Shaped baseline, use the same reward in Equation 13 with an addi-73

tional term which encourages driving at the speed limit.74

R
(i)
shaped(s, a

(i)) = R(i)(s, a(i)) + 0.5(C − δ)/C (14)

where δ = abs(velocity− speed limit) and C = 30. We terminate the episode of δ ≥ C.75

B.4 Reinforcement Learning Loss76

We describe our factorized approach to multiagent PPO [5] in more detail. Starting off we compute77

a per-agent probability ratio.78

r(i) =
π(a(i)|s)
πold(a(i)|s)

. (15)

Our centralized value-function uses the same architecture as our policy, and computes per-agent79

value estimates V̂ (i)(s). Details of the architecture are found in Section B.6. The value model80

is trained using per-agent value targets, which are computed with per-agent rewards R(i)
t =81

R(i)(st, a
(i)
t )82

Lvalue =

N∑
i

(V̂ (i) − V (i))2 (16)

V (i) =

T∑
t=0

γtR
(i)
t (17)

We can obtain a per-agent GAE using the value model as well,83

A(i) = GAE(R(i)
0 , . . . , R

(i)
T−1, V̂

(i)(sT )) (18)
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The PPO policy loss is simply the sum of per-agent PPO loss,84

Lpolicy =

N∑
i=1

min(r(i)A(i), clip(r(i), 1− ε, 1 + ε)A(i)) (19)

Finally, the overall loss is the sum of the policy and value learning loss.85

LRL = Lpolicy + Lvalue (20)

B.5 Input Parameterization86

Agent history: Following [7], we adopt an viewpoint invariant representation of an agent’s past87

trajectory. We encode the past trajectory as a sequence of pair-wise relative positional encodings88

between the past waypoints and the current pose. Each relative positional encoding consists of the89

sine and cosine of distance and heading difference of a pair of poses. See [7] for details.90

Lane graph: To construct our lane graph representation G = (V,E), We first obtain the lane91

graph nodes by discretizing centerlines in the high-definition (HD) map into lane segments every92

10m. We use length, width, curvature, speed limit, and lane boundary type (e.g., solid, dashed)93

as node features. Following [8], we then connect nodes with 4 different relationships: successors,94

predecessors, left and right neighbors.95

B.6 Model Architecture96

Briefly, the RTR model architecture is composed of three main building blocks: (1) context encoders97

for embedding lane graph and agent history inputs; (2) interaction module for capturing scene-level98

interaction; and (3a) action decoder for parameterizing the per-agent policy and (3b) value decoder99

for the value model. Note that the policy model and the value model use the same architecture, but100

are trained completely separately and do not share any parameters.101

History encoder: The history encoder consists of a 1D residual neural network (ResNet) followed102

by a gated recurrent unit (GRU) that extracts agent features h(i)a = f(s(i)) from a sliding window103

of past agent states s. Intuitively, the 1D CNN captures local temporal patterns, and the GRU104

aggregates them into a global feature.105

Lane graph encoder: The lane graph encoder is a graph convolutional network (GCN) [8] that106

extracts map features hm = g(m) from a given lane-graph G of map m. We use hidden channel107

dimensions of [128, 128, 128, 128], layer normalization (LN), and max pooling aggregation.108

Interaction module: To model scene-level interaction (i.e., agent-to-agent, agent-to-map, and109

map-to-map), we build a heterogeneous spatial graph G′ by adding agent nodes to the original lane110

graph G. Besides the original lane graph edges, we connect agent nodes to their closest lane graph111

nodes. All agent nodes are also fully connected to each other. We use a scene encoder parameter-112

ized by a heterogeneous graph neural network (HeteroGNN) [7] to process map features and agent113

features into fused features,114

{h(1), . . . h(N)} = HeteroGNN({h(1)a , . . . , h(N)
a }, hm). (21)

These fused features are then provided as input to the decoder.115

Action decoder: Finally, we pass the fused features into a 4-layer MLP with hidden dimensions116

[128, 128, 128] to predict agent’s acceleration and steering angle distributions (parameterized as117

Normals).118

(µ(i), σ(i)) = MLP(h(i)) (22)

π(a(i)|s) = N (µ(i), σ(i)) (23)
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Figure 3: Histograms of scenario features for all methods used to compute JSD distributional re-
alism metrics. We see that BC and RL methods often struggle with capturing the data distribution
compared to IL and RTR. Notably, RTR closely matches IL performance in distributional realism,
while greatly improving infraction rate as seen in other results.

Value decoder: For the value model, a 4-layer MLP instead regresses a single scalar value repre-119

senting the value120

V̂ (i) = MLPvalue

(
h
(i)
value

)
(24)

B.7 Kinematic Bicycle Model121

We use a kinematic bicycle model [9] for our environment dynamics. The bicycle model state is122

given as123

s = (x, y, θ, v) (25)

where x, y is the position of the center of the rear axel, θ is the yaw, and v is the velocity. The bicycle124

model actions are125

a = (u, φ) (26)

where u is the acceleration, and φ is the steering angle. The dynamics function ṡ = f(s, a) is then126

defined as127

ẋ = v cos(θ) (27)
ẏ = v sin(θ) (28)

θ̇ =
v

L
tan(φ) (29)

v̇ = u (30)

where L is wheelbase length, i.e. the distance between the rear and front axel. We can use a simple128

finite difference approach to computing the next state129

st+1 = st + f(st, at)dt (31)

where dt is chosen to be 0.5 seconds in practice. We can apply the bicycle model to each agent130

individually to obtain the joint state dynamics function.131
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(a) BC (b) IL

(c) RL (d) RL-Shaped

(e) BC+RL (f) RTR (ours)

Figure 4: Qualitative results on a fork scenario. BC drives off the road, IL results in a collision
while RL and BC+RL slow down. RL-Shaped drives straight and loses the interesting lane change
behavior.

(a) BC (b) IL

(c) RL (d) RL-Shaped

(e) BC+RL (f) RTR (ours)

Figure 5: Qualitative results on a merge scenario. We see that RL methods slow down unrealistically.
IL results in a collision while RTR maintains realism.

(a) BC (b) IL

(c) RL (d) RL-Shaped

(e) BC+RL (f) RTR (ours)

Figure 6: Qualitative results on procedurally generated merge scenario. IL and BC result in a
collision. RTR maintains realism.
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(a) BC (b) IL

(c) RL (d) RL-Shaped

(e) BC+RL (f) RTR (ours)

Figure 7: Qualitative results on a procedurally generated cut-in scenario. BC+RL drives off the road,
while IL and RL-shaped result in a collision. RTR maintains realism.
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