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ABSTRACT
Image deblurring aims to restore a high-quality image from its cor-
responding blurred. The emergence of CNNs and Transformers has
enabled significant progress. However, these methods often face
the dilemma between eliminating long-range degradation perturba-
tions and maintaining computational efficiency. While the selective
state space model (SSM) shows promise in modeling long-range
dependencies with linear complexity, it also encounters challenges
such as local pixel forgetting and channel redundancy. To address
this issue, we propose an efficient image deblurring network that
leverages selective state spaces model to aggregate enriched and
accurate features. Specifically, we introduce an aggregate local and
global information block (ALGBlock) designed to effectively cap-
ture and integrate both local invariant properties and non-local
information. The ALGBlock comprises two primary modules: a
module for capturing local and global features (CLGF), and a fea-
ture aggregation module (FA). The CLGF module is composed of
two branches: the global branch captures long-range dependency
features via a selective state spaces model, while the local branch
employs simplified channel attention to model local connectivity,
thereby reducing local pixel forgetting and channel redundancy.
In addition, we design a FA module to accentuate the local part by
recalibrating the weight during the aggregation of the two branches
for restoration. Experimental results demonstrate that the proposed
method outperforms state-of-the-art approaches on widely used
benchmarks.

KEYWORDS
Image deblurring, state spaces model, features aggregation

1 INTRODUCTION
Image deblurring aims to recover a latent sharp image from its
corrupted counterpart. Due to the ill-posedness of this inverse
problem, many conventional approaches [12, 18] address this by
explicitly incorporating various priors or hand-crafted features
to constrain the solution space to natural images. Nonetheless,
designing such priors proves challenging and lacks generalizability,
which are impractical for real-world scenarios.

Stimulated by the success of deep learning for high-level vi-
sion tasks, numerous data-driven methods have resorted CNN as
a preferable choice and develop kinds of network architectural
designs, including encoder-decoder architectures [4, 7, 9], multi-
stage networks [5, 47], dual networks [2, 35, 39], generative mod-
els [22, 23, 49], and so on. While the convolution operation effec-
tively models local connectivity, its intrinsic characteristics, such
as limited local receptive fields and independence of input con-
tent, hinder the model’s ability to eliminate long-range dependency
features. To alleviate such limitations, various transformer vari-
ants [13, 21, 43, 45, 46] have been applied to image deblurring and
have achieved better performance than the CNN-based methods as

Figure 1: Computational cost vs. PSNR of models on the Go-
Pro dataset [34]. Our ALGNet achieve the SOTA performance
while simultaneously reducing computational costs.

they can better model the non-local information. However, image
deblurring often deals with high-resolution images, and the atten-
tion mechanism in Transformers incurs quadratic time complexity,
resulting in significant computational overhead. To alleviate com-
putational costs, some methods [11, 46] opt to apply self-attention
across channels instead of spatial dimensions. However, this ap-
proach fails to fully exploit the spatial information, which may
affect the deblurring performance. While other methods [13, 45]
utilize non-overlapping window-based self-attention for single im-
age deblurring, the coarse splitting approach still falls short in fully
exploring the information within each patch.

State space models [15, 33, 40], notably the enhanced version
Mamba, have recently emerged as efficient frameworks due to their
ability to capture long-range dependencies with linear complex-
ity. However, Mamba’s [15] recursive image sequence processing
method tends to neglect local pixels, while the abundance of hidden
states in the state space equation often results in channel redun-
dancy, thereby impeding channel feature learning. Given the criti-
cal importance of local and channel features in image deblurring,
directly applying the state space model often leads to poor perfor-
mance. MambaIR [17] introduces the vision state space module,
which utilizes a four-direction unfolding strategy to scan along
four different directions for local enhancement, and incorporates
channel attention to mitigate channel redundancy. Nevertheless,
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this four-directional scanning approach and the computation of
state spaces result in increased computational overhead, potentially
sacrificing the advantage of low computational resource utilization
offered by the state spaces equation.

Taking into account the above analyses, a natural question arises:
Is it feasible to design a network that efficiently aggregates local
and global features for image deblurring? To achieve this objective,
we propose ALGNet, with several key components. Specifically, we
present an aggregate local and global information block (ALGBlock)
aimed at efficiently capturing andmerging both local invariant prop-
erties and long-range dependencies. This ALGBlock consists of two
key modules: a module dedicated to capturing local and global fea-
tures (CLGF), and a feature aggregation module (FA). The CLGF
module is further divided into two branches: the global branch,
which utilizes a selective state spaces model to capture long-range
dependency features with linear complexity, and the local branch,
which incorporates simplified channel attention to effectivelymodel
local connectivity. This combination not only addresses issues like
local pixel forgetting and channel redundancy but also empowers
the network to capture more enriched and precise features. Addi-
tionally, given that image details are predominantly comprised of
local features of images [6], we design the FAmodule to underscores
the significance of the local information in the restoration process
by dynamically recalibrating the weights through a learnable factor
during the aggregation of the CLGF two branches for restoration.
Finally, we implement multiple scales for both input and output
modes, aiming to alleviate training difficulty. As illustrated in Fig-
ure 1, our ALGNet model achieves state-of-the-art performance
while preserving computational efficiency compared to existing
methods.

The main contributions of this work are:

(1) We propose ALGNet, an efficient network for aggregating en-
riched and precise features leveraging a selective state spaces
model for image deblurring. ALGNet consists of multiple
ALGBlocks, each with a capturing local and global features
module (CLGF) and a feature aggregation module (FA).

(2) We design the CLGF module to capture long-range depen-
dency features using a selective state spaces model, while
employing simplified channel attention to model local con-
nectivity, thus reducing local pixel forgetting and channel
redundancy.

(3) We present the FA module to emphasize the importance of
the local features in restoration by recalibrating the weights
through the learnable factor.

(4) Extensive experiments demonstrate that our ALGNet achieves
favorably performance against state-of-the-art methods.

2 RELATEDWORK
2.1 Hand-crafted prior-based methods.
Due to the image deblurring ill-posed nature, many conventional
approaches [12, 18] tackle this problem by relying on hand-crafted
priors to constrain the set of plausible solutions. However, designing
such priors is a challenging task and usually lead to complicated
optimization problems.

2.2 CNN-based methods.
With the rapid advancement of deep learning, instead of manually
designing image priors, lots of methods [2, 4, 22, 23, 35, 39, 47, 49]
develop kinds of deep CNNs to solve image deblurring. To better
explore the balance between spatial details and contextualized in-
formation, MPRNet [47] propose a cross-stage feature fusion to
explore the features from different stages. MIRNet-V2 [48] intro-
duces a multi-scale architecture to learn enriched features for image
restoration. IRNeXt [9] rethink the convolutional network design
and exploit an efficient and effective image restoration architec-
ture based on CNNs. NAFNet [4] analyze the baseline modules and
presents a simplified baseline network by either removing or replac-
ing nonlinear activation functions. SFNet [10] and FSNet [8] design
a multi-branch dynamic selective frequency module and a multi-
branch compact selective frequency module to dynamically select
the most informative components for image restoration. Although
these methods achieve better performance than the hand-crafted
prior-based ones, the intrinsic properties of convolutional opera-
tions, such as local receptive fields, constrain the models’ capability
to efficiently eliminate long-range degradation perturbations.

2.3 Transformer-based methods.
Due to the content-dependent global receptive field, the trans-
former architecture [44] has recently gained much popularity in
image restoration [3, 13, 27, 43, 45, 46, 51], demonstrating superior
performance compared to previous CNN-based baselines. IPT [3]
employs a Transformer-based multi-head multi-tail architecture,
proposing a pre-trained model for image restoration tasks. How-
ever, image deblurring often deals with high-resolution images, and
the attention mechanism in Transformers incurs quadratic time
complexity, resulting in significant computational overhead. In or-
der to reduce the computational cost, Uformer [45], SwinIR [27]
and U2former [13] computes self-attention based on a window.
Nonetheless, the window-based approach still falls short in fully
exploring the information within each patch. Restormer [46] and
MRLPFNet [11] compute self-attention across channels rather than
the spatial dimension, resulting in the linear complexity. How-
ever, this approach fails to fully exploit the spatial information.
FFTformer [21] explores the property of the frequency domain to
estimate the scaled dot-product attention, but need correspond-
ing inverse Fourier transform, leading to additional computation
overhead.

2.4 State Spaces Model.
State spaces models [15, 16, 32, 33, 40, 41] have recently emerged
as efficient frameworks due to their ability to capture long-range
dependencies with linear complexity. S4 [16] is the first structured
SSM to model long-range dependency. S5 [41] propose the diagonal
SSM approximation and computed recurrently with the parallel
scan. Mega [32] introduced a simplification of S4 [16] to be real-
instead of complex- valued, giving it an interpretation of being an
exponential moving average. SGConv [14] and LongConv [26] focus
on the convolutional representation of S4 and create global or long
convolution kernels with different parameterizations. Mamba [15]
propose a selective mechanism and hardware-aware parallel algo-
rithm. Many vision tasks start to employ Mamba to tackle image
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Figure 2: Overall architecture of ALGNet. (a) ALGNet consists of several ALGBlocks and adopts themulti-input andmulti-output
strategies for image restoration. (b) ALGBlock comprises two primary modules: a module for capturing local and global features
(CLGF), and a feature aggregation module (FA). The CLGF module is composed of two branches: (c) the local branch to model
local connectivity, while (d) the global branch captures long-range dependency features.

classification [29, 52], image segmentation [31], and so on. How-
ever, the standard Mamba model still encounters issues with local
pixel forgetting and channel redundancy when applied to image
restoration tasks. To tackle this challenge, MambaIR [17] adopts
a four-direction unfolding strategy to scan along four different
directions and integrates channel attention. Nevertheless, this four-
directional scanning approach results in increased computational
overhead. In this work, we design an ALGBlock to efficiently cap-
ture and integrate both local invariant properties and long-range
dependencies through a selective state spaces model with lower
computational cost. As depicted in Figure 1, our ALGNet outper-
forms MambaIR [17] while reducing computational costs by 96.1%.

3 METHOD
In this section, we first outline the overall pipeline of our ALGNet.
Subsequently, we delve into the details of the proposed ALGBlock,
which includes the capturing local and global features module
(CLGF) and the feature aggregation module (FA).

3.1 Overall Pipeline
The overall pipeline of our proposed ALGNet, shown in Figure 2,
adopts a single U-shaped architecture for image deblurring. Given

a degraded image I ∈ R𝐻×𝑊 ×3, ALGNet initially applies a con-
volution to acquire shallow features F0 ∈ R𝐻×𝑊 ×𝐶 (𝐻,𝑊 ,𝐶 are
the feature map height, width, and channel number, respectively).
These shallow features undergo a four-scale encoder sub-network,
progressively decreasing resolution while expanding channels. It’s
essential to note the use of multi-input and multi-output mecha-
nisms for improved training. The low-resolution degraded images
are incorporated into the main path through the Convs (consists
of multiple convolutions and ReLU) and concatenation, followed
by convolution to adjust channels. The in-depth features then en-
ter a middle block, and the resulting deepest features feed into a
four-scale decoder, gradually restoring features to the original size.
During this process, the encoder features are concatenated with
the decoder features to facilitate the reconstruction. Finally, we
refine features to generate residual image X ∈ R𝐻×𝑊 ×3 to which
degraded image is added to obtain the restored image: Î = X + I. It’s
important to note that the three low-resolution results are solely
used for training.

We optimize the proposed network ALGNet with the following
loss function:

𝐿 =

4∑︁
𝑖=1

(𝐿𝑐ℎ𝑎𝑟 (𝐼𝑖 , 𝐼 𝑖 ) + 𝛿𝐿𝑒𝑑𝑔𝑒 (𝐼𝑖 , 𝐼 𝑖 ) + 𝜆𝐿𝑓 𝑟𝑒𝑞 (𝐼𝑖 , 𝐼 𝑖 )) (1)

2024-04-12 14:14. Page 3 of 1–10.
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where 𝑖 denotes the index of input/output images at different scales,
𝐼 𝑖 denotes the target images and 𝐿𝑐ℎ𝑎𝑟 is the Charbonnier loss:

𝐿𝑐ℎ𝑎𝑟 =

√︃
| |𝐼𝑖 − 𝐼 𝑖 | |2 + 𝜖2 (2)

with constant 𝜖 empirically set to 0.001 for all the experiments.
𝐿𝑒𝑑𝑔𝑒 is the edge loss:

𝐿𝑒𝑑𝑔𝑒 =

√︃
| |△𝐼𝑖 − △𝐼 𝑖 | |2 + 𝜖2 (3)

where △ represents the Laplacian operator. 𝐿𝑓 𝑟𝑒𝑞 denotes the fre-
quency domains loss:

𝐿𝑓 𝑟𝑒𝑞 = | |F (𝐼𝑖 ) − F (𝐼 𝑖 ) | |1 (4)
where F represents fast Fourier transform, and the parameters 𝜆
and 𝛿 control the relative importance of loss terms, which are set
to 0.1 and 0.05 as in [8, 47], respectively.

3.2 Capturing Local and Global Features
Module (CLGF)

Transformer-basedmodels [11, 13, 21, 45, 46] address the limitations
of CNNs, such as a limited receptive field and lack of adaptability
to input content. They excel in modeling non-local information,
leading to high-quality image reconstruction, and have emerged
as the dominant method for image deblurring. However, image
deblurring commonly involves processing high-resolution images,
and the attention mechanism in Transformers introduces quadratic
time complexity, leading to considerable computational overhead.
While it’s possible to mitigate computational consumption by uti-
lizing window-based attention [13, 45] or channel-wise attention
[11, 46], these methods inevitably lead to information loss.

To address this challenge, we design the capturing local and
global features module (CLGF) depicted in Figure 2(b), aiming to
capture long-range dependency features and model local connec-
tivity with linear complexity. Specifically, given an input tensor
𝑋𝑙−1, we initially process it through Layer Normalization (LN), Con-
volution, and Simple Gate (SG) to obtain spatial features 𝑋𝑠

𝑙−1 as
follows:

𝑋𝑠
𝑙−1 = 𝑆𝐺 (𝑓 𝑑𝑤𝑐3×3 (𝑓 𝑐1×1 (𝐿𝑁 (𝑋𝑙−1))))

𝑆𝐺 (𝑋𝑓 0) = 𝑋𝑓 1 ⊗ 𝑋𝑓 2
(5)

where 𝑓 𝑑𝑤𝑐3×3 denotes the 3 × 3 depth-wise convolution, 𝑓 𝑐1×1 rep-
resents 1 × 1 convolution. 𝑆𝐺 (·) is the simple gate, employed as
a replacement for the nonlinear activation function. For a given
input 𝑋𝑓 0 ∈ R𝐻×𝑊 ×𝐶 , SG initially splits it into two features
𝑋𝑓 1 ∈ R𝐻×𝑊 ×𝐶

2 and 𝑋𝑓 2 ∈ R𝐻×𝑊 ×𝐶
2 along channel dimension.

Subsequently, SG calculates the 𝑋𝑓 1, 𝑋𝑓 2 using a linear gate. Next,
we feed the spatial features 𝑋𝑠

𝑙−1 through both the global branch
and the local branch to capture global features 𝐹𝐺 and local features
𝐹𝐿 , respectively.

In the global branch, depicted in Figure 2(c), we opt for a state-
space model (SSM) instead of Transformers to capture long-distance
dependencies, ensuring linear complexity. Specifically, starting with
an input feature 𝑋𝑠

𝑙−1, we first reshape and normalize it using layer
normalization (LN). Subsequently, it undergoes processing through
two parallel branches. In the top branch, the feature channels are
expanded by a linear layer, followed by activation through the SiLU

Figure 3: (a) Local pixels (highlighted by the red dashed line)
are susceptible to being forgotten in the flattened 1D se-
quence due to the extensive distance. (b) Following [17], we
apply ReLU and global average pooling to the outputs of the
global branch to obtain channel activation values. However, a
considerable portion of channels remain inactive, indicating
channel redundancy.

function. In the bottom branch, the feature channels are expanded
by a linear layer followed by the SiLU activation function, along
with the selective state spaces model layer. The SSM inspired by the
particular continuous system that maps a 1-dimensional function
or sequence 𝑥 (𝑡) ∈ R→ 𝑦 (𝑡) ∈ R through an implicit latent state
ℎ(𝑡) ∈ R𝑁 as follows:

ℎ
′
(𝑡) = Aℎ(𝑡) + B𝑥 (𝑡)

𝑦 (𝑡) = Cℎ(𝑡)
(6)

where A ∈ R𝑁×𝑁 ,B ∈ R𝑁×1,C ∈ R1×𝑁 are four parameters,
and 𝑁 is the state size. SSM first transform the continuous pa-
rameters A, B to discrete parameters A,B through fixed formulas
A = 𝑒𝑥𝑝 (□A) and B = (□A)−1𝑒𝑥𝑝 (□A − 𝐼 ) · □B, where □ denotes
the timescale parameter. After the discretization, the model can be
computed as a linear recurrence way:

ℎ𝑡 = Aℎ𝑡−1 + B𝑥𝑡
𝑦𝑡 = Cℎ𝑡

(7)

or a global convolution way:

K = (CB,CAB, ...,CAk−1
B)

𝑦 = 𝑥 ⊛ K
(8)

where 𝑘 is the length of the input sequence, ⊛ denotes convolution
operation, and K ∈ R𝑘 is a structured convolution kernel. Selec-
tive SSM integrates a selection mechanism into SSM, making the
parameters input-dependent. The selective SSM offers two key ad-
vantages. Firstly, it shares the same recursive form as Eq.7, enabling
the model to capture long-range dependencies to aid in restora-
tion. Secondly, the parallel scan algorithm enables SSM to leverage
the advantages of parallel processing described in Eq.8, thereby
facilitating efficient training.

After that, features from the two branches are aggregated with
the element-wise multiplication. Finally, the channel number is
projected back and reshape to the original size. The total process

2024-04-12 14:14. Page 4 of 1–10.
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can be defined as:
𝐹𝑡 = 𝑆𝑖𝐿𝑈 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝐿𝑁 (𝑋𝑠

𝑙−1))),
𝐹𝑏 = 𝑆𝑆𝑀 (𝑆𝑖𝐿𝑈 (𝑓 𝑐1×1 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝐿𝑁 (𝑋𝑠

𝑙−1)))))
𝐹𝐺 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝐹𝑡 ⊗ 𝐹𝑏 ))

(9)

Despite the selective SSM’s ability to capture long-range depen-
dencies with linear computational complexity, it can result in issues
like local pixel forgetting and channel redundancy, primarily due
to the flattening strategy and an excessive number of hidden states.
As shown in Figure 3(a), when the 2D feature map is flattened into
a 1D sequence, adjacent pixels (e.g., sequence number 1 and 11)
become widely separated, leading to the issue of pixel forgetting.
Additionally, as per [17], we visualize the activation results for
different channels in Figure 3(b) and observe significant channel
redundancy attributed to the larger number of hidden states in the
selective SSM. To address the above challenges, we equip our CLGF
with a local branch to model local connectivity and facilitate the
expressive power of different channels. The local branch shown in
Figure 2(c), it is a simplified channel attention. Given the spatial
features 𝑋𝑠

𝑙−1, the local features 𝐹𝐿 can be obtained by:

𝐹
′
𝐿 = 𝑋𝑠

𝑙−1 ⊗ 𝑓 𝑐1×1 (𝐺𝐴𝑃 (𝑋
𝑠
𝑙−1)),

𝐹𝐿 = 𝑓 𝑐1×1 (𝐹
′
𝐿)

(10)

where GAP is the global average pool. Noted that, in our CLGF
module, we initially capture the spatial feature 𝑋𝑠

𝑙−1, which ag-
gregates neighboring information, before feeding it to the global
branch. This approach effectively reduces the problem of local pixel
forgetting.

3.3 Feature Aggregation Module (FA)
Given that image details primarily consist of local features, we
design a feature aggregation (FA) module, depicted in Figure 2(b),
to highlight the significance of the local block in restoration. This is
achieved by dynamically recalibrating the weights through a learn-
able factor during the aggregation of the two blocks for recovery.
Specifically, given the global features 𝐹𝐺 and local features 𝐹𝐿 , the
aggregate process can be defined as:

𝐹𝐴 = 𝐹𝐺 ⊕𝑊𝐹𝐿 (11)

where𝑊 represents the learnable parameters, directly optimized
by backpropagation and initialized as 1. It’s worth noting that
our design is exceptionally lightweight, as it does not introduce
additional convolution layers. Finally, to capture richer and more
accurate information, we refine the aggregated features 𝐹𝐴 to obtain
the output feature 𝑋𝑙 of the ALGBlock as follows:

𝑋𝑙 = 𝐹𝐴 ⊕ 𝑓 𝑐1×1 (𝑆𝐺 (𝑓 𝑐1×1 (𝐿𝑁 (𝑋𝑙−1 ⊕ 𝐹𝐴)))) (12)

4 EXPERIMENTS
We first describe the experimental details of the proposed ALGNet.
Then we present both qualitative and quantitative comparisons be-
tween ALGNet and other state-of-the-art methods. Following that,
we conduct ablation studies to validate the effectiveness of our ap-
proach. Finally, we assess the resource efficiency of ALGNet. Due to
the page limit, additional results are provided in the supplementary
material.

4.1 Experimental Settings
4.1.1 Datasets. Image Motion Deblurring. Following recent
methods [8, 47], we train ALGNet using the GoPro dataset [34],
which includes 2,103 image pairs for training and 1,111 pairs for
evaluation. To assess the generalizability of our approach, we di-
rectly apply the GoPro-trained model to the test images of the
HIDE [37] and RealBlur [36] datasets. The HIDE dataset contains
2,025 images that collected for human-aware motion deblurring.
Both the GoPro and HIDE datasets are synthetically generated, but
the RealBlur dataset comprises image pairs captured under real-
world conditions. This dataset includes two subsets: RealBlur-J, and
RealBlur-R.

Single-Image Defocus Deblurring. To evaluate the effective-
ness of our method, we adopt the DPDD dataset [1], following
the methodology of recent approaches [8, 46]. This dataset com-
prises images from 500 indoor/outdoor scenes captured using a
DSLR camera. Each scene consists of three defocused input images
and a corresponding all-in-focus ground-truth image, labeled as
the right view, left view, center view, and the all-in-focus ground
truth. The DPDD dataset is partitioned into training, validation,
and testing sets, comprising 350, 74, and 76 scenes, respectively.
ALGNet is trained using the center view images as input, with loss
values computed between outputs and corresponding ground-truth
images.

4.1.2 Training details. For various tasks, separate models are
trained, and unless otherwise specified, the following parameters
are utilized. The models are trained using the Adam optimizer [20]
with parameters 𝛽1 = 0.9 and 𝛽2 = 0.999. The initial learning rate
is set to 5 × 10−4 and gradually reduced to 1 × 10−7 using the
cosine annealing strategy [30]. The batch size is chosen as 32, and
patches of size 256 × 256 are extracted from training images. Data
augmentation involves horizontal and vertical flips. We scale the
network width by setting the number of channels to 32 and 64 for
ALGNet and ALGNet-B, respectively.

4.2 Experimental Results
4.2.1 Image Motion Deblurring. We present the performance
of evaluated image deblurring approaches on the synthetic Go-
Pro [34] and HIDE [37] datasets in Tables 1. Our ALGNet-B demon-
strates a 0.43 dB improvement in performance over NAFNet-64 [4]
on the GoPro [34] dataset. Compared with MambaIR [17], which is
also based on the state space model, our ALGNet demonstrates an
improvement in performance by 0.28 dB, while ALGNet-B achieves
a substantial improvement of 0.84 dB. Additionally, as depicted in
Figure 1, our ALGNet achieves even better performance through
the scaling up of the model size, underscoring the scalability of
ALGNet. Despite being trained solely on the GoPro [34] dataset,
our network still achieves a significant gain of 0.19 dB PSNR over
Restormer-Local [46] on the HIDE [37] dataset, demonstrating its
generalization capability. Figure 4 illustrates that our model pro-
duces visually more pleasing results.

We also evaluate our ALGNet on real-world images from the
RealBlur dataset [36] under two experimental settings: (1) applying
the GoPro-trained model directly on RealBlur, and (2) training and
testing on RealBlur data. As shown in Table 2, for setting 1, our
ALGNet achieves performance gains of 0.16 dB on the RealBlur-R

2024-04-12 14:14. Page 5 of 1–10.
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Table 1: Quantitative evaluations of the proposed approach
against state-of-the-art motion deblrrring methods. The best
and second best scores are highlighted and underlined. Our
ALGNet-B and ALGNet are trained only on the GoPro dataset.

GoPro [34] HIDE [37]
Methods PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

DeblurGAN-v2 [23] 29.55 0.934 26.61 0.875
MPRNet [47] 32.66 0.959 30.96 0.939

MPRNet-local [47] 33.31 0.964 31.19 0.945
HINet [5] 32.71 0.959 30.32 0.932

HINet-local [5] 33.08 0.962 - -
Uformer [45] 32.97 0.967 30.83 0.952
MSFS-Net [50] 32.73 0.959 31.05 0.941

MSFS-Net-local [50] 33.46 0.964 31.30 0.943
NAFNet-32 [4] 32.83 0.960 - -
NAFNet-64 [4] 33.62 0.967 - -
Restormer [46] 32.92 0.961 31.22 0.942

Restormer-local [46] 33.57 0.966 31.49 0.945
IRNeXt [9] 33.16 0.962 - -
SFNet [10] 33.27 0.963 31.10 0.941
FSNet [8] 33.29 0.963 31.05 0.941

DeblurDiNAT-S [28] 32.85 0.961 30.65 0.936
DeblurDiNAT-L [28] 33.42 0.965 31.28 0.943

MambaIR [17] 33.21 0.962 31.01 0.939
ALGNet(Ours) 33.49 0.964 31.64 0.947

ALGNet-B(Ours) 34.05 0.969 31.68 0.952

subset over Restormer [46] and 0.13 dB on the RealBlur-J subset
over DeBlurDiNAT-L [28]. Compared with MambaIR [17], our gains
are 0.37 dB and 0.30 dB on RealBlur-R and RealBlur-J, respectively.

Table 2: Quantitative real-world deblurring results under
two different settings: 1). applying our GoPro trained model
directly on the RealBlur dataset [36], 2). Training and testing
on RealBlur data where methods are denoted with symbol∗

RealBlur-R RealBlur-J
Methods PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

MPRNet [47] 35.99 0.952 28.70 0.873
Restormer [46] 36.19 0.957 28.96 0.879
Stripformer [43] 36.08 0.954 28.82 0.876
FFTformer [21] 35.87 0.953 27.75 0.853
MRLPFNet [11] 36.16 0.955 28.98 0.861

DeblurDiNAT-S [28] 35.92 0.954 28.80 0.877
DeblurDiNAT-L [28] 36.07 0.956 28.99 0.885

MambaIR [17] 35.98 0.955 28.82 0.875
ALGNet(Ours) 36.35 0.961 29.12 0.886

DeblurGAN-v2∗ [23] 36.44 0.935 29.69 0.870
MPRNet∗ [47] 39.31 0.972 31.76 0.922

Stripformer∗ [43] 39.84 0.975 32.48 0.929
FFTformer∗ [21] 40.11 0.973 32.62 0.932
MRLPFNet∗ [11] 40.92 0.975 33.19 0.936
MambaIR∗ [17] 39.92 0.972 32.44 0.928
ALGNet∗(Ours) 41.16 0.981 32.94 0.946

A similar trend is observed for setting 2, where our gains over
MRLPFNet [11] are 0.24 dB on RealBlur-R. Although our ALGNet
performs slightly inferiorly to MRLPNet in PSNR metric on the
RealBlur-J dataset, our SSIM metric is higher. Moreover, for setting
1, our method outperforms MRLPNet, indicating superior gener-
alization capability. Figure 5 presents visual comparisons of the
evaluated approaches. Overall, the images restored by our model
exhibit sharper details and are closer to the ground truth compared
to those produced by other methods.

Figure 4: Image motion deblurring comparisons on the GoPro dataset [34]. Our ALGNet recovers perceptually faithful images.

Figure 5: Image motion deblurring comparisons on the RealBlur dataset [36]. Our ALGNet recovers image with clearer details.

2024-04-12 14:14. Page 6 of 1–10.
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Table 3: Quantitative comparisons with other single-image defocus deblurring methods on the DPDD testset [1] (containing 37
indoor and 39 outdoor scenes).

Indoor Scenes Outdoor Scenes Combined
Methods PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓
EBDB [19] 25.77 0.772 0.040 0.297 21.25 0.599 0.058 0.373 23.45 0.683 0.049 0.336

DMENet [24] 25.50 0.788 0.038 0.298 21.43 0.644 0.063 0.397 23.41 0.714 0.051 0.349
JNB [38] 26.73 0.828 0.031 0.273 21.10 0.608 0.064 0.355 23.84 0.715 0.048 0.315

DPDNet [1] 26.54 0.816 0.031 0.239 22.25 0.682 0.056 0.313 24.34 0.747 0.044 0.277
KPAC [42] 27.97 0.852 0.026 0.182 22.62 0.701 0.053 0.269 25.22 0.774 0.040 0.227
IFAN [25] 28.11 0.861 0.026 0.179 22.76 0.720 0.052 0.254 25.37 0.789 0.039 0.217

Restormer [46] 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178
IRNeXt [9] 29.22 0.879 0.024 0.167 23.53 0.752 0.049 0.244 26.30 0.814 0.037 0.206
SFNet [10] 29.16 0.878 0.023 0.168 23.45 0.747 0.049 0.244 26.23 0.811 0.037 0.207
FSNet [8] 29.14 0.878 0.024 0.166 23.45 0.747 0.050 0.246 26.22 0.811 0.037 0.207

MambaIR [17] 28.89 0.879 0.026 0.171 23.36 0.738 0.051 0.243 26.11 0.809 0.039 0.202
ALGNet(Ours) 29.37 0.898 0.023 0.147 23.68 0.755 0.048 0.223 26.45 0.821 0.036 0.186

Figure 6: Single image defocus deblurring comparisons on the DDPD dataset [1]. Our ALGNet effectively removes blur.

Figure 7: The outputs of the CLGF module are processed by
ReLU and global average pooling to obtain channel activation
values.

4.2.2 Single-Image Defocus Deblurring. We conduct single-
image defocus deblurring experiments on the DPDD [1] dataset.
Table 3 presents image fidelity scores of state-of-the-art defocus
deblurring methods. ALGNet outperforms other state-of-the-art
methods across all scene categories. Notably, in the combined scenes

category, ALGNet exhibits a 0.15 dB improvement over the leading
method IRNeXt [9]. In comparison to MambaIR [17], which also
relies on the state space model, our ALGNet showcases an improve-
ment in performance by 0.48 dB in indoor scenes. The visual results
in Figure 6 illustrate that our method recovers more details and
visually aligns more closely with the ground truth compared to
other algorithms.

4.3 Ablation Studies
Here we present ablation experiments to verify the effectiveness
and scalability of our method. Evaluation is performed on the GoPro
dataset [34], and the results are shown in Table. 4. The baseline is
NAFNet [4]. We perform the break-down ablation by applying the
proposed modules to the baseline successively, we can make the
following observations:

(1) When our CLGF module consists of only one local branch or
global branch, the improvement in deblurring performance
is not significant. There are two main reasons for this. Firstly,
our baseline model is already capable of fully capturing lo-
cal information, rendering the addition of a local branch
ineffective in enhancing the model’s representation ability.
Secondly, since our global branch is based on the state-space
model, although it can capture long-distance information, it
often encounters issues such as local pixel loss and channel
redundancy, as illustrated in Figure 3. Therefore, when used
alone, it fails to enhance performance.

2024-04-12 14:14. Page 7 of 1–10.
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Figure 8: The internal features of ALGBlock. With our CLGF and FA, ALGBlcok produces more fine details than the initial
feature, e.g., the number plate. Zoom in for the best view..

Table 4: Ablation study on individual components of the
proposed ALGNet.

Method PSNR
Baseline 32.83

Baseline + CLGF w/o local branch 32.89
Baseline + CLGF w/o global branch 32.86

Baseline + CLGF 33.35
Baseline + CLGF + FA 33.49

Table 5: The impact of feature aggregation method on the
overall performance.

Modules Sum Concatenation FA
PSNR 33.35 33.37 33.49

FLOPs(G) 17 22 17

(2) When our CLGF module comprises both a local branch and
a global branch, we observe a significant improvement in
performance, up to 0.52 dB compared to the baseline. This
indicates that CLGF has the ability to capture long-range de-
pendency features and model local connectivity effectively.

(3) The FA contributes a gain of 0.14 dB to our model.

To further validate the effectiveness of our CLGF module, we
apply ReLU and global average pooling operations on the output
results of CLGF to obtain channel activation values (see Figure 7).
It’s evident that our CLGF successfully circumvents the issue of
channel redundancy caused by an excessive number of hidden
states in the state spaces model.

Furthermore, to assess the advantage of our FA design, we com-
pare it with other methods such as sum and concatenation. As
shown in Table 5, our FA consistently delivers superior results, indi-
cating its effectiveness in emphasizing the importance of the local
branch in restoration. Importantly, our design does not introduce
any additional computational burden.

Finally, we compare the feature maps before and after our AL-
GBLock in Figure 8. It is evident that the feature map from our
local branch contains more detailed information compared to that
from the global branch. Upon aggregation of the local and global
branches of CLGF using FA, we observe a significant recovery
of more details, particularly in the blurred license plate number
present in the initial feature map.

Table 6: The evaluation of model computational complexity
on the GoPro dataset [34]. The FLOPs are evaluated on image
patches with the size of 256×256 pixels. The running time is
evaluated on images with the size of 1280 × 720 pixels.

Method Time(s) FLOPs(G) PSNR SSIM
MPRNet [47] 1.148 777 32.66 0.959
Restormer [46] 1.218 140 32.92 0.961
Stripformer [43] 1.054 170 33.08 0.962

IRNeXt [9] 0.255 114 33.16 0.962
SFNet [10] 0.408 125 33.27 0.963
FSNet [8] 0.362 111 33.29 0.963

MambaIR [17] 0.743 439 33.21 0.962
ALGNet(Ours) 0.237 17 33.49 0.964

4.4 Resource Efficient
We assess the model complexity of our proposed approach and
state-of-the-art methods in terms of model running time and FLOPs.
Table 6 and Figure 1 illustrate that our ALGNet model achieves
SOTA performance while simultaneously reducing computational
costs. Specifically, we achieve a 0.2 dB improvement over the pre-
vious best approach, FSNet [8], with up to 84.7% cost reduction
and nearly 1.5 times faster inference. Compared to MambaIR [17],
our ALGNet reduces computational costs by 96.1% and achieves
3.1 times faster inference. This underscores the efficiency of our
method, demonstrating superior performance along with resource
effectiveness.

5 CONCLUSION
In this paper, we propose an efficient image deblurring network
that leverages selective state spaces model to aggregate enriched
and accurate features. We design an ALGBlock consisting of CLGF
and FA module. The CLGF module captures long-range dependency
features using a selective state spaces model in the global branch,
while employing simplified channel attention to model local con-
nectivity in the local branch, thus reducing local pixel forgetting
and channel redundancy. Additionally, we propose the FA module
to emphasize the significance of the local information by dynami-
cally recalibrating the weights through a learnable factor during
the aggregation of the CLGF two branches. Experimental results
demonstrate that the proposed method outperforms state-of-the-art
approaches.
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